INEQUALITIES FOR CO-ORDINATED m-CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

ÇETİN YILDIZ ${ }^{1, *}$, MEVLÜT TUNÇ ${ }^{2}$, AND HAVVA KAVURMACI ${ }^{1}$

Abstract. In this paper, we prove some new inequalities of Hadamard-type for m-convex functions on the co-ordinates via Riemann-Liouville fractional integrals.

1. INTRODUCTION

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function defined on the interval I of real numbers and $a<b$. The following double inequality;

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

is well known in the literature as Hadamard's inequality. Both inequalities hold in the reversed direction if f is concave.

In [7], Dragomir defined convex functions on the co-ordinates as following:
Definition 1. Let us consider the bidimensional interval $\Delta=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b, c<d$. A function $f: \Delta \rightarrow \mathbb{R}$ will be called convex on the coordinates if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}$, $f_{x}(v)=f(x, v)$ are convex where defined for all $y \in[c, d]$ and $x \in[a, b]$. Recall that the mapping $f: \Delta \rightarrow \mathbb{R}$ is convex on Δ if the following inequality holds,

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w)
$$

for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
In [7], Dragomir established the following inequalities of Hadamard's type for co-ordinated convex functions on a rectangle from the plane \mathbb{R}^{2}.

[^0]Theorem 1. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ. Then one has the inequalities;

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{1.1}\\
\leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \\
\leq & \frac{1}{4}\left[\frac{1}{(b-a)} \int_{a}^{b} f(x, c) d x+\frac{1}{(b-a)} \int_{a}^{b} f(x, d) d x\right. \\
& \left.+\frac{1}{(d-c)} \int_{c}^{d} f(a, y) d y+\frac{1}{(d-c)} \int_{c}^{d} f(b, y) d y\right] \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{align*}
$$

The above inequalities are sharp.
Similar results can be found in [7]-[12].
In [17], Toader defined m-convex functions as following:
Definition 2. The function $f:[0, b] \rightarrow \mathbb{R}, b>0$ is said to be m-convex, where $m \in[0,1]$, if we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

for all $x, y \in[0, b]$ and $t \in[0,1]$.
Denote by $K_{m}(b)$ the class of all m-convex functions on $[0, b]$ for which $f(0) \leq 0$. Obviously, if we choose $m=1$, we have ordinary convex functions on $[0, b]$.

In [10], Özdemir et al. defined co-ordinated m-convex functions as following:
Definition 3. Let us consider the bidimensional interval $\Delta=[0, b] \times[0, d]$ in $[0, \infty)^{2}$. The mapping $f: \Delta \rightarrow \mathbb{R}$ is m-convex on Δ if

$$
f(t x+(1-t) z, t y+m(1-t) w) \leq t f(x, y)+m(1-t) f(z, w)
$$

holds for all $(x, y),(z, w) \in \Delta$ and $t \in[0,1], b, d>0$ and for some fixed $m \in[0,1]$.
In [16], Sarıkaya et al. proved some Hadamard's type inequalities for co-ordinated convex functions as followings:
Theorem 2. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ is a convex function on the co-ordinates on Δ, then one has the inequalities:

$$
\begin{align*}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y-A\right| \tag{1.2}\\
\leq & \frac{(b-a)(d-c)}{16}\left(\frac{\left|\frac{\partial^{2} f}{\partial t \partial s}\right|(a, c)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|(a, d)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|(b, c)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|(b, d)}{4}\right)
\end{align*}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{(b-a)} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{(d-c)} \int_{c}^{d}[f(a, y) d y+f(b, y)] d y\right]
$$

Theorem 3. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q>1$, is a convex function on the co-ordinates on Δ, then one has the inequalities:

$$
\begin{align*}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y-A\right| \tag{1.3}\\
\leq & \frac{(b-a)(d-c)}{4(p+1)^{\frac{2}{p}}}\left(\frac{\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(a, c)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(a, d)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(b, c)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(b, d)}{4}\right)^{\frac{1}{q}}
\end{align*}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{(b-a)} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{(d-c)} \int_{c}^{d}[f(a, y) d y+f(b, y)] d y\right]
$$

and $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 4. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q \geq 1$, is a convex function on the co-ordinates on Δ, then one has the inequalities:

$$
\begin{align*}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y-A\right| \tag{1.4}\\
\leq & \frac{(b-a)(d-c)}{16}\left(\frac{\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(a, c)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(a, d)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(b, c)+\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}(b, d)}{4}\right)^{\frac{1}{q}}
\end{align*}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{(b-a)} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{(d-c)} \int_{c}^{d}[f(a, y) d y+f(b, y)] d y\right]
$$

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.
Definition 4. Let $f \in L_{1}[a, b]$. The Riemann-Liouville integrals $J_{a^{+}}^{\alpha} f$ and $J_{b^{-}}^{\alpha} f$ of order $\alpha>0$ with $a \geq 0$ are defined by

$$
J_{a^{+}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, \quad x>a
$$

and

$$
J_{b^{-}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, \quad x<b
$$

where $\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} u^{\alpha-1} d u$, here is $J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.

In the case of $\alpha=1$, the fractional integral reduces to the classical integral. Properties of this operator can be found in the references [3]-[?].

Throughout of this paper, we will use the following notation:

$$
\begin{aligned}
B= & \frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{4(b-a)^{\alpha}(d-c)^{\beta}}\left[J_{b^{-}, d^{-}}^{\alpha, \beta} f(a, c)+J_{a^{+}, d^{-}}^{\alpha, \beta} f(b, c)+J_{b^{-}, c^{+}}^{\alpha, \beta} f(a, d)+J_{a^{+}, c^{+}}^{\alpha, \beta} f(b, d)\right] \\
& -\frac{\Gamma(\beta+1)}{4(d-c)^{\beta}}\left[J_{d^{-}}^{\beta} f(a, c)+J_{d^{-}}^{\beta} f(b, c)+J_{c^{+}}^{\beta} f(b, d)+J_{c^{+}}^{\beta} f(a, d)\right] \\
& -\frac{\Gamma(\alpha+1)}{4(b-a)^{\alpha}}\left[J_{b^{-}}^{\alpha} f(a, d)+J_{b^{-}}^{\alpha} f(a, c)+J_{a^{+}}^{\alpha} f(b, d)+J_{a^{+}}^{\alpha} f(b, c)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
J_{b^{-}, d^{-}}^{\alpha, \beta} f(a, c) & =\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(x-a)^{\alpha-1}(y-c)^{\beta-1} f(x, y) d y d x \\
J_{a^{+}, d^{-}}^{\alpha, \beta} f(b, c) & =\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(x-a)^{\alpha-1}(d-y)^{\beta-1} f(x, y) d y d x \\
J_{b^{-}, c^{+}}^{\alpha, \beta} f(a, d) & =\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(b-x)^{\alpha-1}(y-c)^{\beta-1} f(x, y) d y d x \\
J_{a^{+}, c^{+}}^{\alpha, \beta} f(b, d) & =\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(b-x)^{\alpha-1}(d-y)^{\beta-1} f(x, y) d y d x .
\end{aligned}
$$

The main purpose of this paper is to establish inequalities of Hadamard-type inequalities for m-convex functions on the co-ordinates via Riemann-Liouville fractional integrals by using a new Lemma and fairly elemantery analysis.

2. MAIN RESULTS

To prove our main result, we need the following Lemma:
Lemma 1. Let $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ be a twice partial differentiable mapping on $\Delta=[a, b] \times[c, d]$. If $\frac{\partial^{2} f}{\partial t \partial s} \in L(\Delta)$ and $\alpha, \beta>0, a, c \geq 0$, then the following equality holds:

$$
\begin{align*}
& \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B \tag{2.1}\\
= & \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1}\left[(1-t)^{\alpha}-t^{\alpha}\right]\left[(1-s)^{\beta}-s^{\beta}\right] \frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d) d s d t .
\end{align*}
$$

Proof. Integration by parts, we can write

$$
\begin{aligned}
& K=\int_{0}^{1} \int_{0}^{1}\left[(1-t)^{\alpha}-t^{\alpha}\right]\left[(1-s)^{\beta}-s^{\beta}\right] \frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d) d s d t \\
&= \int_{0}^{1}\left[(1-s)^{\beta}-s^{\beta}\right]\left[\int_{0}^{1}(1-t)^{\alpha} \frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d) d t\right. \\
&\left.-\int_{0}^{1} t^{\alpha} \frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d) d t\right] d s \\
&= \frac{1}{b-a}\left\{\int _ { 0 } ^ { 1 } [(1 - s) ^ { \beta } - s ^ { \beta }] \left[\frac{\partial f}{\partial s}(b, s c+(1-s) d)+\frac{\partial f}{\partial s}(a, s c+(1-s) d)\right.\right. \\
&-\alpha \int_{0}^{1}(1-t)^{\alpha-1} \frac{\partial f}{\partial s}(t a+(1-t) b, s c+(1-s) d) d t \\
&\left.\left.-\alpha \int_{0}^{1} t^{\alpha-1} \frac{\partial f}{\partial s}(t a+(1-t) b, s c+(1-s) d) d t\right] d s\right\}
\end{aligned}
$$

By integrating again, we get

$$
\begin{aligned}
& K=\frac{1}{(b-a)(d-c)}\{f(a, c)+f(a, d)+f(b, c)+f(b, d) \\
& -\beta \int_{0}^{1}(1-s)^{\beta-1} f(b, s c+(1-s) d) d s-\beta \int_{0}^{1} s^{\beta-1} f(a, s c+(1-s) d) d s \\
& -\beta \int_{0}^{1}(1-s)^{\beta-1} f(a, s c+(1-s) d) d s-\beta \int_{0}^{1} s^{\beta-1} f(b, s c+(1-s) d) d s \\
& -\alpha \int_{0}^{1}(1-t)^{\alpha-1} f(t a+(1-t) b, d) d t-\alpha \int_{0}^{1} t^{\alpha-1} f(t a+(1-t) b, d) d t \\
& -\alpha \int_{0}^{1}(1-t)^{\alpha-1} f(t a+(1-t) b, c) d t-\alpha \int_{0}^{1} t^{\alpha-1} f(t a+(1-t) b, c) d t \\
& +\alpha \beta \int_{0}^{1} \int_{0}^{1}(1-t)^{\alpha-1}(1-s)^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t \\
& +\alpha \beta \int_{0}^{1} \int_{0}^{1} t^{\alpha-1}(1-s)^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t
\end{aligned}
$$

$$
\begin{aligned}
& +\alpha \beta \int_{0}^{1} \int_{0}^{1}(1-t)^{\alpha-1} s^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t \\
& \left.+\alpha \beta \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t\right\}
\end{aligned}
$$

By using the change of the variables, we can get

$$
x=t a+(1-t) b \text { and } y=s c+(1-s) d
$$

that is

$$
t=\frac{x-b}{a-b} \text { and } s=\frac{y-d}{c-d} .
$$

Taking into account these equalities, we obtain

$$
\left.\begin{array}{rl}
K=\frac{1}{(b-a)(d-c)}\{f(a, c)+f(a, d)+f(b, c)+f(b, d) \\
-\frac{\beta}{(d-c)^{\beta-1}}\left[\int_{c}^{d}(y-c)^{\beta-1} f(a, y) d y+\int_{c}^{d}(d-y)^{\beta-1} f(a, y) d y\right. \\
& \left.+\int_{c}^{d}(y-c)^{\beta-1} f(b, y) d y+\int_{c}^{d}(d-y)^{\beta-1} f(b, y) d y\right] \\
-\frac{\alpha}{(b-a)^{\alpha-1}}\left[\int_{a}^{b}(x-a)^{\alpha-1} f(x, d) d x+\int_{a}^{b}(x-a)^{\alpha-1} f(x, c) d x\right. \\
& \left.+\int_{a}^{b}(b-x)^{\alpha-1} f(x, d) d x+\int_{a}^{b}(b-x)^{\alpha-1} f(x, c) d x\right]+\frac{\alpha \beta}{(b-a)^{\alpha-1}(d-c)^{\beta-1}} \\
\times & {\left[\int_{a}^{b} \int_{c}^{d}(x-a)^{\alpha-1}(y-c)^{\beta-1} f(x, y) d y d x+\int_{a}^{b} \int_{c}^{d}(x-a)^{\alpha-1}(d-y)^{\beta-1} f(x, y) d y d x\right.}
\end{array}\right] .
$$

Multiplying both sides of (2.2) by $\frac{(b-a)(d-c)}{4}$ and using the Riemann-Liouville integrals, we obtain equality (2.1). This completes the proof.

Theorem 5. Let $f: \Delta=[0, b] \times[0, d] \rightarrow \mathbb{R}$ be a partial differentiable mapping on Δ and $\frac{\partial^{2} f}{\partial t \partial s} \in L(\Delta), \alpha, \beta>0$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ is m-convex function on the co-ordinates
on Δ where $0 \leq a<b<\infty$ and $0 \leq c<d<\infty$, then the following inequality holds;

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4} M_{\alpha} M_{\beta} \\
& \times\left(\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|+\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{\alpha}=\left[\frac{1}{\alpha+1}-\frac{\left(\frac{1}{2}\right)^{\alpha}}{\alpha+1}\right] \\
& M_{\beta}=\left[\frac{1}{\beta+1}-\frac{\left(\frac{1}{2}\right)^{\beta}}{\beta+1}\right] .
\end{aligned}
$$

Proof. From Lemma 1 and using the property of modulus, we have

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1}\left|(1-t)^{\alpha}-t^{\alpha}\right|\left|(1-s)^{\beta}-s^{\beta}\right|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right| d s d t
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ is co-ordinated m-convex, we can write

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1}\left|(1-s)^{\beta}-s^{\beta}\right|\left|(1-t)^{\alpha}-t^{\alpha}\right|\left\{t s\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|+m t(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|\right. \\
& \left.+(1-t) s\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|+m(1-t)(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|\right\} d t d s
\end{aligned}
$$

By computing these integrals, we obtain

$$
\begin{aligned}
&\left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
& \leq \frac{(b-a)(d-c)}{4}\left[\frac{1}{\alpha+1}-\frac{\left(\frac{1}{2}\right)^{\alpha}}{\alpha+1}\right] \\
& \times \int_{0}^{1}\left|(1-s)^{\beta}-s^{\beta}\right|\left(s\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|+m(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|\right. \\
&\left.\quad+s\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|+m(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|\right) d s
\end{aligned}
$$

Using co-ordinated m-convexity of $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ again, we get

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4}\left[\frac{1}{\alpha+1}-\frac{\left(\frac{1}{2}\right)^{\alpha}}{\alpha+1}\right]\left[\frac{1}{\beta+1}-\frac{\left(\frac{1}{2}\right)^{\beta}}{\beta+1}\right] \\
& \times\left(\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|+\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|\right)
\end{aligned}
$$

Thus, the proof is completed.
Remark 1. Suppose that all the assumptions of Theorem 5 are satisfied. If we choose $\alpha=\beta=m=1$, we obtain the inequality (1.2).

Theorem 6. Let $f: \Delta \rightarrow \mathbb{R}$ be a partial differentiable mapping on Δ and $\frac{\partial^{2} f}{\partial t \partial s} \in$ $L(\Delta), \alpha, \beta \in(0,1]$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q>1$, is m-convex function on the co-ordinates on Δ where $0 \leq a<b<\infty$ and $0 \leq c<d<\infty$, then the following inequality holds;

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4(\alpha p+1)^{\frac{1}{p}}(\beta p+1)^{\frac{1}{p}}} \\
& \times\left(\frac{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q}+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|^{q}+\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q}+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|^{q}}{4}\right)^{\frac{1}{q}} .
\end{aligned}
$$

where $p^{-1}+q^{-1}=1$.
Proof. From Lemma 1 and by applying the well-known Hölder inequality for double integrals, then one has

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4}\left(\int_{0}^{1} \int_{0}^{1}\left[\left|(1-t)^{\alpha}-t^{\alpha}\right|\left|(1-s)^{\beta}-s^{\beta}\right|\right]^{p} d s d t\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right|^{q} d s d t\right)^{\frac{1}{q}}
\end{aligned}
$$

By using the fact that

$$
\left|t_{1}^{\alpha}-t_{2}^{\alpha}\right| \leq\left|t_{1}-t_{2}\right|^{\alpha}
$$

for $\alpha \in(0,1]$ and $t_{1}, t_{2} \in[0,1]$, we get

$$
\begin{aligned}
\int_{0}^{1}\left|(1-t)^{\alpha}-t^{\alpha}\right|^{p} d t & \leq \int_{0}^{1}|1-2 t|^{\alpha p} d t \\
& =\frac{1}{\alpha p+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1}\left\|(1-s)^{\beta}-s^{\beta}\right\|^{p} d t & \leq \int_{0}^{1}|1-2 s|^{\beta p} d t \\
& =\frac{1}{\beta p+1}
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}$ is co-ordinated m-convex, we can write

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4(\alpha p+1)^{\frac{1}{p}}(\beta p+1)^{\frac{1}{p}}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}\left[t s\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q}+m t(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|^{q}\right]\right. \\
& \left.+(1-t) s\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q}+m(1-t)(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|^{q} d s d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

By computing these integrals, we obtain

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4(\alpha p+1)^{\frac{1}{p}}(\beta p+1)^{\frac{1}{p}}} \\
& \times\left(\frac{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q}+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|^{q}+\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q}+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|^{q}}{4}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Which completes the proof.
Remark 2. Suppose that all the assumptions of Theorem 6 are satisfied. If we choose $\alpha=\beta=m=1$, we obtain the inequality (1.3).
Theorem 7. Let $f: \Delta \rightarrow \mathbb{R}$ be a partial differentiable mapping on Δ and $\frac{\partial^{2} f}{\partial t \partial s} \in$ $L(\Delta), \alpha, \beta \in(0,1]$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q \geq 1$, is m-convex function on the co-ordinates on Δ where $0 \leq a<b<\infty$ and $0 \leq c<d<\infty$, then the following inequality holds;

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4}\left(\left[\frac{1-\left(\frac{1}{2}\right)^{\alpha}}{\alpha+1}\right]\left[\frac{1-\left(\frac{1}{2}\right)^{\beta}}{\beta+1}\right]\right)^{1-\frac{1}{q}} M_{\alpha}^{\frac{1}{q}} M_{\beta}^{\frac{1}{q}} \\
& \times\left(\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q}+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|^{q}+\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q}+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

where M_{α}, M_{β} are defined as in Theorem 5.

Proof. From Lemma 1 and by applying the well-known Power-mean inequality for double integrals, then one has

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4}\left(\int_{0}^{1} \int_{0}^{1}\left|(1-t)^{\alpha}-t^{\alpha}\right|\left|(1-s)^{\beta}-s^{\beta}\right| d s d t\right)^{1-\frac{1}{q}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}\left|(1-t)^{\alpha}-t^{\alpha}\right|\left|(1-s)^{\beta}-s^{\beta}\right|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right|^{q} d s d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}$ is co-ordinated m-convex, we can write

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4}\left(\int_{0}^{1} \int_{0}^{1}\left|(1-t)^{\alpha}-t^{\alpha}\right|\left|(1-s)^{\beta}-s^{\beta}\right| d s d t\right)^{1-\frac{1}{q}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}\left|(1-t)^{\alpha}-t^{\alpha}\right|\left|(1-s)^{\beta}-s^{\beta}\right|\left[t s\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q}+m t(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|^{q}\right]\right. \\
& \left.+(1-t) s\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q}+m(1-t)(1-s)\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|^{q} d s d t\right)^{\frac{1}{q}}
\end{aligned}
$$

By computing these integrals, we obtain

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+B\right| \\
\leq & \frac{(b-a)(d-c)}{4}\left(\left[\frac{1-\left(\frac{1}{2}\right)^{\alpha}}{\alpha+1}\right]\left[\frac{1-\left(\frac{1}{2}\right)^{\beta}}{\beta+1}\right]\right)^{1-\frac{1}{q}} M_{\alpha}^{\frac{1}{q}} M_{\beta}^{\frac{1}{q}} \\
& \times\left(\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q}+\left|m \frac{\partial^{2} f}{\partial t \partial s}\left(a, \frac{d}{m}\right)\right|^{q}+\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q}+m\left|\frac{\partial^{2} f}{\partial t \partial s}\left(b, \frac{d}{m}\right)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

which completes the proof.
Remark 3. Suppose that all the assumptions of Theorem 7 are satisfied. If we choose $\alpha=\beta=m=1$, we obtain the inequality (1.4).

References

[1] M. Alomari and M. Darus, On the Hadamard's inequality for \log-convex functions on the coordinates, Journal of Inequalities and Appl., 2009, article ID 283147.
[2] M.K. Bakula and J. Pečarić, On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2006, 1271-1292.
[3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (4) (2010) 493-497.
[4] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1) (2010) 51-58.
[5] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A., 1 (2) (2010) 155-160.
[6] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using RiemannLiouville fractional integrals, Bull. Math. Anal. Appl., 2 (3) (2010) 93-99.
[7] S.S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2001, 775-788.
[8] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276.
[9] S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, USA, 1993, p.2.
[10] M.E. Özdemir, E. Set, M.Z. Sarıkaya, Some new Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, Hacettepe J. of. Math. and St., 40, 219229, (2011).
[11] M. E. Özdemir, Havva Kavurmacı, Ahmet Ocak Akdemir and Merve Avcı, Inequalities for convex and s-convex functions on $\Delta=[a, b] x[c, d]$, Journal of Inequalities and Applications, 2012:20, doi:10.1186/1029-242X-2012-20.
[12] M. E. Özdemir, M. Amer Latif and Ahmet Ocak Akdemir, On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates, Journal of Inequalities and Applications, 2012:21, doi:10.1186/1029-242X-2012-21.
[13] I. Podlubni, Fractional Differential Equations, Academic Press, San Diego, 1999.
[14] M.Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, arXiv:1005.1167v1 (Submitted for publication).
[15] M.Z. Sarıkaya, E. Set, H. Yaldız and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, In Press.
[16] M.Z. Sarıkaya, E. Set, M. Emin Özdemir and S.S. Dragomir, New some Hadamard's type inequalities for co-ordinated convex functions, Accepted.
[17] G. Toader, Some generalization of the convexity, Proc. Colloq. Approx. Opt., Cluj-Napoca, (1984), 329-338.
${ }^{1}$ ATATÜRK UNIVERSITY, K.K. EDUCATION FACULTY, DEPARTMENT OF MATHEMATICS, 25240, KAMPUS, ERZURUM, TURKEY
${ }^{2}$ DEPARTMENT OF MATHEMATICS, FACULTY OF ART AND SCIENCES,KİLİS 7 ARALIK UNIVERSITY, KİLİS, 79000, TURKEY
*CORRESPONDING AUTHOR

[^0]: 2000 Mathematics Subject Classification. 26A15, 26A51, 26D10.
 Key words and phrases. Riemann-Liouville fractional integrals, co-ordinates, m-convex functions.

