International Journal of Analysis and Applications

 InternationalJourral of
naly sis Journal of Analysis
and Applications

On Quasi-ideals and Bi-ideals in AG-Rings

Tanaphong Prommai ${ }^{1}$, Thiti Gaketem ${ }^{2, *}$
${ }^{1}$ Department of Mathematics School of Science, University of Phayao, Phayao 56000, Thailand
${ }^{2}$ Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics School of Science, University of Phayao, Phayao 56000, Thailand
* Corresponding author: thiti.ga@up.ac.th

Abstract. In this paper we study some properties of quasi-ideals and bi-ideals in AG-ring and study some interesting properties of these ideals.

1. Introduction

M.A. Kazim and MD. Naseeruddin [2] have introduced the concept of an AG-groupoid.

Definition 1.1. A groupoid G is called a left almost semigroup (abbreviated as a $L A$-semigroup) if its elements satisfy the left invertive law:

$$
(a b) c=(c b) a \text { for all } a, b, c \in G .
$$

It is also called an Abel-Grassmann's groupoid (abbreviated as AG-groupoid).
Moreover every AG-groupoids G have a medial law hold

$$
(a \cdot b) \cdot(c \cdot d)=(a \cdot c) \cdot(b \cdot d), \quad \forall a, b, c, d \in G .
$$

Q. Mushtaq and M. Khan [4, p.322] asserted that, in every AG-groupoids G with left identity

$$
(a \cdot b) \cdot(c \cdot d)=(d \cdot c) \cdot(b \cdot a), \quad \forall a, b, c, d \in G .
$$

Received: Mar. 14, 2023.
2020 Mathematics Subject Classification. 16Y30, 16Y99.
Key words and phrases. ideal; bi-ideal; quasi-ideal.

Further M. Khan, Faisal, and V. Amjid [3], asserted that, if a AG-groupoid G with left identity the following law holds

$$
a \cdot(b \cdot c)=b \cdot(a \cdot c), \quad \forall a, b, c \in G .
$$

M. Sarwar (Kamran) [5, p.112] defined AG-group as the following.

Definition 1.2. A groupoid G is called an Abel-Grassmann's group, abbreviated as AG-group, if
(1) there exists $e \in G$ such that ea $=$ a for all $a \in G$,
(2) for every $a \in G$ there exists $a^{\prime} \in G$ such that, $a^{\prime} a=e$,
(3) $(a b) c=(c b) a$ for every $a, b, c \in G$.
S.M. Yusuf in [11, p.211] introduces the concept of an Abel-Grassmann's ring (AG-ring).

Definition 1.3. An algebraic system $\langle R,+, \cdot\rangle$ is called a Abel-Grassmann's ring (AG-ring) if
(1) $\langle R,+\rangle$ is an $A G$-group,
(2) $\langle R, \cdot\rangle$ is an $A G$-groupoid,
(3) $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$, for all $a, b, c \in R$.

Lemma 1.1. In an $A G$-ring R,

$$
\begin{equation*}
(a b)(c d)=(a c)(b d) \tag{1.1}
\end{equation*}
$$

for all $a, b, c, d \in R$.
Equation (1.1) is called a medial law in the AG-ring R.
Lemma 1.2. If an $A G$-ring R has a left identity 1 , then

$$
a(b c)=b(a c)
$$

for all $a, b, c \in R$.
Lemma 1.3. If an $A G$-ring R has a left identity 1 , then

$$
\begin{equation*}
(a b)(c d)=(d c)(b a) \tag{1.2}
\end{equation*}
$$

for all $a, b, c, d \in R$.
Equation (1.2) is called a paramedial law in the AG-ring R. Now we have the following property. T. Shah and I. Rehman [11, p.211] asserted that a commutative ring $\langle R,+, \cdot\rangle$, we can always obtain an AG-ring $\langle R, \oplus, \cdot\rangle$ by defining, for $a, b, c \in R, a \oplus b=b-a$ and $a \cdot b$ is same as in the ring. We can not assume the addition to be commutative in an AG-ring.

Definition 1.4. Let $\langle R,+, \cdot\rangle$ be an $L A$-ring and S be a non-empty subset of R and S is itself and AG-ring under the binary operation induced by R, the S is called an AG-subring of R, then S is called an $L A$-subring of $\langle R,+, \cdot\rangle$.

Definition 1.5. If S is an $A G$-subring of an $L A$-ring $\langle R,+, \cdot\rangle$, then S is called a left ideal of R if $R S \subseteq S$. Right and two-sided ideals are defined in the usual manner.

Lemma 1.4. If an $A G$-ring R has a left identity 1 , then every right ideal is a left ideal.
Proof. Let R be an AG-ring with left identity 1 and A is a right ideal of R. Then for $a \in A, r \in R$, we have

$$
r a=(1 r) a=(a r) 1 \in(A R) R \subseteq A R \subseteq A,
$$

where 1 is a left identity, that is $r a \in A$. Therefore A is left ideal of R.

2. Main Results

Definition 2.1. Let R be an $A G$-ring and Q be a non-empty subset of R. Then Q is said to be a quasi-ideal of R if Q is a $A G$-subgroup of $(R,+)$ such that $R Q \cap Q R \subseteq Q$.

Theorem 2.1. Every one-sided ideal or two-sided ideal of an-AG-ring R is a quasi-ideal of R.
Proof. Let L be a left ideal of an AG-ring R. Then

$$
L R \cap R L \subseteq L L \subseteq L
$$

Thus L is a quasi-ideal of an AG-ring R. Similarly let $/$ be a right ideal of R then

$$
I R \cap R I \subseteq I I \subseteq I
$$

Thus $/$ is a quasi-ideal of an AG-ring R.
Theorem 2.2. Let R be an $A G$-ring. Then the intersection of left ideal L and a right ideal of I of R is a quasi-ideal of R.

Proof. Let L be a left ideal and I be a right ideal of R. Then $L \cap /$ is a AG-subgroup of $(R,+)$. Thus

$$
R(L \cap I) \cap(L \cap I) R \subseteq R L \cap I R \subseteq L \cap I .
$$

Therefore the intersection of left ideal L and a right ideal of I of R is a quasi-ideal of R.
Theorem 2.3. Arbitrary intersection of quasi-ideal of an $A G$-ring R is a quasi-ideal of R.

Proof. Let $T:=\bigcap_{i \in \Delta}\left\{Q_{i} \mid Q_{i}\right.$ is a quasi-ideal of $\left.R\right\}$, where Δ denotes any indexing set, be a nonempty set. Then T is a AG-subgroup of $(R,+)$. Now

$$
R T \cap T R=R\left(\bigcap_{i \in \Delta} Q_{1}\right) \cap\left(\bigcap_{i \in \Delta} Q_{1}\right) R \subseteq R Q_{i} \cap Q_{i} R \subseteq Q_{i},
$$

for all $i \in \Delta$. So we see that $R T \cap T R \subseteq \bigcap_{i \in \Delta} Q_{i}=T$. This proof complete.
Definition 2.2. An element e of an $A G$-ring R is a said idempotent element if $e^{2}=e e=e$.

Theorem 2.4. Let R be an $A G$-ring in which every quasi-ideal is idempotent. Then for left ideal L and right ideal I such that $I L=I \cap L \subseteq L I$ is true.

Proof. Let P and Q be two quasi-ideal in R then $P \cap Q$ is also a quasi-ideal. By the idempotent of $P \cap Q$ we have

$$
P \cap Q=(P \cap Q)(P \cap Q)(P Q) \cap(Q P)
$$

on other hand

$$
(P Q) \cap(Q P) \subseteq(P R) \cap(R P) \subseteq P
$$

Similarly $(P Q) \cap(Q P) \subseteq Q$ and so $P \cap Q=(P Q) \cap(Q P)$.
Since left and right ideal are always AG-subgroup we have $I \cap L=(I L) \cap(L I)$ but $(I L) \subseteq(R \cap L)$ and so $I L=I \cap L \subseteq L I$. This proof complete.

Intersection of a quasi-ideal and AG-subring of R is a quasi-ideal of an AG-subring of R. We can prove this in the following theorem.

Theorem 2.5. Let R be an $A G$-ring. If Q is a quasi-ideal and T is an $A G$-subring of R, then $Q \cap T$ is a quasi-ideal of T.

Proof. Let Q is a quasi-ideal and T is an AG-subring of R. Then $Q \cap T$ is a AG-subgroup of $(R,+)$. Since $Q \cap T \subseteq T$ we have $Q \cap T$ is a AG-subgroup of $(T,+)$. Then

$$
T(Q \cap T) \cap(Q \cap T) T \subseteq T Q \cap Q T \subseteq R Q \cap Q R \subseteq Q
$$

and

$$
T(Q \cap T) \cap(Q \cap T) T \subseteq T T \cap T T \subseteq T \cap T=T
$$

It follows that $T(Q \cap T) \cap(Q \cap T) T \subseteq Q \cap T$. Hence $Q \cap T$ is a quasi-ideal of T.
Definition 2.3. Let R be an $A G$-ring. An additive $A G$-subgroup B of R is called a bi-ideal of R if $(B R) B \subseteq B$.

Lemma 2.1. Every left (right) ideal of an $A G$-ring R is a bi-ideal of R.
Proof. Let L be a left ideal of R. Then A is an additive AG-subgroup of R. Thus $(L R) L \subseteq(R R) L \subseteq$ $R L \subseteq L$. This implies that L is a bi-ideal of R. Let $/$ be a right ideal of R. Then $/$ is an additive AG-subgroup of R. Thus $(I R) I \subseteq I I \subseteq I R \subseteq I$. This implies $/$ is a bi-ideal of R.

Corollary 2.1. Every ideal of a $\Gamma-A G$-ring R is a bi-ideal of R.
Lemma 2.2. Let B be an idempotent bi-ideal of a Γ - $A G$-ring R with left identity 1 . Then B is an ideal of R.

Proof. Let B be an idempotent bi-ideal of a Γ-AG-ring R. Then B is an additive $A G-s u b g r o u p$ of R. Thus

$$
B R=(B B) R=(R B) B=(R(B B)) B
$$

By Lemma 1.2 so

$$
(R(B B)) B=((B B) R) B=(B R) B \subseteq B
$$

Which implies that B is a right ideal. By Lemma 1.4 so it is left ideal of R. Hence B is an ideal of R.

Theorem 2.6. The product of two bi-ideals of an $A G$-ring R with left identity 1 is again a bi-ideal of R.

Proof. Let H and K be two bi-ideals of R. Then H and K are additive AG-subgroup of R. Thus using medial and $R R=R$, we get

$$
\begin{aligned}
{[(H K) R](H K) } & =[(H K)(R R)](H K), \quad \\
& =[(H R)(K R)](H K), \quad \text { by medial } \\
& =[(H R) H][(K R) K], \quad H, K \text { is a bi-ideal of } R \\
& \subseteq H K .
\end{aligned}
$$

Hence $H K$ is a bi-ideal of R.

Theorem 2.7. Let B be a bi-ideal of an $A G$-ring R and A be a left ideal of R with left identity 1 , then $B A$ is a bi-ideal of R.

Proof. Since A is a left ideal of R and B is a bi-ideal of an $A G$-ring R, we have $B A$ is an additive AG-subgroup of R. Thus

$$
\begin{aligned}
{[(B A) R](B A) } & =[(R A) B](B A)=[(B A) B](R A) \\
& \subseteq[(B R) B] A, \quad B \text { is a bi-ideal of } R \\
& \subseteq B A .
\end{aligned}
$$

It following that $B A$ is a bi-ideal of R.

Theorem 2.8. Let B be a bi-ideal of an $A G-r i n g ~ R$ and A be a right ideal of R with left identity 1. If $A \subseteq B$ and $B B \subseteq B$, then $A B$ is a bi-ideal of R.

Proof. Since A is a right ideal of R and B is a bi-ideal of an AG-ring R, we have $A B$ is an additive AG-subgroup of R. Let $A \subseteq B$ and $B B \subseteq B$. Then using Lemma 1.1, we get

$$
\begin{aligned}
{[(A B) R](A B) } & =[(R B) A](A B)=[(A B) A](R B) \\
& \subseteq[(A R) A](R B), \quad B \subseteq R \\
& \subseteq(A A)(R B), \quad A \text { is a right ideal of } R \\
& =(A R)(A B), \quad \text { by } \Gamma \text {-medial } \\
& \subseteq A(A B), \quad A \text { is a right ideal of } R \\
& \subseteq A(B B), \quad A \subseteq B \\
& \subseteq A B, \quad B B \subseteq B
\end{aligned}
$$

It follows that $A B$ is a bi-ideal of R.

Theorem 2.9. Let R be an $A G$-ring and A, B be bi-ideals of an $A G$-ring R. Then $A \cap B$ is a bi-ideal of R.

Proof. Since A, B is bi-ideals of an AG-ring R, we have $A \cap B$ is an additive AG-subgroup of R. Thus $[(A \cap B) R](A \cap B) \subseteq(A R)(A \cap B)=[(A \cap B) R] A \subseteq(A R) A \subseteq A$ and $[(A \cap B) R](A \cap B) \subseteq$ $(B R)(A \cap B)=[(A \cap B) R] B \subseteq(B R) B \subseteq B$. It following that $A \cap B$ is a bi-ideal of R.

Corollary 2.2. Let R be a Γ - $A G$-ring and H_{i} is a bi-ideal of R, for all $i \in I$. Then $\bigcap_{i \in 1} H_{i}$ is a bi-ideal of R.

Proof. Since $0 \in H_{i}$ for all $i \in I$, we have $0 \in \bigcap_{i} H_{i}$. Then $\bigcap_{i} H_{i} \neq \emptyset$. Since H_{i} is a bi-ideal of R, we have H_{i} is an additive AG-subgroup of R Let $x, y \in H_{i}$ then $x-y \in H_{i}$. Thus $x-y \in \bigcap_{i} H_{i}$. Let $x, y \in \bigcap_{i} H_{i}, r \in R$. Then $(x r) y \in\left(H_{i} R\right) H_{i} \subseteq H_{i}$ for all $i \in I$ Thus $(x r) y \in H_{i}$. Hence $\bigcap_{i \in I} H_{i}$ is a bi-ideal of R.

Theorem 2.10. Let I and L be respectively right and left $A G$-subgroup of R. Then any $A G$-subgroup B of R such that $I L \subseteq B \subseteq I \cap L$ is a bi-ideal of R.

Proof. Since B is a AG-subgroup of $(R,+)$ with $I L \subseteq B \subseteq I \cap L$ we have

$$
\begin{aligned}
(B R) B & \subseteq((I \cap L) R)(I \cap L), & & \text { by } B \subseteq I \cap L \\
& \subseteq(I R) L, & & \text { by } S \subseteq I \cap L \text { and } L \subseteq I \cap L \\
& \subseteq I L, & & \text { by } I \text { is a right ideal of } R \\
& \subseteq B, & & \text { by } I L \subseteq B .
\end{aligned}
$$

Then B is a bi-ideal of R.

Corollary 2.3. Intersection of an arbitrary set of bi-ideal $B_{\lambda} \quad(\lambda \in \wedge)$ of an $A G$-ring R is again a bi-ideal of R.

Proof. Set $B:=\bigcap_{\lambda \in \wedge} B_{\lambda}$. Since B is an AG-subgroup of R. From the inclusion $\left(B_{\lambda} R\right) B_{\lambda} \subseteq B_{\lambda}$ and $B \subseteq B_{\lambda}$. This implies that

$$
(B R) B \subseteq\left(B_{\lambda} R\right) B_{\lambda} \subseteq B_{\lambda} \quad(\forall \lambda \in \wedge)
$$

Hence $(B R) B \subseteq B$.
Theorem 2.11. Every idempotent quasi-ideal is a bi-ideal.
Proof. Let Q be an idempotent quasi-ideal of Γ - AG-ring R. Then

$$
(Q R) Q \subseteq(R R) Q \subseteq R Q
$$

and by Lemma 1.2

$$
\begin{aligned}
(Q R) Q & \subseteq(Q R) \Gamma(Q Q)=(Q Q)(R Q) \\
& \subseteq Q(R Q) \subseteq Q(R R) \subseteq Q R
\end{aligned}
$$

which implies that $(Q R) Q \subseteq Q R \cap R Q \subseteq Q$.
Definition 2.4. An AG-ring R is called a regular AG-ring if for any $x \in R$ there exists $y \in R$ such that $x=(x y) x$.

Theorem 2.12. Let R be a regular of an $A G$-ring and B be a bi-ideal of R. Then $(B R) B=B$.
Proof. Since B is a bi-ideal of R we have $(B R) B \subseteq B$. Let $x \in B$ then there exist $a \in R$ such that $x=(x a) x \in(B R) B$, since R is a regular of an AG-ring. This implies that $B \subseteq(B R) B$ so $(B R) B=B$.

Theorem 2.13. For a quasi-ideal Q in a regular $A G$-ring R, then $Q R \cap R Q=Q$.
Proof. Let Q be a quasi-ideal in R then $Q R \cap R Q \subseteq Q$. Let $x \in Q$ then there exist $a \in R$ such that $x=(x a) x$, since R is a regular of a AG-ring. So

$$
x=(x a) x \in(Q R) Q \subseteq Q R
$$

and

$$
x=(x a) x \in(Q R) Q \subseteq(R R) Q \subseteq R Q
$$

Then $x \in Q R \cap R Q$. Thus $Q \subseteq Q R \cap R Q$. Hence $Q R \cap R Q=Q$.
Acknowledgements: This research project was supported by the thailand science research and innovation fund and the Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

［1］N．Nobusawa，On Generalization of the Ring Theory，Osaka J．Math． 1 （1964），81－89．
［2］M．A．Kazim，Md．Naseeruddin，On Almost Semigroup，Portugaliae Math． 36 （1977），41－47．
［3］M．Khan，Faisal，V．Amjid，On Some Classes of Abel－Grassmann＇s Groupoids，arXiv：1010．5965，（2010）．https ： ／／doi．org／10．48550／ARXIV．1010．5965．
［4］Q．Mushtaq，M．Khan，M－System in LA－Semigroups，Southeast Asian Bull．Math． 33 （2009），321－327．
［5］M．Sarwar（Kamran），Conditions for LA－Semigroup to Resemble Associative Structures，PhD Thesis，Quaid－i－Azam University， 1993.
［6］T．Shah，I．Rehman，On 「－Ideal and 「－Bi－Ideals in 「－AG－Groupoids，Int．J．Algebra． 4 （2010），267－276．
［7］T．Shah，I．Rehman，On LA－Rings of Finitely Nonzero Function，Int．J．Contemp．Math．Sci． 5 （2010），209－222．
［8］W．E．Banes，On the 「－Ring of Nobusawa，Pac．J．Math． 18 （1996），411－422．https：／／doi．org／10．2140／pjm． 1966．18．411．
［9］G．Pilz，Near－Rings，North Holland，Amsterdam， 1997.
［10］T．Shah，F．ur Rehman，M．Raees，On Near Left Almost Rings，Int．Math．Forum， 6 （2011），1103－1111．
［11］T．Shah，I．Rehman，On LA－Rings of Finitely Nonzero Function，Int．J．Contemp．Math．Sci． 5 （2010），209－222．

