International Journal of Analysis and Applications

Derivations of Hilbert Algebras

Aiyared Iampan^{1,*}, R. Alayakkaniamuthu², P. Gomathi Sundari², N. Rajesh²

¹Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand ²Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur 613005, Tamilnadu, India

* Corresponding author: aiyared.ia@up.ac.th

Abstract. In this paper, we introduce the notions of (I, r)-derivations, (r, I)-derivations, and derivations of Hilbert algebras and investigate some related properties. In addition, we define two subsets for a derivation d of a Hilbert algebra X, Ker d(X) and Fix d(X), and we also take a look at some of their characteristics.

1. Introduction and Preliminaries

Logic algebras are a significant class of algebras among several other algebraic structures. The concept of Hilbert algebras was introduced in early 50-ties by Henkin [9] for some investigations of implication in intuitionistic and other non-classical logics. In 60-ties, these algebras were studied especially by Diego [7] from algebraic point of view. Diego [7] proved that Hilbert algebras form a variety which is locally finite. Hilbert algebras were treated by Busneag [4, 5] and Jun [12] and some of their filters forming deductive systems were recognized.

The study of derivations has continued, for example, in 2021, Muangkarn et al. [14] studied f_{q} derivations, and Bantaojai et al. [3] studied derivations induced by an endomorphism of B-algebras. In 2022, Bantaojai et al. [1, 2] studied derivations on *d*-algebras and B-algebras, and Muangkarn et
al. [13, 15] studied derivations induced by an endomorphism of BG-algebras and *d*-algebras. Iampan
et al. [10, 16, 17] studied derivations on UP-algebras.

Received: Feb. 21, 2023.

²⁰²⁰ Mathematics Subject Classification. 03G25.

Key words and phrases. Hilbert algebra; (I, r)-derivation; (r, I)-derivation; derivation.

The concepts of (I, r)-derivations, (r, I)-derivations, and derivations of Hilbert algebras are introduced in this work along with several related features. In addition, we define two subsets for a derivation d of a Hilbert algebra X, Ker d(X) and Fix d(X), and we also take a look at some of their characteristics.

Let's go through the idea of Hilbert algebras as it was introduced by Diego [7] in 1966 before we start.

Definition 1.1. [7] A Hilbert algebra is a triplet with the formula $X = (X, \cdot, 1)$, where X is a nonempty set, \cdot is a binary operation, and 1 is a fixed member of X that is true according to the axioms stated below:

(1) $(\forall x, y \in X)(x \cdot (y \cdot x) = 1),$ (2) $(\forall x, y, z \in X)((x \cdot (y \cdot z)) \cdot ((x \cdot y) \cdot (x \cdot z)) = 1),$ (3) $(\forall x, y \in X)(x \cdot y = 1, y \cdot x = 1 \Rightarrow x = y).$

In [8], the following conclusion was established.

Lemma 1.1. Let $X = (X, \cdot, 1)$ be a Hilbert algebra. Then

(1) $(\forall x \in X)(x \cdot x = 1),$ (2) $(\forall x \in X)(1 \cdot x = x),$ (3) $(\forall x \in X)(x \cdot 1 = 1),$ (4) $(\forall x, y, z \in X)(x \cdot (y \cdot z) = y \cdot (x \cdot z)).$

In a Hilbert algebra $X = (X, \cdot, 1)$, the binary relation \leq is defined by

$$(\forall x, y \in X)(x \leq y \Leftrightarrow x \cdot y = 1),$$

which is a partial order on X with 1 as the largest element.

Definition 1.2. [18] A nonempty subset D of a Hilbert algebra $X = (X, \cdot, 1)$ is called a subalgebra of X if $x \cdot y \in D$ for all $x, y \in D$.

Definition 1.3. [6] A nonempty subset D of a Hilbert algebra $X = (X, \cdot, 1)$ is called an ideal of X if the following conditions hold:

- (1) $1 \in D$,
- (2) $(\forall x, y \in X)(y \in D \Rightarrow x \cdot y \in D),$
- (3) $(\forall x, y_1, y_2 \in X)(y_1, y_2 \in D \Rightarrow (y_1 \cdot (y_2 \cdot x)) \cdot x \in D).$

For any x, y in a Hilbert algebra $X = (X, \cdot, 1)$, we define $x \lor y$ by $(y \cdot x) \cdot x$. Note that $x \lor y$ is an upper bound of x and y for all $x, y \in X$. A Hilbert algebra $X = (X, \cdot, 1)$ is said to be *commutative* [11]

if for all $x, y \in X$, $(y \cdot x) \cdot x = (x \cdot y) \cdot y$, that is, $x \vee y = y \vee x$. From [11], we know that

$$(\forall x \in X)(x \lor x = x),$$

 $(\forall x \in X)(x \lor 1 = 1 \lor x = 1).$

2. Main Results

In this section, we introduce the notions of an (I, r)-derivation, an (r, I)-derivation and a derivation of a Hilbert algebra and study some of their basic properties. Finally, we define two subsets Ker d(X)and Fix d(X) for a derivation d of a Hilbert algebra X, and we consider some properties of these as well.

Definition 2.1. Let $X = (X, \cdot, 1)$ be a Hilbert algebra. A self-map $d : X \to X$ is called an (I, r)derivation of X if it satisfies the identity $d(x \cdot y) = (d(x) \cdot y) \lor (x \cdot d(y))$ for all $x, y \in X$. Similarly, a selfmap $d : X \to X$ is called an (r, I)-derivation of X if it satisfies the identity $d(x \cdot y) = (x \cdot d(y)) \lor (d(x) \cdot y)$ for all $x, y \in X$. Moreover, if d is both an (I, r)-derivation and an (r, I)-derivation of X, it is called a derivation of X.

Example 2.1. Let $X = \{1, 2, 3, 4\}$ be a Hilbert algebra with a fixed element 1 and a binary operation \cdot defined by the following Cayley table:

•	1	2	3	4
1	1	2	3	4
2	1	1	3	4
3	1	2	1	4
4	1	2 1 2 2	3	1

Define a self-map $d : X \to X$ by for any $x \in X$,

$$d(x) = \begin{cases} 1 & \text{if } x \neq 2\\ 2 & \text{if } x = 2 \end{cases}$$

Then d is a derivation of X.

Definition 2.2. An (l, r)-derivation (resp., (r, l)-derivation, derivation) d of a Hilbert algebra $X = (X, \cdot, 1)$ is said to be regular if d(1) = 1.

Theorem 2.1. In a Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

- (1) every (I, r)-derivation of X is regular,
- (2) every (r, I)-derivation of X is regular.

Proof. (1) Assume that d is an (l, r)-derivation of X. Then $d(1) = d(1 \cdot 1) = (d(1) \cdot 1) \lor (1 \cdot d(1)) = 1 \lor d(1) = 1$. Hence d is regular.

(2) Assume that d is an (r, l)-derivation of X. Then $d(1) = d(1 \cdot 1) = (1 \cdot d(1)) \lor (d(1) \cdot 1) = d(1) \lor 1 = 1$. Hence d is regular.

Corollary 2.1. Every derivation of a Hilbert algebra $X = (X, \cdot, 1)$ is regular.

Theorem 2.2. In a Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

(1) if d is an (I, r)-derivation of X, then $d(x) = x \lor d(x)$ for all $x \in X$,

(2) if d is an (r, l)-derivation of X, then $d(x) = d(x) \lor x$ for all $x \in X$.

Proof. (1) Assume that d is an (l, r)-derivation of X. Then for all $x \in X$, $d(x) = d(1 \cdot x) = (d(1) \cdot x) \lor (1 \cdot d(x)) = (1 \cdot x) \lor d(x) = x \lor d(x)$.

(2) Assume that d is an (r, l)-derivation of X. Then for all $x \in X$, $d(x) = d(1 \cdot x) = (1 \cdot d(x)) \lor (d(1) \cdot x) = d(x) \lor (1 \cdot x) = d(x) \lor x$.

Corollary 2.2. If *d* is a derivation of a Hilbert algebra $X = (X, \cdot, 1)$, then $d(x) \lor x = x \lor d(x)$ for all $x \in X$.

Definition 2.3. Let d be an (1, r)-derivation (resp., (r, l)-derivation, derivation) of a Hilbert algebra $X = (X, \cdot, 1)$. We define a subset Ker d(X) of X by Ker $d(X) = \{x \in X : d(x) = 1\}$.

Proposition 2.1. Let *d* be an (l, r)-derivation of a Hilbert algebra $X = (X, \cdot, 1)$. Then the following properties hold: for any $x, y \in X$,

(1) $x \le d(x)$, (2) $d(x) \cdot y \le d(x \cdot y)$, (3) $d(x \cdot d(x)) = 1$, (4) $d(d(x) \cdot x) = 1$, (5) $x \le d(d(x))$.

Proof. (1) For all $x \in X$, $x \cdot d(x) = x \cdot (x \lor d(x)) = x \cdot ((d(x) \cdot x) \cdot x) = 1$. Hence $x \le d(x)$.

(2) For all $x, y \in X$, $(d(x) \cdot y) \cdot d(x \cdot y) = (d(x) \cdot y) \cdot ((d(x) \cdot y) \lor (x \cdot d(y))) = (d(x) \cdot y) \cdot (((x \cdot d(y))) \cdot (d(x) \cdot y)) \cdot (d(x) \cdot y)) = 1$. Hence $d(x) \cdot y \le d(x \cdot y)$.

(3) For all
$$x \in X$$
, $d(x \cdot d(x)) = (d(x) \cdot d(x)) \lor (x \cdot d(d(x))) = 1 \lor (x \cdot d(d(x))) = 1$.

(4) For all
$$x \in X$$
, $d(d(x) \cdot x) = (d(d(x)) \cdot x) \lor (d(x) \cdot d(x)) = (d(d(x)) \cdot x) \lor 1 = 1$.

(5) For all $x \in X$, $d(d(x)) = d(x \lor d(x)) = d((d(x) \cdot x) \cdot x) = (d(d(x) \cdot x) \cdot x) \lor ((d(x) \cdot x) \cdot d(x)) = d(x) \lor (d(x) \cdot x) \cdot d(x)) = x \lor ((d(x) \cdot x) \cdot d(x)) = (((d(x) \cdot x) \cdot d(x)) \cdot x) \cdot x)$. Thus $x \cdot d(d(x)) = x \cdot ((((d(x) \cdot x) \cdot d(x)) \cdot x) \cdot x) = 1$. Hence $x \le d(d(x))$.

Proposition 2.2. Let *d* be an (r, l)-derivation of a Hilbert algebra $X = (X, \cdot, 1)$. Then the following properties hold: for any $x, y \in X$,

(1)
$$x \cdot d(y) \leq d(x \cdot y)$$

 $(2) d(x \cdot d(x)) = 1,$

$$(3) \ d(d(x) \cdot x) = 1.$$

Proof. (1) For all $x, y \in X$, $(x \cdot d(y)) \cdot d(x \cdot y) = (x \cdot d(y)) \cdot ((x \cdot d(y)) \vee (d(x) \cdot y)) = (x \cdot d(y)) \cdot (((d(x) \cdot y) \cdot (x \cdot d(y))) \cdot (x \cdot d(y))) = 1$. Hence $x \cdot d(y) \leq d(x \cdot y)$.

(2) For all
$$x \in X$$
, $d(x \cdot d(x)) = (x \cdot d(d(x))) \lor (d(x) \cdot d(x)) = (x \cdot d(d(x))) \lor 1 = 1$.

(3) For all
$$x \in X$$
, $d(d(x) \cdot x) = (d(x) \cdot d(x)) \lor (d(d(x)) \cdot x) = 1 \lor (d(d(x)) \cdot x) = 1$.

Theorem 2.3. Let d_1, d_2, \ldots, d_n be (l, r)-derivations of a Hilbert algebra $X = (X, \cdot, 1)$ for all $n \in \mathbb{N}$. Then $x \leq d_n(d_{n-1}(\ldots(d_2(d_1(x)))\ldots))$ for all $x \in X$. In particular, if d is an (l, r)-derivation of X, then $x \leq d_n(x)$ for all $n \in \mathbb{N}$ and $x \in X$.

Proof. For n = 1, it follows from Proposition 2.1 (1) that $x \le d_1(x)$ for all $x \in X$. Let $n \in \mathbb{N}$ and assume that $x \le d_n(d_{n-1}(\dots(d_2(d_1(x)))\dots))$ for all $x \in X$. Let $D_n = d_n(d_{n-1}(\dots(d_2(d_1(x)))\dots))$. Then

$$d_{n+1}(D_n) = d_{n+1}(1 \cdot D_n)$$

= $(d_{n+1}(1) \cdot D_n) \vee (1 \cdot d_{n+1}(D_n))$
= $(1 \cdot D_n) \vee (1 \cdot d_{n+1}(D_n))$
= $D_n \vee d_{n+1}(D_n)$
= $(d_{n+1}(D_n) \cdot D_n) \cdot D_n.$

Thus

$$D_n \cdot d_{n+1}(D_n) = D_n \cdot \left(\left(d_{n+1}(D_n) \cdot D_n \right) \cdot D_n \right) = 1.$$

Therefore, $D_n \leq d_{n+1}(D_n)$. By assumption, we get

$$x \le D_n \le d_{n+1}(D_n) = d_{n+1}(d_n(d_{n-1}(\dots(d_2(d_1(x)))\dots)))$$

for all $x \in X$. Hence $x \leq d_n(d_{n-1}(\dots(d_2(d_1(x)))\dots))$ for all $n \in \mathbb{N}$ and $x \in X$. In particular, put $d = d_n$ for all $n \in \mathbb{N}$. Hence $x \leq d_n(d_{n-1}(\dots(d_2(d_1(x)))\dots)) = d_n(x)$ for all $n \in \mathbb{N}$ and $x \in X$. \Box

Definition 2.4. An ideal D of a Hilbert algebra $X = (X, \cdot, 1)$ is said to be invariant (with respect to an (I, r)-derivation (resp., (r, I)-derivation, derivation) d of X) if $d(D) \subseteq D$.

Theorem 2.4. Every ideal of a Hilbert algebra $X = (X, \cdot, 1)$ is invariant with respect to any (I, r)-derivation of X.

Proof. Let *D* be an ideal of *X* and *d* an (I, r)-derivation of *X*. Let $y \in d(D)$. Then y = d(x) for some $x \in D$. It follows that $y \cdot x = d(x) \cdot x = 1 \in D$, which implies $y \in D$. Thus $d(D) \subseteq D$. Hence *D* is invariant with respect to an (I, r)-derivation *d* of *X*.

Corollary 2.3. Every ideal of a Hilbert algebra $X = (X, \cdot, 1)$ is invariant with respect to any derivation of *X*.

Theorem 2.5. In a Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

- (1) if d is an (I, r)-derivation of X, then $y \lor x \in \text{Ker } d(X)$ for all $y \in \text{Ker } d(X)$ and $x \in X$,
- (2) if d is an (r, I)-derivation of X, then $y \lor x \in \text{Ker } d(X)$ for all $y \in \text{Ker } d(X)$ and $x \in X$.

Proof. (1) Assume that d is an (I, r)-derivation of X. Let $y \in \text{Ker } d(X)$ and $x \in X$. Then d(y) = 1. Thus $d(y \lor x) = d((x \cdot y) \cdot y) = (d(x \cdot y) \cdot y) \lor ((x \cdot y) \cdot d(y)) = (d(x \cdot y) \cdot y) \lor ((x \cdot y) \cdot 1) = (d(x \cdot y) \cdot y) \lor 1 = 1$. Hence $y \lor x \in \text{Ker } d(X)$.

(2) Assume that *d* is an (r, l)-derivation of *X*. Let $y \in \text{Ker } d(X)$ and $x \in X$. Then d(y) = 1. Thus $d(y \lor x) = d((x \cdot y) \cdot y) = ((x \cdot y) \cdot d(y)) \lor (d(x \cdot y) \cdot y) = ((x \cdot y) \cdot 1) \lor (d(x \cdot y) \cdot y) = 1 \lor (d(x \cdot y) \cdot y) = 1$. Hence $y \lor x \in \text{Ker } d(X)$.

Corollary 2.4. If *d* is a derivation of a Hilbert algebra $X = (X, \cdot, 1)$, then $y \lor x \in \text{Ker } d(X)$ for all $y \in \text{Ker } d(X)$ and $x \in X$.

Theorem 2.6. In a commutative Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

- (1) if d is an (I, r)-derivation of X and for any $x, y \in X$ is such that $y \le x$ and $y \in \text{Ker } d(X)$, then $x \in \text{Ker } d(X)$,
- (2) if d is an (r, I)-derivation of X and for any $x, y \in X$ is such that $y \le x$ and $y \in \text{Ker } d(X)$, then $x \in \text{Ker } d(X)$.

Proof. (1) Assume that d is an (l, r)-derivation of X. Let $x, y \in X$ be such that $y \leq x$ and $y \in \text{Ker } d(X)$. Then $y \cdot x = 1$ and d(y) = 1. Thus $d(x) = d(1 \cdot x) = d((y \cdot x) \cdot x) = d((x \cdot y) \cdot y) = (d(x \cdot y) \cdot y) \lor ((x \cdot y) \cdot d(y)) = (d(x \cdot y) \cdot y) \lor ((x \cdot y) \cdot 1) = (d(x \cdot y) \cdot y) \lor (1 = 1$. Hence $x \in \text{Ker } d(X)$.

(2) Assume that *d* is an (r, l)-derivation of *X*. Let $x, y \in X$ be such that $y \leq x$ and $y \in \text{Ker } d(X)$. Then $y \cdot x = 1$ and d(y) = 1. Thus $d(x) = d(1 \cdot x) = d((y \cdot x) \cdot x) = d((x \cdot y) \cdot y) = ((x \cdot y) \cdot d(y)) \lor (d(x \cdot y) \cdot y) = 1 \lor (d(x \cdot y) \cdot y) = 1$. Hence $x \in \text{Ker } d(X)$.

Corollary 2.5. If *d* is a derivation of a commutative Hilbert algebra $X = (X, \cdot, 1)$ and for any $x, y \in X$ is such that $y \le x$ and $y \in \text{Ker } d(X)$, then $x \in \text{Ker } d(X)$.

Theorem 2.7. In a Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

- (1) if d is an (I, r)-derivation of X, then $y \cdot x \in \text{Ker } d(X)$ for all $x \in \text{Ker } d(X)$ and $y \in X$,
- (2) if d is an (r, I)-derivation of X, then $y \cdot x \in \text{Ker } d(X)$ for all $x \in \text{Ker } d(X)$ and $y \in X$.

Proof. (1) Assume that d is an (I, r)-derivation of X. Let $x \in \text{Ker } d(X)$ and $y \in X$. Then d(x) = 1. Thus $d(y \cdot x) = (d(y) \cdot x) \lor (y \cdot d(x)) = (d(y) \cdot x) \lor (y \cdot 1) = (d(y) \cdot x) \lor 1 = 1$. Hence $y \cdot x \in \text{Ker } d(X)$.

(2) Assume that *d* is an (r, l)-derivation of *X*. Let $x \in \text{Ker } d(X)$ and $y \in X$. Then d(x) = 1. Thus $d(y \cdot x) = (y \cdot d(x)) \lor (d(y) \cdot x) = (y \cdot 1) \lor (d(y) \cdot x) = 1 \lor (d(y) \cdot x) = 1$. Hence $y \cdot x \in \text{Ker } d(X)$. \Box

Corollary 2.6. If *d* is a derivation of a Hilbert algebra $X = (X, \cdot, 1)$, then $y \cdot x \in \text{Ker } d(X)$ for all $x \in \text{Ker } d(X)$ and $y \in X$.

Theorem 2.8. In a Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

- (1) if d is an (I, r)-derivation of X, then Ker d(X) is a subalgebra of X,
- (2) if d is an (r, l)-derivation of X, then Ker d(X) is a subalgebra of X.

Proof. (1) Assume that d is an (l, r)-derivation of X. By Theorem 2.1 (1), we have d(1) = 1 and so $1 \in \text{Ker } d(X) \neq \emptyset$. Let $x, y \in \text{Ker } d(X)$. Then d(x) = 1 and d(y) = 1. Thus $d(x \cdot y) =$ $(d(x) \cdot y) \lor (x \cdot d(y)) = (1 \cdot y) \lor (x \cdot 1) = y \lor 1 = 1$. Hence $x \cdot y \in \text{Ker } d(X)$, so Ker d(X) is a subalgebra of X.

(2) Assume that d is an (r, l)-derivation of X. By Theorem 2.1 (2), we have d(1) = 1 and so $1 \in \text{Ker } d(X) \neq \emptyset$. Let $x, y \in \text{Ker } d(X)$. Then d(x) = 1 and d(y) = 1. Thus $d(x \cdot y) = (x \cdot d(y)) \lor (d(x) \cdot y) = (x \cdot 1) \lor (1 \cdot y) = 1 \lor y = 1$. Hence $x \cdot y \in \text{Ker } d(X)$, so Ker d(X) is a subalgebra of X.

Corollary 2.7. If *d* is a derivation of a Hilbert algebra $X = (X, \cdot, 1)$, then Ker d(X) is a subalgebra of *X*.

Definition 2.5. Let d be an (1, r)-derivation (resp., (r, l)-derivation, derivation) of a Hilbert algebra $X = (X, \cdot, 1)$. We define a subset Fix d(X) of X by Fix $d(X) = \{x \in X : d(x) = x\}$.

Theorem 2.9. In a Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

- (1) if d is an (I, r)-derivation of X, then Fix d(X) is a subalgebra of X,
- (2) if d is an (r, I)-derivation of X, then Fix d(X) is a subalgebra of X.

Proof. (1) Assume that d is an (l, r)-derivation of X. By Theorem 2.1 (1), we have d(1) = 1 and so $1 \in \text{Fix } d(X) \neq \emptyset$. Let $x, y \in \text{Fix } d(X)$. Then d(x) = x and d(y) = y. Thus $d(x \cdot y) = (d(x) \cdot y) \lor (x \cdot d(y)) = (x \cdot y) \lor (x \cdot y) = x \cdot y$. Hence $x \cdot y \in \text{Fix } d(X)$, so Fix d(X) is a subalgebra of X.

(2) Assume that *d* is an (r, l)-derivation of *X*. By Theorem 2.1 (2), we have d(1) = 1 and so $1 \in \text{Fix } d(X) \neq \emptyset$. Let $x, y \in \text{Fix } d(X)$. Then d(x) = x and d(y) = y. Thus $d(x \cdot y) = (x \cdot d(y)) \lor (d(x) \cdot y) = (x \cdot y) \lor (x \cdot y) = x \cdot y$. Hence $x \cdot y \in \text{Fix } d(X)$, so Fix d(X) is a subalgebra of *X*.

Corollary 2.8. If *d* is a derivation of a Hilbert algebra $X = (X, \cdot, 1)$, then Fix d(X) is a subalgebra of *X*.

Theorem 2.10. In a Hilbert algebra $X = (X, \cdot, 1)$, the following statements hold:

(1) if d is an (I, r)-derivation of X, then $x \lor y \in Fix d(X)$ for all $x, y \in Fix d(X)$,

(2) if d is an (r, I)-derivation of X, then $x \lor y \in Fix d(X)$ for all $x, y \in Fix d(X)$.

Proof. (1) Assume that d is an (l, r)-derivation of X. Let $x, y \in \text{Fix } d(X)$. Then d(x) = x and d(y) = y. By Theorem 2.9 (1), we get $d(y \cdot x) = y \cdot x$. Thus $d(x \lor y) = d((y \cdot x) \cdot x) = (d(y \cdot x) \cdot x) \lor ((y \cdot x) \cdot d(x)) = ((y \cdot x) \cdot x) \lor ((y \cdot x) \cdot x) = (y \cdot x) \cdot x = x \lor y$. Hence $x \lor y \in \text{Fix } d(X)$.

(2) Assume that *d* is an (r, l)-derivation of *X*. Let $x, y \in Fix d(X)$. Then d(x) = x and d(y) = y. By Theorem 2.9 (2), we get $d(y \cdot x) = y \cdot x$. Thus $d(x \lor y) = d((y \cdot x) \cdot x) = ((y \cdot x) \cdot d(x)) \lor (d(y \cdot x) \cdot x) = ((y \cdot x) \cdot x) \lor ((y \cdot x) \cdot x) = (y \cdot x) \cdot x = x \lor y$. Hence $x \lor y \in Fix d(X)$.

Corollary 2.9. If *d* is a derivation of a Hilbert algebra $X = (X, \cdot, 1)$, then $x \lor y \in Fix d(X)$ for all $x, y \in Fix d(X)$.

3. Conclusion

In this article, we introduced the ideas of (I, r)-derivations, (r, I)-derivations, and derivations of Hilbert algebras, and deduced their significant features. Additionally, two subsets Ker d(X) and Fix d(X) for a derivation d of a Hilbert algebra X are defined. As a result, we have found that Ker d(X) and Fix d(X) are subalgebras of X.

Acknowledgment: This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF66-UoE017).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- T. Bantaojai, C. Suanoom, J. Phuto, A. lampan, A Bi-endomorphism Induces a New Type of Derivations on B-Algebras, Italian J. Pure Appl. Math. 48 (2022), 336-348.
- [2] T. Bantaojai, C. Suanoom, J. Phuto, A. lampan, A Novel Derivation Induced by Some Binary Operations on d-Algebras, Int. J. Math. Comput. Sci. 17 (2022), 173-182.
- [3] T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, New Derivations Utilizing Bi-endomorphisms on B-Algebras, J. Math. Comput. Sci. 11 (2021), 6420-6432. https://doi.org/10.28919/jmcs/6376.
- [4] D. Busneag, A Note on Deductive Systems of a Hilbert Algebra, Kobe J. Math. 2 (1985), 29-35. https://cir. nii.ac.jp/crid/1570854175360486400.
- [5] D. Busneag, Hilbert Algebras of Fractions and Maximal Hilbert Algebras of Quotients, Kobe J. Math. 5 (1988), 161-172. https://cir.nii.ac.jp/crid/1570572702603831808.
- [6] I. Chajda, R. Halas, Congruences and Ideals in Hilbert Algebras, Kyungpook Math. J. 39 (1999), 429-429.
- [7] A. Diego, Sur les Algébres de Hilbert, Collect. Logique Math. Ser. A (Ed. Hermann, Paris), 21 (1966), 1-52.
- [8] W.A. Dudek, On fuzzification in Hilbert Algebras, Contrib. Gen. Algebra, 11 (1999), 77-83.
- [9] L. Henkin, An Algebraic Characterization of Quantifiers, Fund. Math. 37 (1950), 63-74.
- [10] A. lampan, Derivations of UP-Algebras by Means of UP-Endomorphisms, Algebr. Struct. Appl. 3 (2016), 1-20.
- [11] Y.B. Jun, Commutative Hilbert Algebras, Soochow J. Math. 22 (1996), 477-484.
- [12] Y.B. Jun, Deductive Systems of Hilbert Algebras, Math. Japon. 43 (1996), 51-54. https://cir.nii.ac.jp/crid/ 1571417124616097792.
- [13] P. Muangkarn, C. Suanoom, A. lampan, New Derivations of *d*-Algebras Based on Endomorphisms, Int. J. Math. Comput. Sci. 17 (2022), 1025-1032.
- [14] P. Muangkarn, C. Suanoom, P. Pengyim, A. lampan, f_q-Derivations of B-Algebras, J. Math. Comput. Sci. 11 (2021), 2047-2057. https://doi.org/10.28919/jmcs/5472.
- [15] P. Muangkarn, C. Suanoom, A. Yodkheeree, A. Iampan, Derivations Induced by an Endomorphism of BG-Algebras, Int. J. Math. Comput. Sci. 17 (2022), 847-852.

- [16] K. Sawika, R. Intasan, A. Kaewwasri, A. lampan, Derivations of UP-Algebras, Korean J. Math. 24 (2016), 345–367. https://doi.org/10.11568/KJM.2016.24.3.345.
- [17] T. Tippanya, N. lam-Art, P. Moonfong, A. lampan, A New Derivation of UP-Algebras by Means of UP-Endomorphisms, Algebra Lett. 2017 (2017), 4.
- [18] J. Zhan, Z. Tan, Intuitionistic Fuzzy Deductive Systems in Hilbert Algebra, Southeast Asian Bull. Math. 29 (2005), 813-826.