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Abstract. In this paper, we consider homogeneous and non-homogeneous second order linear fuzzy

systems under granular differentiability. The concept of continuous n-dimensional fuzzy functions on

the space of n-dimensional fuzzy numbers are introduced. Developed an algorithm for the solution of

a non-homogeneous second order linear fuzzy system under granular differentiability. The proposed

algorithm is applied to solve some well-known mechanical problems with fuzzy uncertainty.

1. Introduction

Mathematical models can be explained through fuzzy differential equations (FDE). The innovative

work on system of fuzzy differential equations (SFDEs) extended from population models, bio infor-

matics, quantum optics, and soft computing models. Second-order linear fuzzy systems (SLFS) are

modeled by behaviors of many dynamical systems with uncertainty. SLFSs specifically appear in many

spring-mass mechanical systems with uncertainty. Fard and Ghal-EH [3] proposed a numerical method

to solve SFDEs under H-differentiability. Gasilov et al. [4] presented a solution method for SFDEs with

fuzzy initial conditions. Mondal et al. [7] analyzed adaptive schemes to study the SFDEs. Barazandeh

and Ghazanfari [1] obtained the solutions for SFDEs applying variation iteration technique. Keshavarz

et al. [5] enhanced to obtain an analytical solution for SFDEs using gH-differentiability. Boukezzoula
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et al. [2] enhanced a method to solve the SFDEs with variables as fuzzy intervals. The limitations

of previous methods for dealing with SFDEs are derivatives do not always exist, monotonicity of

the uncertainty, doubling properties, unnatural behavior in modeling phenomenon, and multiplicity of

solutions.

Piegat and Landowski [11] introduced horizontal membership function (HMF), and their applica-

tions. Piegat and Pluciński [12] was stated the difference between relative distance measure interval

arithmetic (RDM-IA) yields a multidimensional answer while the results produced with SIA. Mazan-

darani et al. [6] elaborated the concept of HMF, granular differentiability (gr-differentiability) and

granular integrability (gr-integrability). Najariyan and Zhao [9] offered a solution to the fuzzy dynam-

ical system under gr-differentiability. Nagalakshmi et al. [8] generalized the concept of fuzzy numbers

to n-dimensional fuzzy numbers and developed an algorithm to solve system of first-order FBVPs

under the concept of gr-differentability.

In this manuscript, consider two types of SLFSs under gr-differentiability. The upcoming sections

of this manuscript are along these lines. Section 2, presents basic definitions and propositions related

to gr-differentiability of n-dimensional fuzzy valued function. Section 3, an algorithm is presented

as a working method to solve SLFSs under gr-differentiability. In Section 4, we describe mechanical

applications such as automobile two-axles, railway cars system, and spring-mass systems to highlight

the proposed algorithm. Section 5, Conclusions and future works are analyzed.

2. Preliminaries

For a later discussion, this section provides some essential notations, definitions, and findings.

Suppose that the membership function, q : R → [0, 1] of a fuzzy subset of the real number set R,

satisfies the following conditions:

(i) q(t0) = 1 for at least one t0 ∈ R.
(ii) q(λy + (1− λ)z) ≥ min{q(y), q(z)},∀λ ∈ [0, 1], y , z ∈ R.
(iii) q is upper semi continuous on R.

(iv) cl{t ∈ R; q(t) > 0} is compact.

Then it is called a fuzzy number (FN). Here q(t) is the membership degree of t, ∀t ∈ R. The

λ-level sets of q are defined by [q]λ = {t ∈ R : q(t) ≥ λ} = [qλl , qλr ], for 0 < λ ≤ 1 and

[q]0 = cl{t ∈ R : q(t) > 0}. Let RF denotes the space of FNs in R.

Refer to [6] for definitions, notations, and essential findings regarding HMFs, first-order granular

derivative (gr-derivative), and granular integration (gr-integrations) of FNs in R.

Definition 2.1. Suppose that p, q ∈ RF , whose HMFs are pgr (λ,αp) and qgr (λ,αq) respectively.

Then r = p ∗ q ∈ RF , such that H(r) , pgr (λ,αp)o qgr (λ,αq), where “o” and “∗” denotes any

one of the operations addition, multiplication, subtraction and division in R and RF , respectively and

0 /∈ qgr (λ,αq) if “∗” denotes the division. That is
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(1) H(p ⊕ q) , pgr (λ,αp) + qgr (λ,αq),
(2) H(p ⊗ q) , pgr (λ,αp)qgr (λ,αq),
(3) H(p 	 q) , pgr (λ,αp)− qgr (λ,αq),
(4) H(p � q) , pgr (λ,αp)÷ qgr (λ,αq),
(5) H(k � q) , k qgr (λ,αq),

where k ∈ R and p, q, r ∈ RF .

Definition 2.2. [9] Let f : [a, b]→ RF , be the FF. If there exists
d2gr f (t0)

dt2
∈ RF , such that

lim
h→0

f ′(t0 + h)	 f ′(t0)
h

=
d2gr f (t0)

dt2
= f ′′gr (t0),

then f is said to be second order gr-differentiable at a point t0 ∈ [a, b].

Theorem 2.1. [9] Let f : [a, b]→ RF . Then f is twice gr-differentiable if and only if its HMF is twice

differentiable with respect to t ∈ [a, b]. Moreover,

H

(
d2gr f (t)

dt2

)
=
∂2fgr (t, λ, αf )

∂t2
.

Proposition 2.1. Let f : [a, b] → RF be a FF, with [f (t)]λ =
[
f λl (t), f

λ
r (t)

]
. The FF f is gr-

differentiable twice on [a, b] if and only if (f λl )
′(t) and (f λr )

′(t) are differentiable on [a, b].

Proof. Since [f (t)]λ =
[
f λl (t), f

λ
r (t)

]
, then fgr (t, λ, αg) = f λl (t)+(f

λ
r (t)− f λl (t))αf , where λ, αf ∈

[0, 1]. From Definition 2.2 and Theorem 2.1, we have

Suppose that f (t) is a gr-differentiable twice on [a, b]

⇐⇒
∂2fgr (t, λ, αf )

∂t2
= (f λl )

′′(t) + ((f λr )
′′(t)− (f λl )′′(t))αf

⇐⇒ (f λl )
′(t) and (f λr )

′(t) are differentiable on [a, b].

. �

Definition 2.3. [8] Let RnF = RF × RF × RF × · · · × RF︸ ︷︷ ︸
n times

, be the space of n-dimensional fuzzy vectors

whose components are fuzzy numbers. Then the addition and scalar multiplication defined component

wise as follows:

If u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn) ∈ RnF , then

(i) u ⊕ v = (u1 ⊕ v1, u2 ⊕ v2, · · · , un ⊕ vn),
(ii) k � u = (k � u1, k � u2, · · · , k � un),

where ui , vi ∈ RnF , i = 1, 2, · · · , n and k ∈ R.

Definition 2.4. If u = (u1, u2, · · · , un) ∈ RnF , as ui ∈ RF , i = 1, 2, · · · , n. Then the HMF for u ∈ RnF
is defined by ugr (λ,αu) = (u1gr (λ,α1), u2gr (λ,α2), · · · ,
ungr (λ,αn)), where λ, α1, · · · , αn ∈ [0, 1].
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Proposition 2.2. Let u and v be two n-dimensional fuzzy vectors. Then u and v are said to be equal

if and only if H(u) = H(v), for all αu = αv ∈ [0, 1].

Proof. Since u, v ∈ RnF , then u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn), for ui , vi ∈ RF , i =
1, 2, · · · , n.

Consider, u = v ⇐⇒ (u1, u2, · · · , un) = (v1, v2, · · · , vn)

⇐⇒ ui = vi , i = 1, 2, · · · , n.

⇐⇒ H(ui) = H(vi), for all αui = αvi ∈ [0, 1], i = 1, 2, · · · , n.

⇐⇒ (H(u1), H(u2), · · · , H(un)) = (H(v1), H(v2), · · · , H(vn))

⇐⇒ H(u) = H(v), for all αu = αv ∈ [0, 1],

where αu , (αu1 , αu2 , · · · , αun) and αv , (αv1 , αv2 , · · · , αvn). �

Definition 2.5. [8] Let u, v ∈ RnF . The function Dngr : RnF × RnF → R+ ∪ {0}, defined by

Dngr (u, v) = sup
λ
max
αu ,αv

‖ugr (λ,αu)− vgr (λ,αv )‖,

which is called a n-dimensional granular distance between two n-dimensional fuzzy vectors u and v ,

where ‖.‖ represents Euclidean norm in Rn.

Proposition 2.3. The function Dngr is a metric on the space of RnF .

Proof. Suppose that RnF is a non-empty set and Dngr : RnF × RnF → R+ ∪ {0} is real-valued function.

(i) Consider,

Dngr (u, v) = sup
λ
max
αu ,αv

‖ugr (λ,αu)− vgr (λ,αv )‖ > 0.

(ii) Consider,

Dngr (u, v) = 0 ⇐⇒ sup
λ
max
αu ,αv

‖ugr (λ,αu)− vgr (λ,αv )‖ = 0

⇐⇒ ‖ugr − vgr‖ = 0

⇐⇒ ugr − vgr = 0

⇐⇒ ugr = vgr

⇐⇒ u = v .

(iii) Consider,

Dngr (u, v) = sup
λ
max
αu ,αv

‖ugr (λ,αu)− vgr (λ,αv )‖

= sup
λ
max
αu ,αv

‖vgr (λ,αv )− ugr (λ,αu)‖

= Dngr (v , u).
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(iv) Consider,

Dngr (u, w) = sup
λ
max
αu ,αw

‖ugr (λ,αu)− wgr (λ,αw )‖

= sup
λ
max

αu ,αv ,αw
‖ugr (λ,αu)− vgr (λ,αv ) + vgr (λ,αv )− wgr (λ,αw )‖

≤ sup
λ
max
αu ,αv

‖ugr (λ,αu)gr − vgr (λ,αv )‖+ sup
λ
max
αv ,αw

‖vgr (λ,αv )− wgr (λ,αw )‖

= Dngr (u, v) +Dngr (v , w).

From (i)-(iv),
(
RnF ,Dngr

)
is a metric space. �

Theorem 2.2.
(
RnF ,Dngr

)
is a complete metric space (CMS).

Proof. If any Cauchy sequence of n-dimensional fuzzy vectors in
(
RnF ,Dngr

)
is convergent then the

proof concluded.

Suppose that um ∈ RnF , m ≥ 1 is a Cauchy sequence. Then for all ε1 > 0, there exists N ≥ 1 such
that Dngr (um, um+p) < ε1, for all m ≥ 1, q ≥ 1.

Dngr (um, um+p) < ε1

=⇒ sup
λ

max
αum ,αum+p

‖umgr (λ,αum)− um+pgr (λ,αum+p)‖ < ε1

=⇒ ‖umgr − um+pgr ‖ < ε1.

Now {umgr } is a Cauchy sequence in the space of Rn. Clearly
{
umgr

}
is convergent in Rn and

umigr (λ,αumi ) = umi
λ
l + (u

λ
mi r − u

λ
mi l)αumi , where λ,αumi ∈ [0, 1].

Since umigr (λ,αumi ) is convergent, so that uλmi l and u
λ
mi r are convergent.

Suppose that lim
n→∞

uλmi l = ui
λ
l and lim

n→∞
uλmi r = ui

λ
r . Since uλmi l ≤ uλmi r , so that uλi l ≤ uλi r for all

i = 1, 2, · · · , n. If [uλi l , u
λ
i r ], i = 1, 2, · · · , n are λ-level sets of ui , then proof will be complete. It is

shown in the same manner in the proof of Theorem 4 [6], and therefore is left off. �

Lemma 2.1. Suppose that u, v , w, s ∈ RnF and µ ∈ R, then the below results hold:

(i) Dngr (u ⊕ v , w ⊕ s) ≤ Dngr (u, w) +Dngr (v , s).
(ii) Dngr (µ� u, µ� v) = |µ|Dngr (u, v).
(iii) Dngr (u ⊕ v , w ⊕ v) ≤ Dngr (u, w).

Proof. (i) From Definition 2.5, we have

Dngr (u ⊕ v , w ⊕ s)

= sup
λ

max
αu ,αv ,αw ,αs

‖(ugr (λ,αu) + vgr (λ,αv ))− (wgr (λ,αw ) + sgr (λ,αs))‖

= sup
λ

max
αu ,αv ,αw ,αs

‖(ugr (λ,αu)− wgr (λ,αw )) + (vgr (λ,αv )− sgr (λ,αs))‖
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≤ sup
λ
max
αu ,αw

‖ugr (λ,αu)− wgr (λ,αw )|+ sup
λ
max
αv ,αs

|(vgr (λ,αv )− sgr (λ,αs))‖

= Dngr (u, w) +Dngr (v , s).

(ii) From Definition 2.5, we have

Dngr (µ� u, µ� v) = sup
λ
max

αu ,αv ,αµ
‖µugr (λ,αu)− µvgr (λ,αv )‖

= |µ| sup
λ
max
αu ,αv

‖ugr (λ,αu)− vgr (λ,αv )‖

= |µ| Dngr (u, v).

(iii) From (i), we have

Dngr (u ⊕ v , w ⊕ v)

= Dngr (u, w) +Dngr (v , v)

= Dngr (u, w).

�

Proposition 2.4. If f : [a, b]→ RnF is a fuzzy function, then it is called an n-dimensional fuzzy valued

function on [a, b].

Proof. Since f : [a, b]→ RnF is a fuzzy function, then f (t) ∈ RnF , for all t ∈ [a, b].
Therefore f (t) = (f1(t), f2(t), . . . , fn(t)), for all t ∈ [a, b] and fi(t) ∈ RF , i = 1, 2, . . . , n.
Thus f (t) is a n-dimensional fuzzy vector for each t ∈ [a, b] and hence f : [a, b] → RnF , is a n-

dimensional fuzzy valued function on [a, b]. �

Proposition 2.5. If f : [a, b]→ RnF is a n-dimensional fuzzy valued function, include mn ∈ N distinct

FNs, then the HMF of f is denoted by H(f (t)) , fgr (t, λ, αf ), and interpreted as fgr : [a, b]× [0, 1]×
[0, 1]× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸

mn times

→ Rn, in which αf , (αi1 , αi2 , . . . , αim), where αi1 , αi2 , . . . , αim are the

mn RDM variables for ui1 , ui2 , . . ., uim for i = 1, 2, · · · , n.

Proof. Since f : [a, b] → RnF is a n-dimensional fuzzy valued function, so that f (t) =

(f1(t), f2(t), . . . , fn(t)), for all t ∈ [a, b] and fi(t) ∈ RnF , i = 1, 2, . . . , n.
Therefore

H(f (t)) = (H(f1(t)), H(f2(t)), . . . , (fn(t)))

fgr (t, λ, αf ) = (f1gr (t, λ, α11 , α12 , . . . , α1m), f2gr (t, λ, α21 , α22 , . . . , α2m),

. . . , fngr (t, λ, αn1 , αn2 , . . . , αnm))

where αf ≡ (αi1 , αi2 , . . . , αim) ∈ [0, 1], i = 1, 2, · · · , n. �
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Definition 2.6. Let f : [a, b] → RnF be a n-dimensional fuzzy valued function. The limit of f (t) as

t → p is q ∈ RnF , which is subject to following conditions:

(i) If p ∈ (a, b), for all ε1 > 0, there exits δ1 > 0 such that |t−p| < δ1 =⇒ Dngr (f (t), q) < ε1,

and write it as lim
t→p
f (t) = q.

(ii) If p = b, for all ε1 > 0, there exits δ1 > 0 such that 0 < t − b < δ1 =⇒ Dngr (f (t), q) < ε1,

and write it as lim
t→b+

f (t) = q.

(iii) If p = c , for all ε1 > 0, there exits δ1 > 0 such that 0 < c − t < δ1 =⇒ Dngr (f (t), q) < ε1,

and write it as lim
t→c−

f (t) = q.

Definition 2.7. Let f : [a, b] → RnF be a n-dimensional fuzzy valued function. The function f (t) is

said to be continuous at t = p if f (p) ∈ RnF , which is subject to following conditions:

(i) If p ∈ (a, b), for all ε1 > 0, there exits δ1 > 0 such that |t − p| < δ1 =⇒ Dngr (f (t), f (p)) <

ε1, and write it as lim
t→p
f (t) = f (p).

(ii) If p = b, for all ε1 > 0, there exits δ1 > 0 such that 0 < t−b < δ1 =⇒ Dngr (f (t), f (b)) < ε1,

and write it as lim
t→b+

f (t) = f (b).

(iii) If p = c , for all ε1 > 0, there exits δ1 > 0 such that 0 < c−t < δ1 =⇒ Dngr (f (t), f (c)) < ε1,

and write it as lim
t→c−

f (t) = f (c).

Note 2.1. [8] If f , h : [a, b]→ RnF are n-dimensional fuzzy valued functions, then the granular distance

is

Dgr (f (t), h(t)) = sup
λ
max
αf ,αh

‖fgr (t, λ, αf )− hgr (t, λ, αh)‖,

where t ∈ [a, b] ⊂ R and λ,αf , αh ∈ [0, 1].

Refer to [8] first-order gr-derivative, and gr-integration for n-dimensional fuzzy valued function.

Now, we define second order gr-differentiability for n-dimensional fuzzy valued function.

Definition 2.8. Let f : [a, b] → RnF , be the n-dimensional fuzzy valued function. If there exists
d2gr f (t0)

dt2
∈ RnF , such that

lim
h→0

f ′(t0 + h)	 f ′(t0)
h

=
d2gr f (t0)

dt2
= f ′′gr (t0),

this limit is taken in the metric space (RnF , D
n
gr ). Then f is said to be second order gr- differentiable

at a point t0 ∈ [a, b].

Theorem 2.3. Let f : [a, b]→ RnF be a n-dimensional fuzzy valued function, then f is gr-differentiable

if and only if its HMF is differentiable with respect to t ∈ [a, b]. Moreover,

H

(
d2gr f (t)

dt2

)
=
∂2fgr (t, λ, αf )

∂t2
.
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Proof. Assuming that f is second order gr-differentiable then f is first order gr-differentiable and

H

(
dgr f (t)

dt

)
=
∂fgr (t, λ, αf )

∂t
.

for t ∈ (a, b). Based on the Definition 2.6 and Definition 2.8, for all ε1 > 0, there exits δ1 > 0 such

that |h| < δ1 =⇒ Dngr (
f ′(t+h)	f ′(t)

h ,
d2gr f (t)

dt2
) < ε1

=⇒ sup
λ
max
αf
‖
f ′gr (t + h, λ, αf )− f ′gr (t, λ, αf )

h
−
d2gr fgr (t, λ, αf )

dt2
‖ < ε1

=⇒ ‖
f ′gr (t + h, λ, αf )− f ′gr (t, λ, αf )

h
−
d2gr fgr (t, λ, αf )

dt2
‖ < ε1

=⇒ lim
h→0

f ′gr (t + h, λ, αf )− f ′gr (t, λ, αf )
h

=
d2gr fgr (t, λ, αf )

dt2

=⇒
∂2fgr (t, λ, αf )

∂t2
= H

(
d2gr f (t)

dt2

)
.

�

Proposition 2.6. Let f : [a, b] → RnF be a n-dimensional fuzzy valued function defined by

f (t) = (f1(t), f2(t), · · · , fn(t)) for all x ∈ [a, b] and fi(t) ∈ RF , with [fi(t)]λ =
[
f λil (t), f

λ
ir
(t)
]
, i =

1, 2, · · · , n. The n-dimensional fuzzy valued function f is gr-differentiable twice on [a, b] if and only if

(f λil )
′(t) and (f λir )

′(t) are differentiable on [a, b], for all i = 1, 2, · · · , n.

Proof. Since fgr (t, λ, αf ) =
(
f1gr (t, λ, α1), f2gr (t, λ, α2), · · · , fngr (t, λ, αn)

)
, then

fgr (t, λ, αf ) =
(
(f λ1l (t) + (f

λ
1r (t)− f

λ
1l
(t))α1), (f

λ
2l
(t) + (f λ2r (t)− f

λ
2l
(t))α2), · · · ,

(f λnl (t) + (f
λ
nr (t)− f

λ
nl
(t))αn)

)
,

where λ, αf , (α1, α2, · · · , αn) ∈ [0, 1]. From Definition 2.8 and Theorem 2.3, we have

Suppose that f (t) is a gr-differentiable twice on [a, b]

⇐⇒
∂2fgr (t, λ, αf )

∂t2
=
(
((f λ1l )

′′(t) + ((f λ1r )
′′(t)− (f λ1l )

′(t))α1),

((f λ2l )
′′(t) + ((f λ2r )

′′(t)− (f λ2l )
′′(t))α2), · · · , ((f λnl )

′′(t) + ((f λnr )
′′(t)− (f λnl )

′′(t))αn)
)

⇐⇒ (f λil )
′(t) and (f λir )

′(t), are differentiable on [a, b] for i = 1, 2, · · · , n.

�

Definition 2.9. If a matrix A = [ai j ]n×m, for all ai j ∈ RF , i = 1, 2, · · · , n and j = 1, 2, · · · , m. Then

that matrix A is called fuzzy matrix.

Definition 2.10. If A = [ai j ]n×m is a fuzzy matrix, then the HMF of A is defined by H(A) =

[H(ai j)]n×m , [(ai j)gr (λ,αi j)]n×m, where λ,αi j ∈ [0, 1], i = 1, 2, · · · , n and j = 1, 2, · · · , m.
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3. An algorithm for the solution of system of second order linear fuzzy initial value problems under

(SSLFDE) gr-differentiability

Consider a SSLFDEs,

Z′′gr (t) = A⊗ Z(t)⊕ F (t), w ith Z(t0) = Z0. (3.1)

The matrix form of (3.1) is, [
y ′′gr (t)

z ′′gr (t)

]
=

[
a b

c d

]
⊗

[
y(t)

z(t)

]
⊕

[
f (t)

g(t)

]
, (3.2)

subject to,

[
y(t0)

z(t0)

]
=

[
y0

z0

]
and

[
y ′(t0)

z ′(t0)

]
=

[
y ′0

z ′0

]
. (3.3)

The following algorithm describes the procedure to compute λ-cut solution of SSLFDEs (3.1) if it

exists.

Step 1 : Applying HMF on both sides of (3.2) and (3.3), we get[
∂2ygr (t,λ,αy )

∂t2

∂2zgr (t,λ,αz )
∂t2

]
=

[
agr (λ,αa) bgr (λ,αb)

cgr (λ,αc) dgr (λ,αd)

][
ygr (t, λ, αy )

zgr (t, λ, αz)

]

+

[
fgr (t, λ, αf )

ggr (t, λ, αg)

]
, (3.4)

with,

[
ygr (t0)

zgr (t0)

]
=

[
y0gr (λ,αy0)

z0gr (λ,αz0)

]
and

[
y ′gr (t0)

z ′gr (t0)

]
=

[
y ′0gr (λ,αy ′0)

z ′0gr (λ,αz ′0)

]
, (3.5)

where λ, αz ,αf , αg, αa, αb,αc , αd , αy0 , αz0 ,αy ′0 , αz ′0 ∈ [0, 1]. Here, (3.4) and (3.5) taken

as a ordinary second order system of differential equations.

Step 2 : Solving (3.4) and (3.5), we get

ygr (t, λ, αy ) and zgr (t, λ, αz). (3.6)

Step 3 : Applying inverse HMF on both sides of (3.6), we get

[y(t)]λ = [ inf
λ≤α≤1

min
αy
ygr (t, α, αy ), sup

λ≤α≤1
max
αy

ygr (t, α, αy )], (3.7)

[z(t)]λ = [ inf
λ≤α≤1

min
αz
zgr (t, α, αz), sup

λ≤α≤1
max
αz

zgr (t, α, αz)], (3.8)

which is the required λ-cut solution of SSLFDEs (3.1).
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4. Mechanical applications

In this section, we describe mechanical applications [13] of which the uncertain information taken

as fuzzy sets.

Example 4.1. (Automobile with two axles) Now we have an automobile with two axles and distinct

front and back suspension systems, we can examine a more realistic model. The suspension system

of such a vehicle is seen in Figure 1 . We suppose that the car’s body behaves similarly to a solid bar

with the dimensions of mass M and length l = l1 + l2. Its centre of mass c , which is located at a

distance l1 from the front of the vehicle, has a moment of inertia I around it. The vehicle features

suspension springs with Hooke’s constants s1 and s2 for the front and back, respectively. Let y(t)

represent the car’s vertical displacement from equilibrium while it is moving, and let z(t) represent

its angular displacement (in radians) from the horizontal. The equations may then be derived using

Newton’s laws of motion for linear and angular acceleration as follows:

M � y ′′gr (t) = −(s1 + s2)� y(t)⊕ (s1l1 − s2l2)� z(t),

I � z ′′gr (t) = (s1l1 − s2l2)� y(t)	 (s1l21 + s2l22 )� z(t),

with fuzzy initial values, y(0) = y0, z(0) = z0, y ′gr (0) = y
′
0, z

′
gr (0) = z

′
0.

Suppose that M = 75lb.s2/f t, l1 = 7f t, l2 = 3f t, s1 = s2 = 2000lb/f t, I = 1000f t.lb.s2 and the

λ-level sets of fuzzy initial values are [y0]λ = [z0]λ = [3 + λ, 5 − λ], [y ′0]λ = [5 + λ, 7 − λ], [z ′0]λ =
[6 + λ, 8− λ].

Figure 1. two axles car.

Then the matrix equation is, [
y ′′gr (t)

z ′′gr (t)

]
=

[
−53.33 106.67
8 −116

]
�

[
y(t)

z(t)

]
, (4.1)

,

subject to,

[
y(0)

z(0)

]
=

[
y0

z0

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
y ′0

z ′0

]
. (4.2)
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Taking HMF on both sides of (4.1) and (4.2), we have[
∂2ygr (t,λ,αy )

∂t2

∂2zgr (t,λ,αz )
∂t2

]
=

[
−53.33 106.67
8 −116

][
ygr (t, λ, αy )

zgr (t, λ, αz)

]
, (4.3)

subject to,

[
ygr (0)

zgr (0)

]
=

[
y0gr (λ,α1)

z0gr (λ,α1)

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
y ′0gr (λ,α2)

z ′0gr (λ,α3)

]
, (4.4)

where y0gr (λ,α1) = z0gr (λ,α1) = [3+λ+2(1−λ)α1], y ′0gr (λ,α2) = [5+λ+2(1−λ)α2], z
′
0gr
(λ,α3) =

[6 + λ+ 2(1− λ)α3], where λ, α1, α2, α3 ∈ [0, 1].
The solution for second order system of equations (4.3) and (4.4) are

ygr (t, λ, α1, α2, α3) and zgr (t, λ, α1, α2, α3). (4.5)

Applying inverse HMF on (4.5), we get

[y(t)]λ = [ inf
λ≤α≤1

min
α1,α2,α3

ygr (t, α, α1, α2, α3), sup
λ≤α≤1

max
α1,α2,α3

ygr (t, α, α1, α2, α3)],

[z(t)]λ = [ inf
λ≤α≤1

min
α1,α2,α3

zgr (t, α, α1, α2, α3), sup
λ≤α≤1

max
α1,α2,α3

zgr (t, α, α1, α2, α3)].

The λ-level sets solution is enumerated using MATLAB and is illustrated in Figure 2

(a) λ-level sets of y(t). (b) λ-level sets of z(t).

Figure 2. The black curve gives the solution at λ = 1 for the system (4.1) and (4.2).

Example 4.2. (One springs-two railway cars system) Figure 3 represents one spring supporting two

railway cars of masses M1 and M2 respectively system to one other. If all two of the two cars

rightward displacements from their respective equilibrium positions are positive, then the spring is
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extended byy(t). The motion equations for the two cars are generated as follows:

M1 � y ′′gr (t) = −s � y(t)⊕ s � z(t),

M2 � z ′′gr (t) = s � y(t)	 s � z(t),

with fuzzy initial values, y(0) = y0, z(0) = z0, y ′gr (0) = y
′
0, z

′
gr (0) = z

′
0.

Figure 3. One springs-two cars systems.

Suppose thatM1 = 1lb.s2/f t,M2 = 1lb.s2/f t, and the λ-level sets of spring constant and fuzzy initial

values are [s]λ = [1 + λ, 3 − λ], [y0]λ = [z0]λ = [λ, 2 − λ], [y ′0]λ = [1 + λ, 3 − λ], [z ′0]λ = [λ, 2 − λ].
Then the matrix equation is,[

1 0

0 3

]
�

[
y ′′gr (t)

z ′′gr (t)

]
=

[
−s s

s −s

]
⊗

[
y(t)

z(t)

]
, (4.6)

subject to,

[
y(0)

z(0)

]
=

[
y0

z0

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
y ′0

z ′0

]
. (4.7)

Taking HMF on both sides of (4.6) and (4.7), we have[
∂2ygr (t,λ,αy )

∂t2

∂2zgr (t,λ,αz )
∂t2

]
=

[
−sgr (λ,α1) sgr (λ,α1)

sgr (λ,α1) −sgr (λ,α1)

][
ygr (t, λ, αy )

zgr (t, λ, αz)

]
, (4.8)

subject to

[
ygr (0)

zgr (0)

]
=

[
y0gr (λ,α2)

z0gr (λ,α2)

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
y ′0gr (λ,α1)

z ′0gr (λ,α2)

]
, (4.9)

here sgr (λ,α1) = y ′0gr (λ,α1) = [1 + λ + 2(1 − λ)α1], y0gr (λ,α2) = z0gr (λ,α2) = z ′0gr (λ,α2) =

[λ+ 2(1− λ)α2], where λ, α1 α2 ∈ [0, 1].
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=⇒

[
∂2ygr (t,λ,α1,α2)

∂t2

∂2zgr (t,λ,α1,α2)
∂t2

]
=

[
−(1 + λ+ 2(1− λ)α1) 1 + λ+ 2(1− λ)α1
1 + λ+ 2(1− λ)α1 −(1 + λ+ 2(1− λ)α1)

]
[
ygr (t, λ, α1, α2)

zgr (t, λ, α1, α2)

]
, (4.10)

subject to,

[
ygr (0)

zgr (0)

]
=

[
λ+ 2(1− λ)α1
λ+ 2(1− λ)α1

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
1 + λ+ 2(1− λ)α2
λ+ 2(1− λ)α1

]
. (4.11)

The solution for second order system of equations (4.10) and (4.11) is

ygr (t, λ, α1, α2) and zgr (t, λ, α1, α2). (4.12)

Applying inverse HMF on (4.12), we get

[y(t)]λ = [ inf
λ≤α≤1

min
α1,α2

ygr (t, α, α1, α2), sup
λ≤α≤1

max
α1,α2

ygr (t, α, α1, α2)],

[z(t)]λ = [ inf
λ≤α≤1

min
α1,α2

zgr (t, α, α1, α2), sup
λ≤α≤1

max
α1,α2

zgr (t, α, α1, α2)].

The λ-level sets solution is enumerated using MATLAB and is illustrated in Figure 4

(a) λ-level sets of y(t). (b) λ-level sets of z(t).

Figure 4. The black curve gives the solution at λ = 1 for the system (4.6) and (4.7).

Example 4.3. (Two springs-two mass systems with external fuzzy force) Figure 5 represents two

springs supporting two masses to one other. If all the two masses rightward displacements from their

respective equilibrium positions are positive, then

(i) The first spring is extended by y(t).

(ii) The second spring is extended by z(t)	 y(t).
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The motion equations for the two masses are generated as follows:

M1 � y ′′gr (t) = −s1 � y(t)⊕ s2 � (z(t)	 y(t)),

M2 � z ′′gr (t) = −s2 � (z(t)	 y(t)) + f (t),

with fuzzy initial values, y(0) = y0, z(0) = z0, y ′gr (0) = y
′
0, z

′
gr (0) = z

′
0.

Figure 5. Two springs-two masses systems.

The matrix form of system of equations is[
y ′′gr (t)

z ′′gr (t)

]
=

[
s1 s2

s3 s4

]
⊗

[
y(t)

z(t)

]
⊕

[
0

p cos(10t)

]
, (4.13)

subject to,

[
y(0)

z(0)

]
=

[
y0

z0

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
y ′0

z ′0

]
, (4.14)

where λ-cut set of coefficients and initial values are s1 = −3, s2 = 1, s3 = 1, s4 = −1,[y0]λ = [z0]λ =
[y ′0]

λ = [λ, 2−λ], [z ′0]λ = [p]λ = [1+λ, 3−λ]. Taking HMF on both sides of (4.13) and (4.14), we

have [
∂2ygr (t,λ,αy )

∂t2

∂2zgr (t,λ,αz )
∂t2

]
=

[
−3 1

1 −1

][
ygr (t, λ, αy )

zgr (t, λ, αz)

]
+

[
0

pgr (λ,α1) cos(10t)

]
, (4.15)

subject to,

[
ygr (0)

zgr (0)

]
=

[
y0gr

z0gr

]
and

[
y ′gr (t0)

z ′gr (t0)

]
=

[
y ′0gr

z ′0gr

]
, (4.16)

where pgr (λ,α1) = [1+λ+2(1−λ)α1], y0gr (λ,α2) = z0gr (λ,α2) = y ′0gr (λ,α2) = [λ+2(1−λ)α2],
z ′0gr (λ,α2) = [1 + λ+ 2(1− λ)α1], where λ, α1 α2 ∈ [0, 1].
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=⇒

[
∂2ygr (t,λ,α1,α2)

∂t2

∂2zgr (t,λ,α1,α2)
∂t2

]
=

[
−3 1

1 −1

][
ygr (t, λ, α1, α2)

zgr (t, λ, α1, α2)

]
+

[
0

[1 + λ+ 2(1− λ)α1] cos(10t)

]
, (4.17)

with,

[
ygr (0)

zgr (0)

]
=

[
λ+ 2(1− λ)α2
λ+ 2(1− λ)α2

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
λ+ 2(1− λ)α2
1 + λ+ 2(1− λ)α1

]
. (4.18)

The solution for system of equations (4.17) and (4.18) is

ygr (t, λ, α1, α2) and zgr (t, λ, α1, α2). (4.19)

Applying inverse HMF on (4.19), we get

[y(t)]λ = [ inf
λ≤α≤1

min
α1,α2

ygr (t, α, α1, α2), sup
λ≤α≤1

max
α1,α2

ygr (t, α, α1, α2)],

[z(t)]λ = [ inf
λ≤α≤1

min
α1,α2

zgr (t, α, α1, α2), sup
λ≤α≤1

max
α1,α2

zgr (t, α, α1, α2)].

The λ-level sets solution is enumerated using MATLAB and is illustrated in Figure 6

(a) λ-level sets of y(t). (b) λ-level sets of z(t).

Figure 6. The black curve gives the solution at λ = 1 for the system (4.13) and (4.14).

Example 4.4. (Three springs-two mass systems with external fuzzy force) Three springs supporting

two masses on both sides and one another is depicts in Figure 7. Assume that there is no friction as

the masses move and that each spring abides by Hooke’s law. Let f (t) be the fuzzy force applying on

massM1 at time t ≥ 0. If all the two masses rightward displacements (from their individual equilibrium

positions) are positive, then
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(i) The first spring is extended by y(t).

(ii) The second spring is extended by z(t)	 y(t).
(iii) The third spring is compressed by z(t).

The motion equations for the two masses are generated as follows:

M1 � y ′′gr (t) = −s1 � y(t)⊕ s2 � (z(t)	 y(t)) + f (t),

M2 � z ′′gr (t) = −s2 � (z(t)	 y(t))− s3 � z(t),

with fuzzy initial values, y(0) = y0, z(0) = z0, y ′gr (0) = y
′
0, z

′
gr (0) = z

′
0.

Figure 7. Three springs-two masses systems.

The matrix form of system of equations is[
y ′′gr (t)

z ′′gr (t)

]
=

[
s1 s2

s3 s4

]
⊗

[
y(t)

z(t)

]
⊕

[
p cos(10t)

0

]
, (4.20)

subject to,

[
y(0)

z(0)

]
=

[
y0

z0

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
y ′0

z ′0

]
, (4.21)

where λ-cut set of coefficients and initial values are s1 = −3, s2 = 1, s3 = 1, s4 = −3, y0 = 1, z0 = 1,
[y ′0]

λ = [λ, 2−λ], [z ′0]λ = [p]λ = [1+λ, 3−λ]. Taking HMF on both sides of (4.20) and (4.21), we

have [
∂2ygr (t,λ,αy )

∂t2

∂2zgr (t,λ,αz )
∂t2

]
=

[
−3 1

1 −3

][
ygr (t, λ, αy )

zgr (t, λ, αz)

]
+

[
pgr (λ,α2) cos(10t)

0

]
, (4.22)

subject to,

[
ygr (0)

zgr (0)

]
=

[
y0gr

z0gr

]
and

[
y ′gr (t0)

z ′gr (t0)

]
=

[
y ′0gr

z ′0gr

]
, (4.23)

where pgr (λ,α2) = [1 + λ + 2(1 − λ)α2], y ′0gr (λ,α1) = [λ + 2(1 − λ)α1], z ′0gr (λ,α2) =

[1 + λ+ 2(1− λ)α1], where λ, α1 α2 ∈ [0, 1].
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=⇒

[
∂2ygr (t,λ,α1,α2)

∂t2

∂2zgr (t,λ,α1,α2)
∂t2

]
=

[
−3 1

1 −3

][
ygr (t, λ, α1, α2)

zgr (t, λ, α1, α2)

]
+

[
[1 + λ+ 2(1− λ)α2] cos(10t)

0

]
, (4.24)

with

[
ygr (0)

zgr (0)

]
=

[
1

1

]
and

[
y ′gr (0)

z ′gr (0)

]
=

[
λ+ 2(1− λ)α1
1 + λ+ 2(1− λ)α2

]
. (4.25)

The solution for system of equations (4.24) and (4.25) is

ygr (t, λ, α1, α2) and zgr (t, λ, α1, α2). (4.26)

Applying inverse HMF on (4.26), we get

[y(t)]λ = [ inf
λ≤α≤1

min
α1,α2

ygr (t, α, α1, α2), sup
λ≤α≤1

max
α1,α2

ygr (t, α, α1, α2)],

[z(t)]λ = [ inf
λ≤α≤1

min
α1,α2

zgr (t, α, α1, α2), sup
λ≤α≤1

max
α1,α2

zgr (t, α, α1, α2)].

The λ-level sets solution is enumerated using MATLAB and is illustrated in Figure 8

(a) λ-level sets of y(t). (b) λ-level sets of z(t).

Figure 8. The black curve gives the solution at λ = 1 for the system (4.20) and (4.21).

5. Conclusions

This paper mainly deals with determining solutions of SSLFDEs and applications to some me-

chanical problems. The granular differentiability is extended to n-dimensional fuzzy valued functions.

The SSLFDEs with fuzzy initial conditions are investigated under gr-differentiability. An algorithm

is developed to determine the solutions of SSLFDEs with fuzzy initial conditions. Some mechanical
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problems as automobiles with two axles, railway cars systems, and mass-spring systems with fuzzy

initial conditions are demonstrated for the effective implementation of the algorithm. In the future,

this work will be extended for higher-order SFDEs with fuzzy initial and boundary conditions.
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