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Abstract. In this paper, we concentrate on studying the generalization of almost interior Γ-hyperideals

in ordered Γ-semihypergroups. The notion of weakly almost interior Γ-hyperideals of ordered Γ-

semihypergroups is introduced. This concept generalizes the notion of almost interior Γ-hyperideals

in ordered Γ-semihypergroups. Then, the characterization of ordered Γ-semihypergroups having no

proper weakly almost interior Γ-hyperideals is provided. Next, we introduce the concept of fuzzy

weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups. Also, some properties of fuzzy

weakly almost interior Γ-hyperideals are considered. Moreover, the concepts of weakly almost interior

Γ-hyperideals and fuzzy weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups are char-

acterized. The connections between strongly prime (resp., prime, semiprime) weakly almost interior

Γ-hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ-hyperideals

in ordered Γ-semihypergroups are presented.

1. Introduction

When it comes to studying in semigroups, ideal theory is essential. Grošek and Satko [5] extended

the concept of ideals in semigroups to the concept of almost ideals in 1980, characterizing the semi-

groups that have proper almost ideals. Afterwards, Bogdanović [2] introduced the concept almost

bi-ideals in semigroups, as a generalization of bi-ideals, by using the concepts of almost ideals and
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bi-ideals of semigroups. Zadeh [22] introduced the concept of fuzzy subsets as a function from a

nonempty set X to the unit interval [0, 1]. Wattanatripop et al. [21] applied the concept of fuzzy

subsets to define the notion of fuzzy almost bi-ideals of semigroups in 2018, they examined at some

of the connections between almost bi-ideals and fuzzy almost bi-ideals in semigroups. The concepts

of (resp., weakly) almost interior ideals and fuzzy (resp., weakly) almost interior ideals in semigroups

were introduced and discussed by Kaopusek et al. [8] and Krailoet et al. [9], respectively. In 2022,

Chinram and Nakkhasen [3] introduced the concept of almost bi-quasi-interior ideals of semigroups

and considered some relationships between almost bi-quasi-interior ideals and their fuzzification in

semigroups.

The notion of Γ-semigroups generalized from the classical semigroups, was first introduced by Sen

and Saha [15]. Then, Simuen et al. [16] defined the concepts of almost quasi-Γ-ideals and fuzzy

almost quasi-Γ-ideals of Γ-semigroups. Later, Jantanan et al. [7] studied the concepts of almost

interior Γ-ideals and fuzzy almost interior Γ-ideals in Γ-semigroups. The notion of ordered semigroups

is another generalization of the semigroups. In 2022, Suebsung et al. [17] introduced the concepts of

(resp., fuzzy) almost bi-ideals and (resp., fuzzy) almost quasi-ideals of ordered semigroups, and they

have investigated the characterizations of these concepts.

Since 1934, the research of Marty [10], who developed the notion of hyperstructures, has been

studied by many mathematicians. The concept of almost hyperideals in semihypergroups, which

is a generalization of hyperideals, was introduced and presented some properties by Suebsung et

al. [18]. Then, they have defined the concept of almost quasi-hyperideals in semihypergroups and gave

some interesting properties, see [19]. Next, Muangdoo et al. [11] introduced the notions of (resp.,

fuzzy) almost bi-hyperideals of semihypergroups and discussed some connections between almost bi-

hyperideals and their fuzzification in semihypergroups. In 2022, Nakkhasen et al. [12] surveyed some

properties of fuzzy almost interior hyperideals in semihypergroups and considered some links between

almost interior hyperideals and fuzzy almost interior hyperideals in semihypergroups.

It is known that ordered Γ-semihypergroups are a generalization of semihypergroups. Recently,

Rao et al. [14] defined the concept of almost interior Γ-hyperideals of ordered Γ-semihypergroups and

provided the relationships between interior Γ-hyperideals and almost interior Γ-hyperideals in ordered

Γ-semihypergroups. This article presents the notions of weakly almost interior Γ-hyperideals in ordered

Γ-semihypergroups, which extend the idea of almost interior Γ-hyperideals, and provides certain char-

acteristics of these hyperideals. Furthermore, we define the concept of fuzzy weakly almost interior

Γ-hyperideals of ordered Γ-semihypergroups, and consider some connections between weakly almost

interior Γ-hyperideals and fuzzy weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups.

2. Preliminaries

Firstly, we recall some of the basis definitions and properties, which are necessary for this paper.
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A hypergroupoid (H, ◦) is a nonempty set H together with a mapping ◦ : H ×H → P∗(H) called a

hyperoperation, where P∗(H) denotes the set of all nonempty set of H (see [4, 10]). We denote by

a ◦ b the image of the pair (a, b) in H ×H. If x ∈ H and A,B ∈ P∗(H), then we denote

A ◦ B :=
⋃

a∈A,b∈B
a ◦ b, A ◦ x := A ◦ {x} and x ◦ B := {x} ◦ B.

Definition 2.1. (see [6]) A hypergroupoid (S, ◦) is called a semihypergroup if (x ◦ y) ◦ z = x ◦ (y ◦ z)

for all x, y , z ∈ S.

In 2010, Anvariyeh et al. [1] introduced the notion of Γ-semihypergroups, which is a generalization

of semihypergroups.

Definition 2.2. (see [1]) Let S and Γ be two nonempty sets. Then, (S,Γ) is called a Γ-semihypergroup

if for each γ ∈ Γ is a hyperoperation on S, i.e., xγy ⊆ S for all x, y ∈ S, and for any α, β ∈ Γ and

x, y , z ∈ S, (xαy)βz = xα(yβz).

Let A and B be two nonempty subsets of a Γ-semihypergroup (S,Γ). We define

AΓB :=
⋃
γ∈Γ

AγB =
⋃
γ∈Γ

{aγb | a ∈ A, b ∈ B}.

Particularly, if A = {a} and B = {b}, then we define aΓb := {a}Γ{b}.

Definition 2.3. (see [20]) Let S and Γ be two nonempty sets and ≤ be an order relation on S. An

algebraic hyperstructure (S,Γ,≤) is called an ordered Γ-semihypergroup if the following conditions are

satisfied:

(i) (S,Γ) is a Γ-semihypergroup;

(i i) (S,≤) is a partially ordered set;

(i i i) for every x, y , z ∈ S and γ ∈ Γ, x ≤ y implies xγz ≤ yγz and zγx ≤ zγy .

Here, A ≤ B means that for each a ∈ A, there exists b ∈ B such that a ≤ b, for all nonempty subsets

A and B of S.

Throughout this paper, we say an ordered Γ-semihypergroup S instead of an ordered Γ-

semihypergroup (S,Γ,≤), unless otherwise mentioned.

For any nonempty subset A of an ordered Γ-semihypergroup S, we denote

(A] := {t ∈ S | t ≤ a for some a ∈ A}.

For A = {a}, we write (a] instead of ({a}].

Lemma 2.1. [20] Let A and B be nonempty subsets of an ordered Γ-semihypergroup S. Then, the

following statements holds:

(i) A ⊆ (A];
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(i i) if A ⊆ B, then (A] ⊆ (B];

(i i i) (A]Γ(B] ⊆ (AΓB] and ((A]Γ(B]] = (AΓB];

(iv) ((A]] = (A].

The notion of almost interior Γ-hyperideals in ordered Γ-semihypergroups, as a generalization of

interior Γ-hyperideals, has been introduced by Rao et al. [14] in 2021 as follows.

Definition 2.4. [14] Let S be an ordered Γ-semihypergroup. A nonempty subset K of S is called an

almost interior Γ-hyperideal of S if

(i) (xΓKΓy ] ∩K 6= ∅ for every x, y ∈ S,
(i i) (K] ⊆ K.

Now, we review the concept of fuzzy subsets, was defined by Zadeh [22]. We say that µ is a fuzzy

subset [22] of a nonempty set X if µ : X → [0, 1]. For any two fuzzy subsets µ and λ of a nonempty

set X, we denote

(i) µ ⊆ λ if and only if µ(x) ≤ λ(x) for all x ∈ X,
(i i) (µ ∩ λ)(x) := min{f (x), g(x)} for all x ∈ X,

(i i i) (µ ∪ λ)(x) := max{f (x), g(x)} for all x ∈ X.

For any fuzzy subset µ of a nonempty set X, the support of µ is defined by

supp(µ) := {x ∈ X | µ(x) 6= 0}.

The characteristic mapping CA of A, where A is a subset of a nonempty set X, is a fuzzy subset of

X defined by for every x ∈ X,

CA(x) :=

1 if x ∈ A,

0 otherwise.

Lemma 2.2. [11] Let A and B be nonempty subsets of a nonempty set X and let µ and λ be fuzzy

subsets of X. Then, the following statements hold:

(i) CA∩B = CA ∩ CB;
(i i) A ⊆ B if and only if CA ⊆ CB;

(i i i) supp(CA) = A;

(iv) if µ ⊆ λ, then supp(µ) ⊆ supp(λ).

For any element s of X and α ∈ (0, 1], a fuzzy point sα [13] of X is a fuzzy subset of X defined by

for every x ∈ X,

sα(x) :=

α if x = s,

0 otherwise.
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Let S be an ordered Γ-semihypergroup. For each x ∈ S, we define Hx := {(y , z) ∈ S×S | x ≤ yΓz}.
Then, for any two fuzzy subsets µ and λ of S, the product µ ◦ λ [20] of µ and λ is defined by

(µ ◦ λ)(x) =


sup

(y,z)∈Hx
[min{µ(y), λ(z)}] if Hx 6= ∅,

0 if Hx = ∅,

for all x ∈ S.
Let µ be a fuzzy subset of an ordered Γ-semihypergroup S. Then, we define (µ] : S → [0, 1] by

(µ](x) = sup
x≤y

µ(y) for all x ∈ S (see [20]).

The following results can be verified straightforward.

Lemma 2.3. Let A and B be subsets of an ordered Γ-semihypergroup S. Then CA ◦ CB = C(AΓB].

Proposition 2.1. Let µ, λ and ν be fuzzy subsets of an ordered Γ-semihypergroup S. Then, the

following conditions hold:

(i) µ ⊆ (µ];

(i i) if µ ⊆ λ, then (µ] ⊆ (λ];

(i i i) if µ ⊆ λ, then (µ ◦ ν] ⊆ (λ ◦ ν] and (ν ◦ µ] ⊆ (ν ◦ λ].

Proposition 2.2. Let µ be a fuzzy subset of an ordered Γ-semihypergroup S. Then, the following

statements are equivalent:

(i) if x ≤ y , then µ(x) ≥ µ(y) for all x, y ∈ S;
(i i) (µ] = µ.

3. Weakly almost interior Γ-hyperideals

In this section, we present and study the notion of weakly almost interior Γ-hyperideals of ordered

Γ-semihypergroups as a generalization of almost interior Γ-hyperideals.

Definition 3.1. Let S be an ordered Γ-semihypergroup. A nonempty subset I of S is called a weakly

almost interior Γ-hyperideal of S if it satisfies the following conditions:

(i) (xΓIΓx ] ∩ I 6= ∅ for all x ∈ S;
(i i) (I] ⊆ I.

The following proposition obtains direct from the definition of almost interior Γ-hyperideals and

weakly almost interior Γ-hyperideals in ordered Γ-semihypergroups.

Proposition 3.1. Every almost interior Γ-hyperideal of an ordered Γ-semihypergroup S is also a weakly

almost interior Γ-hyperideal of S.

The converse of Proposition 3.1 is not true in general, as shown by the following example below.
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Example 3.1. Let S = {a, b, c, d, e, f } and Γ = {γ} with the hyperoperation on S defined by

γ a b c d e f

a {a} {b} {c} {d} {e} {f }
b {b} {c} {a} {f } {d} {e}
c {c} {a} {b} {e} {f } {d}
d {d} {f } {e} {a, b} {a, c} {b, c}
e {e} {d} {f } {a, c} {b, c} {a, b}
f {f } {e} {d} {b, c} {a, b} {a, c}

Then, (S,Γ,≤) is an ordered Γ-semihypergroup, where the order relation ≤ on S defined by ≤:=

{(x, y) | x = y}. Let I = {a, b}. Hence, by routine calculation, we have that I is a weakly almost

interior Γ-hyperideal of S. But I is not an almost interior Γ-hyperideal of S, because (dΓIΓa]∩ I = ∅.

Theorem 3.1. Let I be a weakly almost interior Γ-hyperideal of ordered Γ-semihypergroup S. If A is

any subset of S containing I, then A is also a weakly almost interior Γ-hyperideal of S.

Proof. Assume that A is a subset of S such that I ⊆ A. Let x ∈ S. Then, (xΓIΓx ] ∩ I 6= ∅. Thus,

∅ 6= (xΓIΓx ]∩ I ⊆ (xΓAΓx ]∩A. It follows that (xΓAΓx ]∩A 6= ∅. Hence, A is a weakly almost interior

Γ-hyperideal of S. �

Corollary 3.1. Let S be an ordered Γ-semihypergroup. If I1 and I2 are weakly almost interior Γ-

hyperideals of S, then I1 ∪ I2 is a weakly almost interior Γ-hyperideal of S.

Example 3.2. Let S = {a, b, c, d, e} and Γ = {α} be the nonempty sets. Define the hyperoperation

as:

α a b c d e

a {d} {a, b, d} {a, b, d} {d} {a, b, d, e}
b {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d, e}
c {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d, e}
d {d} {a, b, d} {a, b, d} {d} {a, b, d, e}
e {a, b, d} {a, b, d} {a, b, d, e} {a, b, d} {a, b, d, e}

Next, we define an order relation ≤ on S as:

≤:={(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, e), (b, c), (b, e), (d, b), (d, c), (d, e)}.

Then, (S,Γ,≤) is an ordered Γ-semihypergroup. Let I1 = {a, b} and I2 = {d}. Verifying that I1 and

I2 are weakly almost interior Γ-hyperideals of S is a routine process. However, I1 ∩ I2 is not a weakly

almost interior Γ-hyperideal of S.

The intersection of any two weakly almost interior Γ-hyperideals of an ordered Γ-semihypergroup S

does not necessarily have to be a weakly almost interior Γ-hyperideal of S, as shown by Example 3.2.
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Theorem 3.2. Let S be an ordered Γ-semihypergroup and |S| > 1. Then, the following statements

are equivalent:

(i) S has no proper weakly almost interior Γ-hyperideal;

(i i) for every x ∈ S, there exists ax ∈ S such that (axΓ(S \ {x})Γax ] = {x}.

Proof. (i)⇒ (i i) Assume that (i) holds. For any x ∈ S, we have that S \ {x} is not a weakly almost

interior Γ-hyperideal of S. So, there exists ax ∈ S such that (axΓ(S \ {x})Γax ] ∩ (S \ {x}) = ∅. We

obtain that

(axΓ(S \ {x}Γax)] ⊆ S \ (S \ {x}) = {x}.

It turns out that (axΓ(S \ {x})Γax ] = {x}.
(i i)⇒ (i) Assume that (i i) holds. Let A be any a proper subset of S. Then, A ⊆ S \ {x} for some

x ∈ S. By assumption, there exists ax ∈ S such that (axΓ(S \ {x})Γax ] = {x}. Thus,

(axΓAΓax ] ∩ A ⊆ (axΓ(S \ {x})Γax ] ∩ (S \ {x})

= {x} ∩ (S \ {x}) = ∅.

Hence, A is not a weakly almost interior Γ-hyperideal of S. This shows that S has no proper weakly

almost interior Γ-hyperideal of S. �

4. Fuzzy weakly almost interior Γ-hyperideals

The concept of fuzzy weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups and some

of the relationships between them are discussed in this section.

Definition 4.1. Let µ be a nonzero fuzzy subset of an ordered Γ-semihypergroup S. Then, µ is called

a fuzzy weakly almost interior Γ-hyperideal of S if for every fuzzy point sα of S, (sα ◦µ ◦ sα]∩µ 6= 0.

From the Definition 4.1, we obtain that the following remark holds.

Remark 4.1. Let sα be any fuzzy point of an ordered Γ-semihypergroup S. Then, (sα ◦µ◦ sα]∩µ 6= 0

if and only if there exist x, a ∈ S such that x ≤ sΓaΓs and µ(x), µ(a) 6= 0.

Theorem 4.1. Let µ be a fuzzy weakly almost interior Γ-hyperideal of an ordered Γ-semihypergroup S.

If λ is a fuzzy subset of S such that µ ⊆ λ, then λ is also a fuzzy weakly almost interior Γ-hyperideal

of S.

Proof. Assume that λ is a fuzzy subset of S such that µ ⊆ λ. Let sα be a fuzzy point of S. Then,

(sα ◦µ ◦ sα]∩µ 6= 0. Since µ ⊆ λ, 0 6= (sα ◦µ ◦ sα]∩µ ⊆ (sα ◦λ ◦ sα]∩λ. Also, (sα ◦λ ◦ sα]∩λ 6= 0.

Hence, λ is a fuzzy weakly almost interior Γ-hyperideal of S. �

Corollary 4.1. Let µ and λ be fuzzy weakly almost interior Γ-hyperideals of an ordered Γ-

semihypergroup S. Then, µ ∪ λ is a fuzzy weakly almost interior Γ-hyperideal of S.
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Example 4.1. Consider the ordered Γ-semihypergroup (S,Γ,≤) in Example 3.2, we define two fuzzy

subsets µ and λ of S by for every x ∈ S,

µ(x) =

0.8 if x ∈ {a, b},

0 otherwise
and λ(x) =

0.5 if x = d,

0 otherwise.

By routine computations, we find out that µ and λ are fuzzy weakly almost interior Γ-hyperideals of

S. However, µ ∩ λ is not a fuzzy weakly almost interior Γ-hyperideal of S, because µ ∩ λ = 0.

From Example 4.1, we know that the intersection of two fuzzy weakly almost interior Γ-hyperideals

of an ordered Γ-semihypergroup S need not be a fuzzy weakly almost interior Γ-hyperideal of S.

Theorem 4.2. Let I be a nonempty subset of an ordered Γ-semihypergroup S. Then, I is a weakly

almost interior Γ-hyperideal of S if and only if CI is a fuzzy weakly almost interior Γ-hyperideal of S.

Proof. Assume that I is a weakly almost interior Γ-hyperideal of S. Let sα be any fuzzy point of S.

Then, (sΓIΓs] ∩ I 6= ∅. Thus, there exists a ∈ S such that a ∈ (sΓIΓs] and a ∈ I. So, CI(a) = 1 and

a ≤ sΓxΓs for some x ∈ I. Since x ∈ I, CI(x) = 1. It follows that

(sα ◦ CI ◦ sα](a) ≥ min{sα(s), CI(x), sα(s)} 6= 0.

We obtain that [(sα ◦CI ◦ sα]∩CI ](a) 6= 0. Thus, CI is a fuzzy weakly almost interior Γ-hyperideal of

S.

Conversely, assume that CI is a fuzzy weakly almost interior Γ-hyperideal of S. Let s ∈ S. Choose
t = 1. Then, (s1◦CI ◦s1]∩CI 6= 0. So, there exist x, a ∈ S such that x ≤ sΓaΓs and CI(x), CI(a) 6= 0.

This implies that x, a ∈ I. Also, x ∈ (sΓIΓs]. Thus, x ∈ (sΓIΓs] ∩ I, and then (sΓIΓs] ∩ I 6= ∅.
Therefore, I is a weakly almost interior Γ-hyperideal of S. �

Theorem 4.3. Let µ be a fuzzy subset of an ordered Γ-semihypergroup S. Then, µ is a fuzzy weakly

almost interior Γ-hyperideal of S if and only if supp(µ) is a weakly almost interior Γ-hyperideal of S.

Proof. Assume that µ is a fuzzy weakly almost interior Γ-hyperideal of S. Let s ∈ S. Choose t = 1.

So, (s1◦µ◦s1]∩µ 6= 0. So, there exist x, a ∈ S such that x ≤ sΓaΓs and µ(x), µ(a) 6= 0. Also, x, a ∈
supp(µ). Since x ≤ sΓaΓs, x ∈ (sΓ(supp(µ))Γs]. It turns out that x ∈ (sΓ(supp(µ))Γs]∩ supp(µ),

that is, (sΓ(supp(µ))Γs] ∩ supp(µ) 6= ∅. Hence, supp(µ) is a weakly almost interior Γ-hyperideal of

S.

Conversely, assume that supp(µ) is a weakly almost interior Γ-hyperideal of S. Let sα be any

fuzzy point of S. Then, (sΓ(supp(µ))Γs] ∩ supp(µ) 6= ∅. Thus, there exists x ∈ S such that

x ∈ (sΓ(supp(µ))Γs] and x ∈ supp(µ). So, x ≤ sΓaΓs for some a ∈ supp(µ). This means that

µ(x), µ(a) 6= 0. We have that (sα ◦ µ ◦ sα] ∩ µ 6= 0. Therefore, µ is a fuzzy weakly almost interior

Γ-hyperideal of S. �
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Let S be an ordered Γ-semihypergroup. A weakly almost interior Γ-hyperideal I of S is called

minimal if for any weakly almost interior Γ-hyperideal A of S such that A ⊆ I implies that A = I.

Definition 4.2. Let S be an ordered Γ-semihypergroup. A fuzzy weakly almost interior Γ-hyperideal

µ of S is called minimal if for any fuzzy weakly almost interior Γ-hyperideal λ of S such that λ ⊆ µ
implies that supp(λ) = supp(µ).

Now, the relationship between minimal weakly almost interior Γ-hyperideals and minimal fuzzy

weakly almost interior Γ-hyperideals in ordered Γ-semihypergroups is then briefly examined.

Theorem 4.4. Let S be an ordered Γ-semihypergroup, and I be a nonempty subset of S. Then, I is

a minimal weakly almost almost interior Γ-hyperideal of S if and only if CI is a minimal fuzzy weakly

almost interior Γ-hyperideal of S.

Proof. Assume that I is a minimal weakly almost interior Γ-hyperideal of S. By Theorem 4.2, CI
is a fuzzy weakly almost interior Γ-hyperideal of S. Let λ be any fuzzy weakly almost interior Γ-

hyperideal of S such that λ ⊆ CI . By Lemma 2.2 and Theorem 4.3, we have that supp(λ) is

a weakly almost interior Γ-hyperideal of S such that supp(λ) ⊆ supp(CI). Since I is minimal,

supp(λ) = I = supp(CI). Hence, CI is a minimal fuzzy weakly almost interior Γ-hyperideal of S.

Conversely, assume that CI is a minimal fuzzy weakly almost interior Γ-hyperideal of S. Thus,

I is a weakly almost Γ-hyperideal of S by Theorem 4.2. Now, let A be any weakly almost interior

Γ-hyperideal of S such that A ⊆ I. Then, CA is a fuzzy weakly almost interior Γ-hyperideal of S such

that CA ⊆ CI . Since CI is minimal and by Lemma 2.2, we have that A = supp(CA) = supp(CI) = I.

Therefore, I is a minimal weakly almost interior Γ-hyperideal of S. �

The following corollary can be achieved by Theorem 4.2 and Theorem 4.3.

Corollary 4.2. Let S be an ordered Γ-semihypergroup. Then, S has no proper weakly almost interior

Γ-hyperideal if and only if for every fuzzy weakly almost interior Γ-hyperideal µ of S, supp(µ) = S.

Let S be an ordered Γ-semihypergroup and P be a weakly almost interior Γ-hyperideal of S. Then:

(i) P is said to be prime if for any weakly almost interior Γ-hyperideals A and B of S such that

(AΓB] ⊆ P implies that A ⊆ P or B ⊆ P ; (i i) P is said to be semiprime if for any weakly almost

interior Γ-hyperideal A of S such that (AΓA] ⊆ P implies that A ⊆ P ; (i i i) P is said to be strongly

prime if for any weakly almost interior Γ-hyperideals A and B of S such that (AΓB] ∩ (BΓA] ⊆ P

implies that A ⊆ P or B ⊆ P .

Definition 4.3. Let µ be a fuzzy weakly almost interior Γ-hyperideal of an ordered Γ-semihypergroup

S. Then, µ is said to be a fuzzy prime weakly almost interior Γ-hyperideal of S if for any fuzzy weakly

almost interior Γ-hyperideals λ and ν of S such that λ ◦ ν ⊆ µ implies that λ ⊆ µ or ν ⊆ µ.
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Definition 4.4. Let µ be a fuzzy weakly almost interior Γ-hyperideal of an ordered Γ-semihypergroup

S. Then, µ is said to be a fuzzy semiprime weakly almost interior Γ-hyperideal of S if for any fuzzy

weakly almost interior Γ-hyperideal λ of S such that λ ◦ λ ⊆ µ implies that λ ⊆ µ.

Definition 4.5. Let µ be a fuzzy weakly almost interior Γ-hyperideal of an ordered Γ-semihypergroup

S. Then, µ is said to be a fuzzy strongly prime weakly almost interior Γ-hyperideal of S if for any

fuzzy weakly almost interior Γ-hyperideals λ and ν of S such that (λ ◦ ν) ∩ (ν ◦ λ) ⊆ µ implies that

λ ⊆ µ or ν ⊆ µ.

It is obvious that every fuzzy strongly prime weakly almost interior Γ-hyperideal of an ordered

Γ-semihypergroup is a fuzzy prime weakly almost interior Γ-hyperideal, and every fuzzy prime weakly

almost interior Γ-hyperideal of an ordered Γ-semihypergroup is a fuzzy semiprime weakly almost interior

Γ-hyperideal.

Finally, we consider the connections between strongly prime (resp., prime, semiprime) weakly almost

interior Γ-hyperideals and their fuzzifications in ordered Γ-semihypergroups.

Theorem 4.5. Let S be an ordered Γ-semihypergroup and P be a nonempty subset of S. Then, P is

a strongly prime weakly almost interior Γ-hyperideal of S if and only if CP is a fuzzy strongly prime

weakly almost interior Γ-hyperideal of S.

Proof. Assume that P is a strongly prime weakly almost interior Γ-hyperideal of S. Also, CP is a

fuzzy weakly almost interior Γ-hyperideal of S by Theorem 4.2. Let λ and ν be any two fuzzy weakly

almost interior Γ-hyperideals of S such that (λ ◦ ν) ∩ (ν ◦ λ) ⊆ CP . Suppose that λ 6⊆ CP and

ν 6⊆ CP . Thus, there exist x, y ∈ S such that λ(x) 6= 0 and ν(y) 6= 0, but CP (x) = 0 and CP (y) = 0.

So, x, y 6∈ P . By using Theorem 4.3, we have that supp(λ) and supp(ν) are weakly almost interior

Γ-hyperideals of S such that x ∈ supp(λ) and y ∈ supp(ν). We obtain that, supp(λ) 6⊆ P and

supp(ν) 6⊆ P . By assumption, ((supp(λ))Γ(supp(ν))] ∩ ((supp(ν))Γ(supp(λ))] 6⊆ P . Then, there

exists t ∈ ((supp(λ))Γ(supp(ν))] ∩ ((supp(ν))Γ(supp(λ))], but t 6∈ P . It follows that CP (t) = 0,

and then [(λ◦ν)∩(ν ◦λ)](t) = 0. Since t ∈ ((supp(λ))Γ(supp(ν))] and t ∈ ((supp(ν))Γ(supp(λ))],

we have that t ≤ a1Γb1 and t ≤ b2Γa2 for some a1, a2 ∈ supp(λ) and b1, b2 ∈ supp(ν). It turns out

that

(λ ◦ ν)(t) = sup
t≤a1Γb1

[min{λ(a1), ν(b1)}] 6= 0 and (ν ◦ λ)(t) = sup
t≤b2Γa2

[min{ν(b2), λ(a2)}] 6= 0.

This implies that [(λ ◦ ν) ∩ (ν ◦ λ)](t) 6= 0, as a contradiction. So, λ ⊆ CP or ν ⊆ CP . This shows

that CP is a fuzzy strongly prime weakly almost interior Γ-hyperideal of S.

Conversely, assume that CP is a fuzzy strongly prime weakly almost interior Γ-hyperideal of S.

Then, P is a weakly almost interior Γ-hyperideal of S by Theorem 4.2. Let A and B be any two

weakly almost interior Γ-hyperideals of S such that (AΓB] ∩ (BΓA] ⊆ P . By using Lemma 2.2 and
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Lemma 2.3, it follows that

(CA ◦ CB) ∩ (CB ◦ CA) = C(AΓB] ∩ C(BΓA] = C(AΓB]∩(BΓA] ⊆ CP .

By the hypothesis, CA ⊆ CP or CB ⊆ CP . It follows that A ⊆ P or B ⊆ P . Therefore, P is a strongly

prime weakly almost interior Γ-hyperideal of S. �

Theorem 4.6. Let P be a nonempty subset of an ordered Γ-semihypergroup S. Then, P is a prime

weakly almost interior Γ-hyperideal of S if and only if CP is a fuzzy prime weakly almost interior

Γ-hyperideal of S.

Proof. Assume that P is a prime weakly almost interior Γ-hyperideal of S. By using Theorem 4.2, we

obtain that CP is a fuzzy weakly almost interior Γ-hyperideal of S. Let λ and ν be any two fuzzy weakly

almost interior Γ-hyperideals of S such that λ◦ν ⊆ CP . Suppose that λ 6⊆ CP and ν 6⊆ CP . Then, there
exist x, y ∈ S such that λ(x) 6= 0 and ν(y) 6= 0, while CP (x) = 0 and CP (y) = 0. So, x ∈ supp(λ),

y ∈ supp(ν) with x, y 6∈ P . By Theorem 4.3, we have that supp(λ) and supp(ν) are weakly almost

interior Γ-hyperideals of S. This implies that supp(λ) 6⊆ P and supp(ν) 6⊆ P . By assumption, it

follows that ((supp(λ)Γ(supp(ν)))] 6⊆ P . Also, there exists t ∈ ((supp(λ)Γ(supp(ν)))] such that

t 6∈ P . This means that CP (t) = 0. It turns out that (λ ◦ ν)(t) = 0, because λ ◦ ν ⊆ CP . Since

t ∈ ((supp(λ)Γ(supp(ν)))], t ≤ aΓb for some a ∈ supp(λ) and b ∈ supp(ν). Thus,

(λ ◦ ν)(t) = sup
t≤aΓb

[min{λ(a), ν(b)}] 6= 0.

This is a contradiction to the fact that (λ ◦ ν)(t) = 0. This shows that λ ⊆ CP or ν ⊆ CP . Hence,
CP is a fuzzy prime weakly almost interior Γ-hyperideal of S.

Conversely, assume that CP is a fuzzy prime weakly almost interior Γ-hyperideal of S. By Theorem

4.2, P is a weakly almost Γ-hyperideal of S. Let A and B be any weakly almost interior Γ-hyperideals

of S such that (AΓB] ⊆ P . By Lemma 2.2 and Lemma 2.3, it follows that CA ◦ CB = C(AΓB] ⊆ CP .
By the given assumption, CA ⊆ CP or CB ⊆ CP . This implies that, A ⊆ P or B ⊆ P . Therefore, P

is a prime weakly almost interior Γ-hyperideal of S. �

Theorem 4.7. Let S be an ordered Γ-semihypergroup and P be a nonempty subset of S. Then, P

is a semiprime weakly almost interior Γ-hyperideal of S if and only if CP is a fuzzy semiprime weakly

almost interior Γ-hyperideal of S.

Proof. Assume that P is a semiprime weakly almost interior Γ-hyperideal of S. By Theorem 4.2, we

obtain that CP is a fuzzy weakly almost Γ-hyperideal of S. Let λ be any fuzzy weakly almost interior

Γ-hyperideal of S such that λ ◦ λ ⊆ CP . Suppose that λ 6⊆ CP . So, there exists x ∈ S such that

λ(x) 6= 0 and CP (x) = 0. Also, x ∈ supp(λ) and x 6∈ P . By Theorem 4.3, supp(λ) is a weakly almost

interior Γ-hyperideal of S where supp(λ) 6⊆ P . By assumption, ((supp(λ)Γ(supp(λ)))] 6⊆ P . Thus,

there exists t ∈ S such that t ∈ ((supp(λ)Γ(supp(λ)))], but t 6∈ P . This implies that CP (t) = 0. It
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follows that (λ◦λ)(t) = 0, because λ◦λ ⊆ CP . Since t ∈ ((supp(λ)Γ(supp(λ)))], t ≤ aΓb for some

a, b ∈ supp(λ). It turns out that (λ ◦ λ)(t) = sup
t≤aΓb

[min{λ(a), λ(b)}] 6= 0, which is a contradiction.

Hence, λ ⊆ CP . Therefore, CP is a fuzzy semiprime weakly almost Γ-hyperideal of S.

Conversely, assume that CP is a fuzzy semiprime weakly almost Γ-hyperideal of S. It follows

that P is a weakly almost interior Γ-hyperideal of S by Theorem 4.2. Let A be a weakly almost

interior Γ-hyperideal of S such that (AΓA] ⊆ P . By using Lemma 2.2 and Lemma 2.3, we have that

CA ◦ CA = C(AΓA] ⊆ CP . Since CP is semiprime, CA ⊆ CP . It follows that A ⊆ P . This shows that P
is a semiprime weakly interior Γ-hyperideal of S. �

5. Conclusions

In 2021, Rao et al. [14] introduced the concept of almost interior Γ-hyperideals as a generalization

of interior Γ-hyperideals of ordered Γ-semihypergroups. In this paper, we introduced the notion of

weakly almost interior Γ-hyperideals of ordered Γ-semihypergroups which is a generalization of almost

interior Γ-hyperideals. Next, we shown that the union of (fuzzy) weakly almost interior Γ-hyperideals

is also a (fuzzy) weakly almost interior Γ-hyperideal, but the intersection of them need not to be a

(fuzzy) weakly almost interior Γ-hyperideal in ordered Γ-semihypergroups. Then, we characterized the

ordered Γ-semihypergroups having no proper weakly almost interior Γ-hyperideal. Finally, we discussed

the connections between weakly almost interior Γ-hyperideals and their fuzzification in ordered Γ-

semihypergroups. In our future study, we plan to investigate other kinds of almost Γ-hyperideals and

their fuzzifications in ordered Γ-semihypergroups or other algebraic structures.

Acknowledgements: This research project was financially supported by Mahasarakham University.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.

References

[1] S.M. Anvariyeh, S. Mirvakili, B. Davvaz, On Γ-Hyperideals in Γ-Semihypergroups, Carpathian J. Math. 26 (2010),

11-23. https://www.jstor.org/stable/43999427.

[2] S. Bogdanović, Semigroups in Which Some Bi-Ideal Is a Group, Rev. Res. Fac. Sci. - Univ. Novi Sad, 11 (1981),

261-266.

[3] R. Chinram, W. Nakkhasen, Almost Bi-Quasi-Interior Ideals and Fuzzy Almost Bi-Quasi-Interior Ideals of Semi-

groups, J. Math. Computer Sci. 26 (2021), 128-136. https://doi.org/10.22436/jmcs.026.02.03.

[4] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore Publisher, Tricesimo, Italy, 1993.

[5] O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum, 20 (1980), 233-240. https:

//doi.org/10.1007/BF02572683.

[6] D. Heidari, B. Davvaz, On Ordered Hyperstructures, UPB Sci. Bull. Ser. A: Appl. Math. Phys. 73 (2011), 85-96.

[7] W. Jantanan, A. Simuen, W. Yonthanthum, R. Chinram, Almost Interior Gamma-Ideals and Fuzzy Almost Interior

Gamma-Ideals in Gamma-Semigroups, Math. Stat. 9 (2021), 302-308. https://doi.org/10.13189/ms.2021.

090311.

https://www.jstor.org/stable/43999427
https://doi.org/10.22436/jmcs.026.02.03
https://doi.org/10.1007/BF02572683
https://doi.org/10.1007/BF02572683
https://doi.org/10.13189/ms.2021.090311
https://doi.org/10.13189/ms.2021.090311


Int. J. Anal. Appl. (2023), 21:77 13

[8] N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups,

J. Discrete Math. Sci. Cryptography. 23 (2020), 773-778. https://doi.org/10.1080/09720529.2019.1696917.

[9] W. Krailoet, A. Simuen, R. Chinram, P. Petchkaew, A Note on Fuzzy Almost Interior Ideals in Semigroups, Int. J.

Math. Computer Sci. 16 (2021), 803-808.

[10] F. Marty, Sur une Generalization de la Notion de Group, In: 8th Congres des Mathematiciens Scandinaves, Stock-

holm, 45-49, 1934.

[11] P. Muangdoo, T. Chuta, W. Nakkhasen, Almost Bi-Hyperideals and Their Fuzzification of Semihypergroups, J.

Math. Comput. Sci. 11 (2021), 2755-2767. https://doi.org/10.28919/jmcs/5609.

[12] W. Nakkhasen, P. Khathipphathi, S. Panmuang, A Note on Fuzzy Almost Interior Hyperideals of Semihypergroups,

Int. J. Math. Computer Sci. 17 (2022), 1419-1426.

[13] P. Pao-Ming, L. Ying-Ming, Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Con-

vergence, J. Math. Anal. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247x(80)90048-7.

[14] Y. Rao, S. Kosari, Z. Shao, M. Akhoundi, S. Omidi, A Study on A-I-Γ-Hyperideals and (m, n)-Γ-Hyperfilters

in Ordered Γ-Semihypergroups, Discr. Dyn. Nat. Soc. 2021 (2021), 6683910. https://doi.org/10.1155/2021/

6683910.

[15] M.K. Sen, N.K. Saha, On Γ-Semigroup-I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.

[16] A. Simuen, K. Wattanatripop, R. Chinram, Characterizing Almost Quasi-Γ-Ideals and Fuzzy Almost Quasi-Γ-Ideals

of Γ-Semigroups, Commun. Math. Appl. 11 (2020), 233-240.

[17] S. Suebsung, R. Chinram, W. Yonthanthum, K. Hila, A. Iampan, On Almost Bi-Ideals and Almost Quasi-Ideals of

Ordered Semigroups and Their Fuzzifications, ICIC Express Lett. 16 (2022), 127-135.

[18] S. Suebsung, T. Kaewnoi, R. Chinram, A Note on Almost Hyperideals in Semihypergroups, Int. J. Math. Computer

Sci. 15 (2020), 127-133.

[19] S. Suebsung, W. Yonthanthum, K. Hila, R. Chinram, On Almost Quasi-Hyperideals in Semihypergroups, J. Discr.

Math. Sci. Cryptography. 24 (2021), 235-244. https://doi.org/10.1080/09720529.2020.1826167.

[20] J. Tang, B. Davvaz, X. Xie, A Study on (Fuzzy) Quasi-Γ-Hyperideals in Ordered Γ-Semihypergroups, J. Intell. Fuzzy

Syst. 32 (2017), 3821-3838. https://doi.org/10.3233/ifs-162117.

[21] K. Wattanatripop, R. Chinram, T. Changphas, Fuzzy Almost Bi-Ideals in Semigroups, Int. J. Math. Computer Sci.

13 (2018), 51-58.

[22] L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)

90241-x.

https://doi.org/10.1080/09720529.2019.1696917
https://doi.org/10.28919/jmcs/5609
https://doi.org/10.1016/0022-247x(80)90048-7
https://doi.org/10.1155/2021/6683910
https://doi.org/10.1155/2021/6683910
https://doi.org/10.1080/09720529.2020.1826167
https://doi.org/10.3233/ifs-162117
https://doi.org/10.1016/s0019-9958(65)90241-x
https://doi.org/10.1016/s0019-9958(65)90241-x

	1. Introduction
	2. Preliminaries
	3. Weakly almost interior -hyperideals
	4. Fuzzy weakly almost interior -hyperideals
	5. Conclusions
	References

