International Journal of Analysis and Applications

On (Fuzzy) Weakly Almost Interior Γ-Hyperideals in Ordered Γ-Semihypergroups

Warud Nakkhasen^{1,*}, Ronnason Chinram², Aiyared Iampan³

¹Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

²Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

³Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand

* Corresponding author: warud.n@msu.ac.th

Abstract. In this paper, we concentrate on studying the generalization of almost interior Γ -hyperideals in ordered Γ -semihypergroups. The notion of weakly almost interior Γ -hyperideals of ordered Γ semihypergroups is introduced. This concept generalizes the notion of almost interior Γ -hyperideals in ordered Γ -semihypergroups. Then, the characterization of ordered Γ -semihypergroups having no proper weakly almost interior Γ -hyperideals is provided. Next, we introduce the concept of fuzzy weakly almost interior Γ -hyperideals of ordered Γ -semihypergroups. Also, some properties of fuzzy weakly almost interior Γ -hyperideals are considered. Moreover, the concepts of weakly almost interior Γ -hyperideals and fuzzy weakly almost interior Γ -hyperideals of ordered Γ -semihypergroups are characterized. The connections between strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and fuzzy strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals in ordered Γ -semihypergroups are presented.

1. Introduction

When it comes to studying in semigroups, ideal theory is essential. Grošek and Satko [5] extended the concept of ideals in semigroups to the concept of almost ideals in 1980, characterizing the semigroups that have proper almost ideals. Afterwards, Bogdanović [2] introduced the concept almost bi-ideals in semigroups, as a generalization of bi-ideals, by using the concepts of almost ideals and

Received: May 20, 2023.

²⁰²⁰ Mathematics Subject Classification. 03E72, 20M12.

Key words and phrases. weakly almost interior Γ-hyperideals; fuzzy weakly almost interior Γ-hyperideals; ordered Γ-semihypergroups.

bi-ideals of semigroups. Zadeh [22] introduced the concept of fuzzy subsets as a function from a nonempty set X to the unit interval [0, 1]. Wattanatripop et al. [21] applied the concept of fuzzy subsets to define the notion of fuzzy almost bi-ideals of semigroups in 2018, they examined at some of the connections between almost bi-ideals and fuzzy almost bi-ideals in semigroups. The concepts of (resp., weakly) almost interior ideals and fuzzy (resp., weakly) almost interior ideals in semigroups were introduced and discussed by Kaopusek et al. [8] and Krailoet et al. [9], respectively. In 2022, Chinram and Nakkhasen [3] introduced the concept of almost bi-quasi-interior ideals of semigroups and considered some relationships between almost bi-quasi-interior ideals and their fuzzification in semigroups.

The notion of Γ -semigroups generalized from the classical semigroups, was first introduced by Sen and Saha [15]. Then, Simuen et al. [16] defined the concepts of almost quasi- Γ -ideals and fuzzy almost quasi- Γ -ideals of Γ -semigroups. Later, Jantanan et al. [7] studied the concepts of almost interior Γ -ideals and fuzzy almost interior Γ -ideals in Γ -semigroups. The notion of ordered semigroups is another generalization of the semigroups. In 2022, Suebsung et al. [17] introduced the concepts of (resp., fuzzy) almost bi-ideals and (resp., fuzzy) almost quasi-ideals of ordered semigroups, and they have investigated the characterizations of these concepts.

Since 1934, the research of Marty [10], who developed the notion of hyperstructures, has been studied by many mathematicians. The concept of almost hyperideals in semihypergroups, which is a generalization of hyperideals, was introduced and presented some properties by Suebsung et al. [18]. Then, they have defined the concept of almost quasi-hyperideals in semihypergroups and gave some interesting properties, see [19]. Next, Muangdoo et al. [11] introduced the notions of (resp., fuzzy) almost bi-hyperideals of semihypergroups and discussed some connections between almost bi-hyperideals and their fuzzification in semihypergroups. In 2022, Nakkhasen et al. [12] surveyed some properties of fuzzy almost interior hyperideals in semihypergroups and considered some links between almost interior hyperideals and fuzzy almost interior hyperideals in semihypergroups.

It is known that ordered Γ -semihypergroups are a generalization of semihypergroups. Recently, Rao et al. [14] defined the concept of almost interior Γ -hyperideals of ordered Γ -semihypergroups and provided the relationships between interior Γ -hyperideals and almost interior Γ -hyperideals in ordered Γ -semihypergroups. This article presents the notions of weakly almost interior Γ -hyperideals in ordered Γ -semihypergroups, which extend the idea of almost interior Γ -hyperideals, and provides certain characteristics of these hyperideals. Furthermore, we define the concept of fuzzy weakly almost interior Γ -hyperideals of ordered Γ -semihypergroups, and consider some connections between weakly almost interior Γ -hyperideals and fuzzy weakly almost interior Γ -hyperideals of ordered Γ -semihypergroups.

2. Preliminaries

Firstly, we recall some of the basis definitions and properties, which are necessary for this paper.

A hypergroupoid (H, \circ) is a nonempty set H together with a mapping $\circ : H \times H \to \mathcal{P}^*(H)$ called a hyperoperation, where $\mathcal{P}^*(H)$ denotes the set of all nonempty set of H (see [4, 10]). We denote by $a \circ b$ the image of the pair (a, b) in $H \times H$. If $x \in H$ and $A, B \in \mathcal{P}^*(H)$, then we denote

$$A \circ B := \bigcup_{a \in A, b \in B} a \circ b, A \circ x := A \circ \{x\} \text{ and } x \circ B := \{x\} \circ B$$

Definition 2.1. (see [6]) A hypergroupoid (S, \circ) is called a semihypergroup if $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in S$.

In 2010, Anvariyeh et al. [1] introduced the notion of Γ -semihypergroups, which is a generalization of semihypergroups.

Definition 2.2. (see [1]) Let *S* and Γ be two nonempty sets. Then, (S, Γ) is called a Γ -semihypergroup if for each $\gamma \in \Gamma$ is a hyperoperation on *S*, i.e., $x\gamma y \subseteq S$ for all $x, y \in S$, and for any $\alpha, \beta \in \Gamma$ and $x, y, z \in S$, $(x\alpha y)\beta z = x\alpha(y\beta z)$.

Let A and B be two nonempty subsets of a Γ -semihypergroup (S, Γ) . We define

$$A\Gamma B := \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup_{\gamma \in \Gamma} \{a\gamma b \mid a \in A, b \in B\}.$$

Particularly, if $A = \{a\}$ and $B = \{b\}$, then we define $a\Gamma b := \{a\}\Gamma\{b\}$.

Definition 2.3. (see [20]) Let *S* and Γ be two nonempty sets and \leq be an order relation on *S*. An algebraic hyperstructure (*S*, Γ , \leq) is called an ordered Γ -semihypergroup if the following conditions are satisfied:

- (*i*) (S, Γ) is a Γ -semihypergroup;
- (*ii*) (S, \leq) is a partially ordered set;
- (iii) for every $x, y, z \in S$ and $\gamma \in \Gamma$, $x \leq y$ implies $x\gamma z \leq y\gamma z$ and $z\gamma x \leq z\gamma y$.

Here, $A \leq B$ means that for each $a \in A$, there exists $b \in B$ such that $a \leq b$, for all nonempty subsets A and B of S.

Throughout this paper, we say an ordered Γ -semihypergroup *S* instead of an ordered Γ -semihypergroup (*S*, Γ , \leq), unless otherwise mentioned.

For any nonempty subset A of an ordered Γ -semihypergroup S, we denote

$$(A] := \{t \in S \mid t \le a \text{ for some } a \in A\}.$$

For $A = \{a\}$, we write (a] instead of ($\{a\}$].

Lemma 2.1. [20] Let A and B be nonempty subsets of an ordered Γ -semihypergroup S. Then, the following statements holds:

(*i*) $A \subseteq (A]$;

(*ii*) if $A \subseteq B$, then $(A] \subseteq (B]$;

- (*iii*) $(A]\Gamma(B] \subseteq (A\Gamma B]$ and $((A]\Gamma(B)] = (A\Gamma B);$
- (iv) ((A]] = (A].

The notion of almost interior Γ -hyperideals in ordered Γ -semihypergroups, as a generalization of interior Γ -hyperideals, has been introduced by Rao et al. [14] in 2021 as follows.

Definition 2.4. [14] Let S be an ordered Γ -semihypergroup. A nonempty subset K of S is called an almost interior Γ -hyperideal of S if

- (i) $(x \Gamma K \Gamma y] \cap K \neq \emptyset$ for every $x, y \in S$,
- (ii) $(K] \subseteq K$.

Now, we review the concept of fuzzy subsets, was defined by Zadeh [22]. We say that μ is a *fuzzy* subset [22] of a nonempty set X if $\mu : X \to [0, 1]$. For any two fuzzy subsets μ and λ of a nonempty set X, we denote

- (*i*) $\mu \subseteq \lambda$ if and only if $\mu(x) \leq \lambda(x)$ for all $x \in X$,
- (ii) $(\mu \cap \lambda)(x) := \min\{f(x), g(x)\}$ for all $x \in X$,
- (iii) $(\mu \cup \lambda)(x) := \max\{f(x), g(x)\}$ for all $x \in X$.

For any fuzzy subset μ of a nonempty set X, the *support* of μ is defined by

$$supp(\mu) := \{x \in X \mid \mu(x) \neq 0\}.$$

The *characteristic mapping* C_A of A, where A is a subset of a nonempty set X, is a fuzzy subset of X defined by for every $x \in X$,

$$C_A(x) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.2. [11] Let A and B be nonempty subsets of a nonempty set X and let μ and λ be fuzzy subsets of X. Then, the following statements hold:

- (i) $C_{A\cap B} = C_A \cap C_B$;
- (*ii*) $A \subseteq B$ if and only if $C_A \subseteq C_B$;
- (iii) $supp(C_A) = A$;
- (iv) if $\mu \subseteq \lambda$, then $supp(\mu) \subseteq supp(\lambda)$.

For any element s of X and $\alpha \in (0, 1]$, a *fuzzy point* s_{α} [13] of X is a fuzzy subset of X defined by for every $x \in X$,

$$s_{\alpha}(x) := \begin{cases} \alpha & \text{if } x = s, \\ 0 & \text{otherwise.} \end{cases}$$

Let *S* be an ordered Γ -semihypergroup. For each $x \in S$, we define $H_x := \{(y, z) \in S \times S \mid x \leq y \Gamma z\}$. Then, for any two fuzzy subsets μ and λ of *S*, the *product* $\mu \circ \lambda$ [20] of μ and λ is defined by

$$(\mu \circ \lambda)(x) = \begin{cases} \sup_{(y,z) \in H_x} [\min\{\mu(y), \lambda(z)\}] & \text{if } H_x \neq \emptyset, \\ 0 & \text{if } H_x = \emptyset, \end{cases}$$

for all $x \in S$.

Let μ be a fuzzy subset of an ordered Γ -semihypergroup S. Then, we define $(\mu] : S \to [0, 1]$ by $(\mu](x) = \sup \mu(y)$ for all $x \in S$ (see [20]).

The following results can be verified straightforward.

Lemma 2.3. Let A and B be subsets of an ordered Γ -semihypergroup S. Then $C_A \circ C_B = C_{(A \cap B]}$.

Proposition 2.1. Let μ , λ and ν be fuzzy subsets of an ordered Γ -semihypergroup S. Then, the following conditions hold:

- (*i*) $\mu \subseteq (\mu]$;
- (*ii*) if $\mu \subseteq \lambda$, then $(\mu] \subseteq (\lambda]$;
- (iii) if $\mu \subseteq \lambda$, then $(\mu \circ \nu] \subseteq (\lambda \circ \nu]$ and $(\nu \circ \mu] \subseteq (\nu \circ \lambda]$.

Proposition 2.2. Let μ be a fuzzy subset of an ordered Γ -semihypergroup *S*. Then, the following statements are equivalent:

3. Weakly almost interior Γ -hyperideals

In this section, we present and study the notion of weakly almost interior Γ -hyperideals of ordered Γ -semihypergroups as a generalization of almost interior Γ -hyperideals.

Definition 3.1. Let *S* be an ordered Γ -semihypergroup. A nonempty subset *I* of *S* is called a weakly almost interior Γ -hyperideal of *S* if it satisfies the following conditions:

- (i) $(x \Gamma I \Gamma x] \cap I \neq \emptyset$ for all $x \in S$;
- (*ii*) $(I] \subseteq I$.

The following proposition obtains direct from the definition of almost interior Γ -hyperideals and weakly almost interior Γ -hyperideals in ordered Γ -semihypergroups.

Proposition 3.1. Every almost interior Γ -hyperideal of an ordered Γ -semihypergroup S is also a weakly almost interior Γ -hyperideal of S.

The converse of Proposition 3.1 is not true in general, as shown by the following example below.

γ	а	b	С	d	е	f
а	{ <i>a</i> }	{ <i>b</i> }	{ <i>c</i> }	{ <i>d</i> }	{ <i>e</i> }	$\{f\}$
b	{ <i>b</i> }	{ <i>c</i> }	{ <i>a</i> }	$\{f\}$	$\{d\}$	{ <i>e</i> }
С	{ <i>c</i> }	{ <i>a</i> }	$\{b\}$	{ <i>e</i> }	$\{f\}$	{ <i>d</i> }
d	{ <i>d</i> }	$\{f\}$	{ <i>e</i> }	{ <i>a</i> , b}	{ <i>a</i> , c}	{ <i>b</i> , <i>c</i> }
е	{ <i>e</i> }	$\{d\}$	$\{f\}$	{ <i>a</i> , <i>c</i> }	{b, c}	{ <i>a</i> , <i>b</i> }
f	$\{f\}$	{ <i>e</i> }	$\{d\}$	{ <i>b</i> , <i>c</i> }	{ <i>a</i> , b}	{ <i>a</i> , <i>c</i> }

Example 3.1. Let $S = \{a, b, c, d, e, f\}$ and $\Gamma = \{\gamma\}$ with the hyperoperation on S defined by

Then, (S, Γ, \leq) is an ordered Γ -semihypergroup, where the order relation \leq on S defined by $\leq := \{(x, y) \mid x = y\}$. Let $I = \{a, b\}$. Hence, by routine calculation, we have that I is a weakly almost interior Γ -hyperideal of S. But I is not an almost interior Γ -hyperideal of S, because $(d\Gamma I \Gamma a] \cap I = \emptyset$.

Theorem 3.1. Let I be a weakly almost interior Γ -hyperideal of ordered Γ -semihypergroup S. If A is any subset of S containing I, then A is also a weakly almost interior Γ -hyperideal of S.

Proof. Assume that A is a subset of S such that $I \subseteq A$. Let $x \in S$. Then, $(x \Gamma I \Gamma x] \cap I \neq \emptyset$. Thus, $\emptyset \neq (x \Gamma I \Gamma x] \cap I \subseteq (x \Gamma A \Gamma x] \cap A$. It follows that $(x \Gamma A \Gamma x] \cap A \neq \emptyset$. Hence, A is a weakly almost interior Γ -hyperideal of S.

Corollary 3.1. Let *S* be an ordered Γ -semihypergroup. If I_1 and I_2 are weakly almost interior Γ -hyperideals of *S*, then $I_1 \cup I_2$ is a weakly almost interior Γ -hyperideal of *S*.

Example 3.2. Let $S = \{a, b, c, d, e\}$ and $\Gamma = \{\alpha\}$ be the nonempty sets. Define the hyperoperation *as*:

α	а	b	С	d	е
а	{ <i>d</i> }	$\{a, b, d\}$	{ <i>a</i> , <i>b</i> , <i>d</i> }	{ <i>d</i> }	$\{a, b, d, e\}$
b	$\{a, b, d\}$	$\{a, b, d\}$	{ <i>a</i> , <i>b</i> , <i>d</i> }	$\{a, b, d\}$	$\{a, b, d, e\}$
С	{ <i>a</i> , <i>b</i> , <i>d</i> }	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d, e\}$
d	{ <i>d</i> }	$\{a, b, d\}$	$\{a, b, d\}$	$\{d\}$	$\{a, b, d, e\}$
е	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d, e\}$	$\{a, b, d\}$	${a, b, d, e}$

Next, we define an order relation \leq on S as:

$$\leq := \{ (a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, e), (b, c), (b, e), (d, b), (d, c), (d, e) \}.$$

Then, (S, Γ, \leq) is an ordered Γ -semihypergroup. Let $I_1 = \{a, b\}$ and $I_2 = \{d\}$. Verifying that I_1 and I_2 are weakly almost interior Γ -hyperideals of S is a routine process. However, $I_1 \cap I_2$ is not a weakly almost interior Γ -hyperideal of S.

The intersection of any two weakly almost interior Γ -hyperideals of an ordered Γ -semihypergroup *S* does not necessarily have to be a weakly almost interior Γ -hyperideal of *S*, as shown by Example 3.2.

Theorem 3.2. Let *S* be an ordered Γ -semihypergroup and |S| > 1. Then, the following statements are equivalent:

- (i) S has no proper weakly almost interior Γ -hyperideal;
- (ii) for every $x \in S$, there exists $a_x \in S$ such that $(a_x \Gamma(S \setminus \{x\}) \Gamma a_x] = \{x\}$.

Proof. (*i*) \Rightarrow (*ii*) Assume that (*i*) holds. For any $x \in S$, we have that $S \setminus \{x\}$ is not a weakly almost interior Γ -hyperideal of S. So, there exists $a_x \in S$ such that $(a_x \Gamma(S \setminus \{x\}) \Gamma a_x] \cap (S \setminus \{x\}) = \emptyset$. We obtain that

$$(a_x \Gamma(S \setminus \{x\} \Gamma a_x)] \subseteq S \setminus (S \setminus \{x\}) = \{x\}.$$

It turns out that $(a_x \Gamma(S \setminus \{x\}) \Gamma a_x] = \{x\}.$

 $(ii) \Rightarrow (i)$ Assume that (ii) holds. Let A be any a proper subset of S. Then, $A \subseteq S \setminus \{x\}$ for some $x \in S$. By assumption, there exists $a_x \in S$ such that $(a_x \Gamma(S \setminus \{x\})\Gamma a_x] = \{x\}$. Thus,

$$(a_x \Gamma A \Gamma a_x] \cap A \subseteq (a_x \Gamma(S \setminus \{x\}) \Gamma a_x] \cap (S \setminus \{x\})$$
$$= \{x\} \cap (S \setminus \{x\}) = \emptyset.$$

Hence, A is not a weakly almost interior Γ -hyperideal of S. This shows that S has no proper weakly almost interior Γ -hyperideal of S.

4. Fuzzy weakly almost interior Γ-hyperideals

The concept of fuzzy weakly almost interior Γ -hyperideals of ordered Γ -semihypergroups and some of the relationships between them are discussed in this section.

Definition 4.1. Let μ be a nonzero fuzzy subset of an ordered Γ -semihypergroup S. Then, μ is called a fuzzy weakly almost interior Γ -hyperideal of S if for every fuzzy point s_{α} of S, $(s_{\alpha} \circ \mu \circ s_{\alpha}] \cap \mu \neq 0$.

From the Definition 4.1, we obtain that the following remark holds.

Remark 4.1. Let s_{α} be any fuzzy point of an ordered Γ -semihypergroup S. Then, $(s_{\alpha} \circ \mu \circ s_{\alpha}] \cap \mu \neq 0$ if and only if there exist $x, a \in S$ such that $x \leq s \Gamma a \Gamma s$ and $\mu(x), \mu(a) \neq 0$.

Theorem 4.1. Let μ be a fuzzy weakly almost interior Γ -hyperideal of an ordered Γ -semihypergroup S. If λ is a fuzzy subset of S such that $\mu \subseteq \lambda$, then λ is also a fuzzy weakly almost interior Γ -hyperideal of S.

Proof. Assume that λ is a fuzzy subset of S such that $\mu \subseteq \lambda$. Let s_{α} be a fuzzy point of S. Then, $(s_{\alpha} \circ \mu \circ s_{\alpha}] \cap \mu \neq 0$. Since $\mu \subseteq \lambda$, $0 \neq (s_{\alpha} \circ \mu \circ s_{\alpha}] \cap \mu \subseteq (s_{\alpha} \circ \lambda \circ s_{\alpha}] \cap \lambda$. Also, $(s_{\alpha} \circ \lambda \circ s_{\alpha}] \cap \lambda \neq 0$. Hence, λ is a fuzzy weakly almost interior Γ -hyperideal of S.

Corollary 4.1. Let μ and λ be fuzzy weakly almost interior Γ -hyperideals of an ordered Γ -semihypergroup S. Then, $\mu \cup \lambda$ is a fuzzy weakly almost interior Γ -hyperideal of S.

Example 4.1. Consider the ordered Γ -semihypergroup (S, Γ, \leq) in Example 3.2, we define two fuzzy subsets μ and λ of S by for every $x \in S$,

$$\mu(x) = \begin{cases} 0.8 & \text{if } x \in \{a, b\}, \\ 0 & \text{otherwise} \end{cases} \text{ and } \lambda(x) = \begin{cases} 0.5 & \text{if } x = d, \\ 0 & \text{otherwise} \end{cases}$$

By routine computations, we find out that μ and λ are fuzzy weakly almost interior Γ -hyperideals of *S*. However, $\mu \cap \lambda$ is not a fuzzy weakly almost interior Γ -hyperideal of *S*, because $\mu \cap \lambda = 0$.

From Example 4.1, we know that the intersection of two fuzzy weakly almost interior Γ -hyperideals of an ordered Γ -semihypergroup *S* need not be a fuzzy weakly almost interior Γ -hyperideal of *S*.

Theorem 4.2. Let I be a nonempty subset of an ordered Γ -semihypergroup S. Then, I is a weakly almost interior Γ -hyperideal of S if and only if C_I is a fuzzy weakly almost interior Γ -hyperideal of S.

Proof. Assume that *I* is a weakly almost interior Γ -hyperideal of *S*. Let s_{α} be any fuzzy point of *S*. Then, $(s\Gamma I \Gamma s] \cap I \neq \emptyset$. Thus, there exists $a \in S$ such that $a \in (s\Gamma I \Gamma s]$ and $a \in I$. So, $C_I(a) = 1$ and $a \leq s\Gamma x \Gamma s$ for some $x \in I$. Since $x \in I$, $C_I(x) = 1$. It follows that

$$(s_{\alpha} \circ C_I \circ s_{\alpha}](a) \ge \min\{s_{\alpha}(s), C_I(x), s_{\alpha}(s)\} \neq 0.$$

We obtain that $[(s_{\alpha} \circ C_{I} \circ s_{\alpha}] \cap C_{I}](a) \neq 0$. Thus, C_{I} is a fuzzy weakly almost interior Γ -hyperideal of S.

Conversely, assume that C_I is a fuzzy weakly almost interior Γ -hyperideal of S. Let $s \in S$. Choose t = 1. Then, $(s_1 \circ C_I \circ s_1] \cap C_I \neq 0$. So, there exist $x, a \in S$ such that $x \leq s \Gamma a \Gamma s$ and $C_I(x), C_I(a) \neq 0$. This implies that $x, a \in I$. Also, $x \in (s \Gamma I \Gamma s]$. Thus, $x \in (s \Gamma I \Gamma s] \cap I$, and then $(s \Gamma I \Gamma s] \cap I \neq \emptyset$. Therefore, I is a weakly almost interior Γ -hyperideal of S.

Theorem 4.3. Let μ be a fuzzy subset of an ordered Γ -semihypergroup S. Then, μ is a fuzzy weakly almost interior Γ -hyperideal of S if and only if $supp(\mu)$ is a weakly almost interior Γ -hyperideal of S.

Proof. Assume that μ is a fuzzy weakly almost interior Γ -hyperideal of S. Let $s \in S$. Choose t = 1. So, $(s_1 \circ \mu \circ s_1] \cap \mu \neq 0$. So, there exist $x, a \in S$ such that $x \leq s\Gamma a\Gamma s$ and $\mu(x), \mu(a) \neq 0$. Also, $x, a \in supp(\mu)$. Since $x \leq s\Gamma a\Gamma s$, $x \in (s\Gamma(supp(\mu))\Gamma s]$. It turns out that $x \in (s\Gamma(supp(\mu))\Gamma s] \cap supp(\mu)$, that is, $(s\Gamma(supp(\mu))\Gamma s] \cap supp(\mu) \neq \emptyset$. Hence, $supp(\mu)$ is a weakly almost interior Γ -hyperideal of S.

Conversely, assume that $supp(\mu)$ is a weakly almost interior Γ -hyperideal of S. Let s_{α} be any fuzzy point of S. Then, $(s\Gamma(supp(\mu))\Gamma s] \cap supp(\mu) \neq \emptyset$. Thus, there exists $x \in S$ such that $x \in (s\Gamma(supp(\mu))\Gamma s]$ and $x \in supp(\mu)$. So, $x \leq s\Gamma a\Gamma s$ for some $a \in supp(\mu)$. This means that $\mu(x), \mu(a) \neq 0$. We have that $(s_{\alpha} \circ \mu \circ s_{\alpha}] \cap \mu \neq 0$. Therefore, μ is a fuzzy weakly almost interior Γ -hyperideal of S.

Let S be an ordered Γ -semihypergroup. A weakly almost interior Γ -hyperideal I of S is called *minimal* if for any weakly almost interior Γ -hyperideal A of S such that $A \subseteq I$ implies that A = I.

Definition 4.2. Let *S* be an ordered Γ -semihypergroup. A fuzzy weakly almost interior Γ -hyperideal μ of *S* is called minimal if for any fuzzy weakly almost interior Γ -hyperideal λ of *S* such that $\lambda \subseteq \mu$ implies that $supp(\lambda) = supp(\mu)$.

Now, the relationship between minimal weakly almost interior Γ -hyperideals and minimal fuzzy weakly almost interior Γ -hyperideals in ordered Γ -semihypergroups is then briefly examined.

Theorem 4.4. Let *S* be an ordered Γ -semihypergroup, and *I* be a nonempty subset of *S*. Then, *I* is a minimal weakly almost almost interior Γ -hyperideal of *S* if and only if C_I is a minimal fuzzy weakly almost interior Γ -hyperideal of *S*.

Proof. Assume that *I* is a minimal weakly almost interior Γ -hyperideal of *S*. By Theorem 4.2, C_I is a fuzzy weakly almost interior Γ -hyperideal of *S*. Let λ be any fuzzy weakly almost interior Γ -hyperideal of *S* such that $\lambda \subseteq C_I$. By Lemma 2.2 and Theorem 4.3, we have that $supp(\lambda)$ is a weakly almost interior Γ -hyperideal of *S* such that $supp(\lambda) \subseteq supp(C_I)$. Since *I* is minimal, $supp(\lambda) = I = supp(C_I)$. Hence, C_I is a minimal fuzzy weakly almost interior Γ -hyperideal of *S*.

Conversely, assume that C_I is a minimal fuzzy weakly almost interior Γ -hyperideal of S. Thus, I is a weakly almost Γ -hyperideal of S by Theorem 4.2. Now, let A be any weakly almost interior Γ -hyperideal of S such that $A \subseteq I$. Then, C_A is a fuzzy weakly almost interior Γ -hyperideal of S such that $C_A \subseteq C_I$. Since C_I is minimal and by Lemma 2.2, we have that $A = supp(C_A) = supp(C_I) = I$. Therefore, I is a minimal weakly almost interior Γ -hyperideal of S.

The following corollary can be achieved by Theorem 4.2 and Theorem 4.3.

Corollary 4.2. Let *S* be an ordered Γ -semihypergroup. Then, *S* has no proper weakly almost interior Γ -hyperideal if and only if for every fuzzy weakly almost interior Γ -hyperideal μ of *S*, supp $(\mu) = S$.

Let *S* be an ordered Γ -semihypergroup and *P* be a weakly almost interior Γ -hyperideal of *S*. Then: (*i*) *P* is said to be *prime* if for any weakly almost interior Γ -hyperideals *A* and *B* of *S* such that $(A\Gamma B] \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$; (*ii*) *P* is said to be *semiprime* if for any weakly almost interior Γ -hyperideal *A* of *S* such that $(A\Gamma A] \subseteq P$ implies that $A \subseteq P$; (*iii*) *P* is said to be *strongly prime* if for any weakly almost interior Γ -hyperideals *A* and *B* of *S* such that $(A\Gamma B] \cap (B\Gamma A] \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$.

Definition 4.3. Let μ be a fuzzy weakly almost interior Γ -hyperideal of an ordered Γ -semihypergroup *S*. Then, μ is said to be a fuzzy prime weakly almost interior Γ -hyperideal of *S* if for any fuzzy weakly almost interior Γ -hyperideals λ and ν of *S* such that $\lambda \circ \nu \subseteq \mu$ implies that $\lambda \subseteq \mu$ or $\nu \subseteq \mu$.

Definition 4.4. Let μ be a fuzzy weakly almost interior Γ -hyperideal of an ordered Γ -semihypergroup *S*. Then, μ is said to be a fuzzy semiprime weakly almost interior Γ -hyperideal of *S* if for any fuzzy weakly almost interior Γ -hyperideal λ of *S* such that $\lambda \circ \lambda \subseteq \mu$ implies that $\lambda \subseteq \mu$.

Definition 4.5. Let μ be a fuzzy weakly almost interior Γ -hyperideal of an ordered Γ -semihypergroup *S*. Then, μ is said to be a fuzzy strongly prime weakly almost interior Γ -hyperideal of *S* if for any fuzzy weakly almost interior Γ -hyperideals λ and ν of *S* such that $(\lambda \circ \nu) \cap (\nu \circ \lambda) \subseteq \mu$ implies that $\lambda \subseteq \mu$ or $\nu \subseteq \mu$.

It is obvious that every fuzzy strongly prime weakly almost interior Γ -hyperideal of an ordered Γ -semihypergroup is a fuzzy prime weakly almost interior Γ -hyperideal, and every fuzzy prime weakly almost interior Γ -hyperideal of an ordered Γ -semihypergroup is a fuzzy semiprime weakly almost interior Γ -hyperideal.

Finally, we consider the connections between strongly prime (resp., prime, semiprime) weakly almost interior Γ -hyperideals and their fuzzifications in ordered Γ -semihypergroups.

Theorem 4.5. Let *S* be an ordered Γ -semihypergroup and *P* be a nonempty subset of *S*. Then, *P* is a strongly prime weakly almost interior Γ -hyperideal of *S* if and only if C_P is a fuzzy strongly prime weakly almost interior Γ -hyperideal of *S*.

Proof. Assume that P is a strongly prime weakly almost interior Γ -hyperideal of S. Also, C_P is a fuzzy weakly almost interior Γ -hyperideal of S by Theorem 4.2. Let λ and ν be any two fuzzy weakly almost interior Γ -hyperideals of S such that $(\lambda \circ \nu) \cap (\nu \circ \lambda) \subseteq C_P$. Suppose that $\lambda \not\subseteq C_P$ and $\nu \not\subseteq C_P$. Thus, there exist $x, y \in S$ such that $\lambda(x) \neq 0$ and $\nu(y) \neq 0$, but $C_P(x) = 0$ and $C_P(y) = 0$. So, $x, y \notin P$. By using Theorem 4.3, we have that $supp(\lambda)$ and $supp(\nu)$ are weakly almost interior Γ -hyperideals of S such that $x \in supp(\lambda)$ and $y \in supp(\nu)$. We obtain that, $supp(\lambda) \not\subseteq P$ and $supp(\nu) \not\subseteq P$. By assumption, $((supp(\lambda))\Gamma(supp(\nu))] \cap ((supp(\nu))\Gamma(supp(\lambda))] \not\subseteq P$. Then, there exists $t \in ((supp(\lambda))\Gamma(supp(\nu))] \cap ((supp(\nu))\Gamma(supp(\lambda))]$, but $t \notin P$. It follows that $C_P(t) = 0$, and then $[(\lambda \circ \nu) \cap (\nu \circ \lambda)](t) = 0$. Since $t \in ((supp(\lambda))\Gamma(supp(\nu))]$ and $t \in ((supp(\nu))\Gamma(supp(\lambda))]$, we have that $t \leq a_1\Gamma b_1$ and $t \leq b_2\Gamma a_2$ for some $a_1, a_2 \in supp(\lambda)$ and $b_1, b_2 \in supp(\nu)$. It turns out that

$$(\lambda \circ \nu)(t) = \sup_{t \le a_1 \Gamma b_1} [\min\{\lambda(a_1), \nu(b_1)\}] \neq 0 \text{ and } (\nu \circ \lambda)(t) = \sup_{t \le b_2 \Gamma a_2} [\min\{\nu(b_2), \lambda(a_2)\}] \neq 0$$

This implies that $[(\lambda \circ \nu) \cap (\nu \circ \lambda)](t) \neq 0$, as a contradiction. So, $\lambda \subseteq C_P$ or $\nu \subseteq C_P$. This shows that C_P is a fuzzy strongly prime weakly almost interior Γ -hyperideal of S.

Conversely, assume that C_P is a fuzzy strongly prime weakly almost interior Γ -hyperideal of S. Then, P is a weakly almost interior Γ -hyperideal of S by Theorem 4.2. Let A and B be any two weakly almost interior Γ -hyperideals of S such that $(A\Gamma B] \cap (B\Gamma A] \subseteq P$. By using Lemma 2.2 and Lemma 2.3, it follows that

$$(C_A \circ C_B) \cap (C_B \circ C_A) = C_{(A \cap B]} \cap C_{(B \cap A]} = C_{(A \cap B] \cap (B \cap A]} \subseteq C_P.$$

By the hypothesis, $C_A \subseteq C_P$ or $C_B \subseteq C_P$. It follows that $A \subseteq P$ or $B \subseteq P$. Therefore, P is a strongly prime weakly almost interior Γ -hyperideal of S.

Theorem 4.6. Let P be a nonempty subset of an ordered Γ -semihypergroup S. Then, P is a prime weakly almost interior Γ -hyperideal of S if and only if C_P is a fuzzy prime weakly almost interior Γ -hyperideal of S.

Proof. Assume that *P* is a prime weakly almost interior Γ -hyperideal of *S*. By using Theorem 4.2, we obtain that C_P is a fuzzy weakly almost interior Γ -hyperideal of *S*. Let λ and ν be any two fuzzy weakly almost interior Γ -hyperideals of *S* such that $\lambda \circ \nu \subseteq C_P$. Suppose that $\lambda \not\subseteq C_P$ and $\nu \not\subseteq C_P$. Then, there exist $x, y \in S$ such that $\lambda(x) \neq 0$ and $\nu(y) \neq 0$, while $C_P(x) = 0$ and $C_P(y) = 0$. So, $x \in supp(\lambda)$, $y \in supp(\nu)$ with $x, y \notin P$. By Theorem 4.3, we have that $supp(\lambda)$ and $supp(\nu)$ are weakly almost interior Γ -hyperideals of *S*. This implies that $supp(\lambda) \not\subseteq P$ and $supp(\nu) \not\subseteq P$. By assumption, it follows that $((supp(\lambda)\Gamma(supp(\nu)))] \not\subseteq P$. Also, there exists $t \in ((supp(\lambda)\Gamma(supp(\nu)))]$ such that $t \notin P$. This means that $C_P(t) = 0$. It turns out that $(\lambda \circ \nu)(t) = 0$, because $\lambda \circ \nu \subseteq C_P$. Since $t \in ((supp(\lambda)\Gamma(supp(\nu)))], t \leq a\Gamma b$ for some $a \in supp(\lambda)$ and $b \in supp(\nu)$. Thus,

$$(\lambda \circ \nu)(t) = \sup_{t \leq a \vdash b} [\min\{\lambda(a), \nu(b)\}] \neq 0.$$

This is a contradiction to the fact that $(\lambda \circ \nu)(t) = 0$. This shows that $\lambda \subseteq C_P$ or $\nu \subseteq C_P$. Hence, C_P is a fuzzy prime weakly almost interior Γ -hyperideal of S.

Conversely, assume that C_P is a fuzzy prime weakly almost interior Γ -hyperideal of S. By Theorem 4.2, P is a weakly almost Γ -hyperideal of S. Let A and B be any weakly almost interior Γ -hyperideals of S such that $(A\Gamma B] \subseteq P$. By Lemma 2.2 and Lemma 2.3, it follows that $C_A \circ C_B = C_{(A\Gamma B]} \subseteq C_P$. By the given assumption, $C_A \subseteq C_P$ or $C_B \subseteq C_P$. This implies that, $A \subseteq P$ or $B \subseteq P$. Therefore, P is a prime weakly almost interior Γ -hyperideal of S.

Theorem 4.7. Let *S* be an ordered Γ -semihypergroup and *P* be a nonempty subset of *S*. Then, *P* is a semiprime weakly almost interior Γ -hyperideal of *S* if and only if C_P is a fuzzy semiprime weakly almost interior Γ -hyperideal of *S*.

Proof. Assume that P is a semiprime weakly almost interior Γ -hyperideal of S. By Theorem 4.2, we obtain that C_P is a fuzzy weakly almost Γ -hyperideal of S. Let λ be any fuzzy weakly almost interior Γ -hyperideal of S such that $\lambda \circ \lambda \subseteq C_P$. Suppose that $\lambda \not\subseteq C_P$. So, there exists $x \in S$ such that $\lambda(x) \neq 0$ and $C_P(x) = 0$. Also, $x \in supp(\lambda)$ and $x \notin P$. By Theorem 4.3, $supp(\lambda)$ is a weakly almost interior Γ -hyperideal of S where $supp(\lambda) \not\subseteq P$. By assumption, $((supp(\lambda)\Gamma(supp(\lambda)))] \not\subseteq P$. Thus, there exists $t \in S$ such that $t \in ((supp(\lambda)\Gamma(supp(\lambda)))]$, but $t \notin P$. This implies that $C_P(t) = 0$. It

follows that $(\lambda \circ \lambda)(t) = 0$, because $\lambda \circ \lambda \subseteq C_P$. Since $t \in ((supp(\lambda)\Gamma(supp(\lambda)))]$, $t \leq a\Gamma b$ for some $a, b \in supp(\lambda)$. It turns out that $(\lambda \circ \lambda)(t) = \sup_{t \leq a\Gamma b} [\min\{\lambda(a), \lambda(b)\}] \neq 0$, which is a contradiction. Hence, $\lambda \subseteq C_P$. Therefore, C_P is a fuzzy semiprime weakly almost Γ -hyperideal of S.

Conversely, assume that C_P is a fuzzy semiprime weakly almost Γ -hyperideal of S. It follows that P is a weakly almost interior Γ -hyperideal of S by Theorem 4.2. Let A be a weakly almost interior Γ -hyperideal of S such that $(A\Gamma A] \subseteq P$. By using Lemma 2.2 and Lemma 2.3, we have that $C_A \circ C_A = C_{(A\Gamma A]} \subseteq C_P$. Since C_P is semiprime, $C_A \subseteq C_P$. It follows that $A \subseteq P$. This shows that P is a semiprime weakly interior Γ -hyperideal of S.

5. Conclusions

In 2021, Rao et al. [14] introduced the concept of almost interior Γ -hyperideals as a generalization of interior Γ -hyperideals of ordered Γ -semihypergroups. In this paper, we introduced the notion of weakly almost interior Γ -hyperideals of ordered Γ -semihypergroups which is a generalization of almost interior Γ -hyperideals. Next, we shown that the union of (fuzzy) weakly almost interior Γ -hyperideals is also a (fuzzy) weakly almost interior Γ -hyperideal in ordered Γ -semihypergroups. Then, we characterized the ordered Γ -semihypergroups having no proper weakly almost interior Γ -hyperideals. Finally, we discussed the connections between weakly almost interior Γ -hyperideals and their fuzzification in ordered Γ -semihypergroups. In our future study, we plan to investigate other kinds of almost Γ -hyperideals and their fuzzifications in ordered Γ -semihypergroups or other algebraic structures.

Acknowledgements: This research project was financially supported by Mahasarakham University.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- S.M. Anvariyeh, S. Mirvakili, B. Davvaz, On Γ-Hyperideals in Γ-Semihypergroups, Carpathian J. Math. 26 (2010), 11-23. https://www.jstor.org/stable/43999427.
- [2] S. Bogdanović, Semigroups in Which Some Bi-Ideal Is a Group, Rev. Res. Fac. Sci. Univ. Novi Sad, 11 (1981), 261-266.
- [3] R. Chinram, W. Nakkhasen, Almost Bi-Quasi-Interior Ideals and Fuzzy Almost Bi-Quasi-Interior Ideals of Semigroups, J. Math. Computer Sci. 26 (2021), 128-136. https://doi.org/10.22436/jmcs.026.02.03.
- [4] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore Publisher, Tricesimo, Italy, 1993.
- [5] O. Grošek, L. Satko, A New Notion in the Theory of Semigroup, Semigroup Forum, 20 (1980), 233-240. https: //doi.org/10.1007/BF02572683.
- [6] D. Heidari, B. Davvaz, On Ordered Hyperstructures, UPB Sci. Bull. Ser. A: Appl. Math. Phys. 73 (2011), 85-96.
- [7] W. Jantanan, A. Simuen, W. Yonthanthum, R. Chinram, Almost Interior Gamma-Ideals and Fuzzy Almost Interior Gamma-Ideals in Gamma-Semigroups, Math. Stat. 9 (2021), 302-308. https://doi.org/10.13189/ms.2021. 090311.

- [8] N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups, J. Discrete Math. Sci. Cryptography. 23 (2020), 773-778. https://doi.org/10.1080/09720529.2019.1696917.
- [9] W. Krailoet, A. Simuen, R. Chinram, P. Petchkaew, A Note on Fuzzy Almost Interior Ideals in Semigroups, Int. J. Math. Computer Sci. 16 (2021), 803-808.
- [10] F. Marty, Sur une Generalization de la Notion de Group, In: 8th Congres des Mathematiciens Scandinaves, Stockholm, 45-49, 1934.
- P. Muangdoo, T. Chuta, W. Nakkhasen, Almost Bi-Hyperideals and Their Fuzzification of Semihypergroups, J. Math. Comput. Sci. 11 (2021), 2755-2767. https://doi.org/10.28919/jmcs/5609.
- [12] W. Nakkhasen, P. Khathipphathi, S. Panmuang, A Note on Fuzzy Almost Interior Hyperideals of Semihypergroups, Int. J. Math. Computer Sci. 17 (2022), 1419-1426.
- [13] P. Pao-Ming, L. Ying-Ming, Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247x(80)90048-7.
- [14] Y. Rao, S. Kosari, Z. Shao, M. Akhoundi, S. Omidi, A Study on A-I-Γ-Hyperideals and (m, n)-Γ-Hyperfilters in Ordered Γ-Semihypergroups, Discr. Dyn. Nat. Soc. 2021 (2021), 6683910. https://doi.org/10.1155/2021/ 6683910.
- [15] M.K. Sen, N.K. Saha, On Γ-Semigroup-I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.
- [16] A. Simuen, K. Wattanatripop, R. Chinram, Characterizing Almost Quasi-Γ-Ideals and Fuzzy Almost Quasi-Γ-Ideals of Γ-Semigroups, Commun. Math. Appl. 11 (2020), 233-240.
- [17] S. Suebsung, R. Chinram, W. Yonthanthum, K. Hila, A. Iampan, On Almost Bi-Ideals and Almost Quasi-Ideals of Ordered Semigroups and Their Fuzzifications, ICIC Express Lett. 16 (2022), 127-135.
- [18] S. Suebsung, T. Kaewnoi, R. Chinram, A Note on Almost Hyperideals in Semihypergroups, Int. J. Math. Computer Sci. 15 (2020), 127-133.
- [19] S. Suebsung, W. Yonthanthum, K. Hila, R. Chinram, On Almost Quasi-Hyperideals in Semihypergroups, J. Discr. Math. Sci. Cryptography. 24 (2021), 235-244. https://doi.org/10.1080/09720529.2020.1826167.
- [20] J. Tang, B. Davvaz, X. Xie, A Study on (Fuzzy) Quasi-Γ-Hyperideals in Ordered Γ-Semihypergroups, J. Intell. Fuzzy Syst. 32 (2017), 3821-3838. https://doi.org/10.3233/ifs-162117.
- [21] K. Wattanatripop, R. Chinram, T. Changphas, Fuzzy Almost Bi-Ideals in Semigroups, Int. J. Math. Computer Sci. 13 (2018), 51-58.
- [22] L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65) 90241-x.