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Abstract. In this paper, we introduce the notions of (l , r)-derivations, (r, l)-derivations, and derivations

of Hilbert algebras and investigate some related properties. In addition, we define two subsets for a

derivation d of a Hilbert algebra X, Ker d(X) and Fix d(X), and we also take a look at some of their

characteristics.

1. Introduction and Preliminaries

Logic algebras are a significant class of algebras among several other algebraic structures. The

concept of Hilbert algebras was introduced in early 50-ties by Henkin [9] for some investigations of

implication in intuitionistic and other non-classical logics. In 60-ties, these algebras were studied

especially by Diego [7] from algebraic point of view. Diego [7] proved that Hilbert algebras form a

variety which is locally finite. Hilbert algebras were treated by Busneag [4, 5] and Jun [12] and some

of their filters forming deductive systems were recognized.

The study of derivations has continued, for example, in 2021, Muangkarn et al. [14] studied fq-

derivations, and Bantaojai et al. [3] studied derivations induced by an endomorphism of B-algebras.

In 2022, Bantaojai et al. [1, 2] studied derivations on d-algebras and B-algebras, and Muangkarn et

al. [13, 15] studied derivations induced by an endomorphism of BG-algebras and d-algebras. Iampan

et al. [10, 16,17] studied derivations on UP-algebras.
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The concepts of (l , r)-derivations, (r, l)-derivations, and derivations of Hilbert algebras are intro-

duced in this work along with several related features. In addition, we define two subsets for a

derivation d of a Hilbert algebra X, Ker d(X) and Fix d(X), and we also take a look at some of their

characteristics.

Let’s go through the idea of Hilbert algebras as it was introduced by Diego [7] in 1966 before we

start.

Definition 1.1. [7] A Hilbert algebra is a triplet with the formula X = (X, ·, 1), where X is a nonempty

set, · is a binary operation, and 1 is a fixed member of X that is true according to the axioms stated

below:

(1) (∀x, y ∈ X)(x · (y · x) = 1),
(2) (∀x, y , z ∈ X)((x · (y · z)) · ((x · y) · (x · z)) = 1),
(3) (∀x, y ∈ X)(x · y = 1, y · x = 1⇒ x = y).

In [8], the following conclusion was established.

Lemma 1.1. Let X = (X, ·, 1) be a Hilbert algebra. Then

(1) (∀x ∈ X)(x · x = 1),
(2) (∀x ∈ X)(1 · x = x),
(3) (∀x ∈ X)(x · 1 = 1),
(4) (∀x, y , z ∈ X)(x · (y · z) = y · (x · z)).

In a Hilbert algebra X = (X, ·, 1), the binary relation ≤ is defined by

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 1),

which is a partial order on X with 1 as the largest element.

Definition 1.2. [18] A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is called a subalgebra

of X if x · y ∈ D for all x, y ∈ D.

Definition 1.3. [6] A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is called an ideal of X if

the following conditions hold:

(1) 1 ∈ D,
(2) (∀x, y ∈ X)(y ∈ D ⇒ x · y ∈ D),
(3) (∀x, y1, y2 ∈ X)(y1, y2 ∈ D ⇒ (y1 · (y2 · x)) · x ∈ D).

For any x, y in a Hilbert algebra X = (X, ·, 1), we define x ∨ y by (y · x) · x . Note that x ∨ y is an
upper bound of x and y for all x, y ∈ X. A Hilbert algebra X = (X, ·, 1) is said to be commutative [11]
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if for all x, y ∈ X, (y · x) · x = (x · y) · y , that is, x ∨ y = y ∨ x . From [11], we know that

(∀x ∈ X)(x ∨ x = x),

(∀x ∈ X)(x ∨ 1 = 1 ∨ x = 1).

2. Main Results

In this section, we introduce the notions of an (l , r)-derivation, an (r, l)-derivation and a derivation

of a Hilbert algebra and study some of their basic properties. Finally, we define two subsets Ker d(X)

and Fix d(X) for a derivation d of a Hilbert algebra X, and we consider some properties of these as

well.

Definition 2.1. Let X = (X, ·, 1) be a Hilbert algebra. A self-map d : X → X is called an (l , r)-

derivation of X if it satisfies the identity d(x ·y) = (d(x)·y)∨(x ·d(y)) for all x, y ∈ X. Similarly, a self-

map d : X → X is called an (r, l)-derivation of X if it satisfies the identity d(x ·y) = (x ·d(y))∨(d(x)·y)
for all x, y ∈ X. Moreover, if d is both an (l , r)-derivation and an (r, l)-derivation of X, it is called a

derivation of X.

Example 2.1. Let X = {1, 2, 3, 4} be a Hilbert algebra with a fixed element 1 and a binary operation

· defined by the following Cayley table:

· 1 2 3 4
1 1 2 3 4

2 1 1 3 4

3 1 2 1 4

4 1 2 3 1

Define a self-map d : X → X by for any x ∈ X,

d(x) =

{
1 if x 6= 2
2 if x = 2.

Then d is a derivation of X.

Definition 2.2. An (l , r)-derivation (resp., (r, l)-derivation, derivation) d of a Hilbert algebra X =

(X, ·, 1) is said to be regular if d(1) = 1.

Theorem 2.1. In a Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) every (l , r)-derivation of X is regular,

(2) every (r, l)-derivation of X is regular.

Proof. (1) Assume that d is an (l , r)-derivation of X. Then d(1) = d(1 ·1) = (d(1) ·1)∨ (1 ·d(1)) =
1 ∨ d(1) = 1. Hence d is regular.
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(2) Assume that d is an (r, l)-derivation of X. Then d(1) = d(1 · 1) = (1 · d(1)) ∨ (d(1) · 1) =
d(1) ∨ 1 = 1. Hence d is regular. �

Corollary 2.1. Every derivation of a Hilbert algebra X = (X, ·, 1) is regular.

Theorem 2.2. In a Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) if d is an (l , r)-derivation of X, then d(x) = x ∨ d(x) for all x ∈ X,
(2) if d is an (r, l)-derivation of X, then d(x) = d(x) ∨ x for all x ∈ X.

Proof. (1) Assume that d is an (l , r)-derivation of X. Then for all x ∈ X, d(x) = d(1 · x) =
(d(1) · x) ∨ (1 · d(x)) = (1 · x) ∨ d(x) = x ∨ d(x).

(2) Assume that d is an (r, l)-derivation of X. Then for all x ∈ X, d(x) = d(1 · x) = (1 · d(x)) ∨
(d(1) · x) = d(x) ∨ (1 · x) = d(x) ∨ x . �

Corollary 2.2. If d is a derivation of a Hilbert algebra X = (X, ·, 1), then d(x) ∨ x = x ∨ d(x) for all
x ∈ X.

Definition 2.3. Let d be an (l , r)-derivation (resp., (r, l)-derivation, derivation) of a Hilbert algebra

X = (X, ·, 1). We define a subset Ker d(X) of X by Ker d(X) = {x ∈ X : d(x) = 1}.

Proposition 2.1. Let d be an (l , r)-derivation of a Hilbert algebra X = (X, ·, 1). Then the following

properties hold: for any x, y ∈ X,

(1) x ≤ d(x),
(2) d(x) · y ≤ d(x · y),
(3) d(x · d(x)) = 1,
(4) d(d(x) · x) = 1,
(5) x ≤ d(d(x)).

Proof. (1) For all x ∈ X, x · d(x) = x · (x ∨ d(x)) = x · ((d(x) · x) · x) = 1. Hence x ≤ d(x).
(2) For all x, y ∈ X, (d(x) · y) · d(x · y) = (d(x) · y) · ((d(x) · y) ∨ (x · d(y))) = (d(x) · y) · (((x ·

d(y)) · (d(x) · y)) · (d(x) · y)) = 1. Hence d(x) · y ≤ d(x · y).
(3) For all x ∈ X, d(x · d(x)) = (d(x) · d(x)) ∨ (x · d(d(x))) = 1 ∨ (x · d(d(x))) = 1.
(4) For all x ∈ X, d(d(x) · x) = (d(d(x)) · x) ∨ (d(x) · d(x)) = (d(d(x)) · x) ∨ 1 = 1.
(5) For all x ∈ X, d(d(x)) = d(x ∨ d(x)) = d((d(x) · x) · x) = (d(d(x) · x) · x) ∨ ((d(x) · x) ·

d(x)) = (1 · x) ∨ ((d(x) · x) · d(x)) = x ∨ ((d(x) · x) · d(x)) = (((d(x) · x) · d(x)) · x) · x . Thus

x · d(d(x)) = x · ((((d(x) · x) · d(x)) · x) · x) = 1. Hence x ≤ d(d(x)). �

Proposition 2.2. Let d be an (r, l)-derivation of a Hilbert algebra X = (X, ·, 1). Then the following

properties hold: for any x, y ∈ X,

(1) x · d(y) ≤ d(x · y),
(2) d(x · d(x)) = 1,
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(3) d(d(x) · x) = 1.

Proof. (1) For all x, y ∈ X, (x · d(y)) · d(x · y) = (x · d(y)) · ((x · d(y)) ∨ (d(x) · y)) = (x · d(y)) ·
(((d(x) · y) · (x · d(y))) · (x · d(y))) = 1. Hence x · d(y) ≤ d(x · y).

(2) For all x ∈ X, d(x · d(x)) = (x · d(d(x))) ∨ (d(x) · d(x)) = (x · d(d(x))) ∨ 1 = 1.
(3) For all x ∈ X, d(d(x) · x) = (d(x) · d(x)) ∨ (d(d(x)) · x) = 1 ∨ (d(d(x)) · x) = 1. �

Theorem 2.3. Let d1, d2, . . . , dn be (l , r)-derivations of a Hilbert algebra X = (X, ·, 1) for all n ∈ N.
Then x ≤ dn(dn−1(. . . (d2(d1(x))) . . .)) for all x ∈ X. In particular, if d is an (l , r)-derivation of X,

then x ≤ dn(x) for all n ∈ N and x ∈ X.

Proof. For n = 1, it follows from Proposition 2.1 (1) that x ≤ d1(x) for all x ∈ X. Let n ∈ N and

assume that x ≤ dn(dn−1(. . . (d2(d1(x))) . . .)) for all x ∈ X. Let Dn = dn(dn−1(. . . (d2(d1(x))) . . .)).
Then

dn+1(Dn) = dn+1(1 ·Dn)

= (dn+1(1) ·Dn) ∨ (1 · dn+1(Dn))

= (1 ·Dn) ∨ (1 · dn+1(Dn))

= Dn ∨ dn+1(Dn)

= (dn+1(Dn) ·Dn) ·Dn.

Thus

Dn · dn+1(Dn) = Dn · ((dn+1(Dn) ·Dn) ·Dn) = 1.

Therefore, Dn ≤ dn+1(Dn). By assumption, we get

x ≤ Dn ≤ dn+1(Dn) = dn+1(dn(dn−1(. . . (d2(d1(x))) . . .)))

for all x ∈ X. Hence x ≤ dn(dn−1(. . . (d2(d1(x))) . . .)) for all n ∈ N and x ∈ X. In particular, put

d = dn for all n ∈ N. Hence x ≤ dn(dn−1(. . . (d2(d1(x))) . . .)) = dn(x) for all n ∈ N and x ∈ X. �

Definition 2.4. An ideal D of a Hilbert algebra X = (X, ·, 1) is said to be invariant (with respect to

an (l , r)-derivation (resp., (r, l)-derivation, derivation) d of X) if d(D) ⊆ D.

Theorem 2.4. Every ideal of a Hilbert algebra X = (X, ·, 1) is invariant with respect to any (l , r)-

derivation of X.

Proof. Let D be an ideal of X and d an (l , r)-derivation of X. Let y ∈ d(D). Then y = d(x) for

some x ∈ D. It follows that y · x = d(x) · x = 1 ∈ D, which implies y ∈ D. Thus d(D) ⊆ D. Hence
D is invariant with respect to an (l , r)-derivation d of X. �

Corollary 2.3. Every ideal of a Hilbert algebra X = (X, ·, 1) is invariant with respect to any derivation

of X.
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Theorem 2.5. In a Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) if d is an (l , r)-derivation of X, then y ∨ x ∈ Ker d(X) for all y ∈ Ker d(X) and x ∈ X,
(2) if d is an (r, l)-derivation of X, then y ∨ x ∈ Ker d(X) for all y ∈ Ker d(X) and x ∈ X.

Proof. (1) Assume that d is an (l , r)-derivation of X. Let y ∈ Ker d(X) and x ∈ X. Then d(y) = 1.
Thus d(y∨x) = d((x ·y)·y) = (d(x ·y)·y)∨((x ·y)·d(y)) = (d(x ·y)·y)∨((x ·y)·1) = (d(x ·y)·y)∨1 = 1.
Hence y ∨ x ∈ Ker d(X).

(2) Assume that d is an (r, l)-derivation of X. Let y ∈ Ker d(X) and x ∈ X. Then d(y) = 1. Thus
d(y∨x) = d((x ·y)·y) = ((x ·y)·d(y))∨(d(x ·y)·y) = ((x ·y)·1)∨(d(x ·y)·y) = 1∨(d(x ·y)·y) = 1.
Hence y ∨ x ∈ Ker d(X). �

Corollary 2.4. If d is a derivation of a Hilbert algebra X = (X, ·, 1), then y ∨ x ∈ Ker d(X) for all
y ∈ Ker d(X) and x ∈ X.

Theorem 2.6. In a commutative Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) if d is an (l , r)-derivation of X and for any x, y ∈ X is such that y ≤ x and y ∈ Ker d(X),
then x ∈ Ker d(X),

(2) if d is an (r, l)-derivation of X and for any x, y ∈ X is such that y ≤ x and y ∈ Ker d(X),
then x ∈ Ker d(X).

Proof. (1) Assume that d is an (l , r)-derivation of X. Let x, y ∈ X be such that y ≤ x and

y ∈ Ker d(X). Then y · x = 1 and d(y) = 1. Thus d(x) = d(1 · x) = d((y · x) · x) = d((x · y) · y) =
(d(x ·y) ·y)∨ ((x ·y) ·d(y)) = (d(x ·y) ·y)∨ ((x ·y) ·1) = (d(x ·y) ·y)∨1 = 1. Hence x ∈ Ker d(X).

(2) Assume that d is an (r, l)-derivation of X. Let x, y ∈ X be such that y ≤ x and y ∈ Ker d(X).
Then y · x = 1 and d(y) = 1. Thus d(x) = d(1 · x) = d((y · x) · x) = d((x · y) · y) = ((x · y) · d(y))∨
(d(x · y) · y) = ((x · y) · 1) ∨ (d(x · y) · y) = 1 ∨ (d(x · y) · y) = 1. Hence x ∈ Ker d(X). �

Corollary 2.5. If d is a derivation of a commutative Hilbert algebra X = (X, ·, 1) and for any x, y ∈ X
is such that y ≤ x and y ∈ Ker d(X), then x ∈ Ker d(X).

Theorem 2.7. In a Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) if d is an (l , r)-derivation of X, then y · x ∈ Ker d(X) for all x ∈ Ker d(X) and y ∈ X,
(2) if d is an (r, l)-derivation of X, then y · x ∈ Ker d(X) for all x ∈ Ker d(X) and y ∈ X.

Proof. (1) Assume that d is an (l , r)-derivation of X. Let x ∈ Ker d(X) and y ∈ X. Then d(x) = 1.
Thus d(y ·x) = (d(y) ·x)∨(y ·d(x)) = (d(y) ·x)∨(y ·1) = (d(y) ·x)∨1 = 1. Hence y ·x ∈ Ker d(X).

(2) Assume that d is an (r, l)-derivation of X. Let x ∈ Ker d(X) and y ∈ X. Then d(x) = 1. Thus
d(y ·x) = (y ·d(x))∨ (d(y) ·x) = (y ·1)∨ (d(y) ·x) = 1∨ (d(y) ·x) = 1. Hence y ·x ∈ Ker d(X). �

Corollary 2.6. If d is a derivation of a Hilbert algebra X = (X, ·, 1), then y · x ∈ Ker d(X) for all
x ∈ Ker d(X) and y ∈ X.
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Theorem 2.8. In a Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) if d is an (l , r)-derivation of X, then Ker d(X) is a subalgebra of X,

(2) if d is an (r, l)-derivation of X, then Ker d(X) is a subalgebra of X.

Proof. (1) Assume that d is an (l , r)-derivation of X. By Theorem 2.1 (1), we have d(1) = 1 and

so 1 ∈ Ker d(X) 6= ∅. Let x, y ∈ Ker d(X). Then d(x) = 1 and d(y) = 1. Thus d(x · y) =
(d(x) · y) ∨ (x · d(y)) = (1 · y) ∨ (x · 1) = y ∨ 1 = 1. Hence x · y ∈ Ker d(X), so Ker d(X) is a

subalgebra of X.

(2) Assume that d is an (r, l)-derivation of X. By Theorem 2.1 (2), we have d(1) = 1 and

so 1 ∈ Ker d(X) 6= ∅. Let x, y ∈ Ker d(X). Then d(x) = 1 and d(y) = 1. Thus d(x · y) =
(x · d(y)) ∨ (d(x) · y) = (x · 1) ∨ (1 · y) = 1 ∨ y = 1. Hence x · y ∈ Ker d(X), so Ker d(X) is a

subalgebra of X. �

Corollary 2.7. If d is a derivation of a Hilbert algebra X = (X, ·, 1), then Ker d(X) is a subalgebra of

X.

Definition 2.5. Let d be an (l , r)-derivation (resp., (r, l)-derivation, derivation) of a Hilbert algebra

X = (X, ·, 1). We define a subset Fix d(X) of X by Fix d(X) = {x ∈ X : d(x) = x}.

Theorem 2.9. In a Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) if d is an (l , r)-derivation of X, then Fix d(X) is a subalgebra of X,

(2) if d is an (r, l)-derivation of X, then Fix d(X) is a subalgebra of X.

Proof. (1) Assume that d is an (l , r)-derivation of X. By Theorem 2.1 (1), we have d(1) = 1 and

so 1 ∈ Fix d(X) 6= ∅. Let x, y ∈ Fix d(X). Then d(x) = x and d(y) = y . Thus d(x · y) =
(d(x) · y) ∨ (x · d(y)) = (x · y) ∨ (x · y) = x · y . Hence x · y ∈ Fix d(X), so Fix d(X) is a subalgebra

of X.

(2) Assume that d is an (r, l)-derivation of X. By Theorem 2.1 (2), we have d(1) = 1 and

so 1 ∈ Fix d(X) 6= ∅. Let x, y ∈ Fix d(X). Then d(x) = x and d(y) = y . Thus d(x · y) =
(x · d(y)) ∨ (d(x) · y) = (x · y) ∨ (x · y) = x · y . Hence x · y ∈ Fix d(X), so Fix d(X) is a subalgebra

of X. �

Corollary 2.8. If d is a derivation of a Hilbert algebra X = (X, ·, 1), then Fix d(X) is a subalgebra of

X.

Theorem 2.10. In a Hilbert algebra X = (X, ·, 1), the following statements hold:

(1) if d is an (l , r)-derivation of X, then x ∨ y ∈ Fix d(X) for all x, y ∈ Fix d(X),
(2) if d is an (r, l)-derivation of X, then x ∨ y ∈ Fix d(X) for all x, y ∈ Fix d(X).

Proof. (1) Assume that d is an (l , r)-derivation of X. Let x, y ∈ Fix d(X). Then d(x) = x and

d(y) = y . By Theorem 2.9 (1), we get d(y · x) = y · x . Thus d(x ∨ y) = d((y · x) · x) =
(d(y · x) · x)∨ ((y · x) · d(x)) = ((y · x) · x)∨ ((y · x) · x) = (y · x) · x = x ∨ y . Hence x ∨ y ∈ Fix d(X).
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(2) Assume that d is an (r, l)-derivation of X. Let x, y ∈ Fix d(X). Then d(x) = x and d(y) = y .
By Theorem 2.9 (2), we get d(y ·x) = y ·x . Thus d(x∨y) = d((y ·x)·x) = ((y ·x)·d(x))∨(d(y ·x)·x) =
((y · x) · x) ∨ ((y · x) · x) = (y · x) · x = x ∨ y . Hence x ∨ y ∈ Fix d(X). �

Corollary 2.9. If d is a derivation of a Hilbert algebra X = (X, ·, 1), then x ∨ y ∈ Fix d(X) for all
x, y ∈ Fix d(X).

3. Conclusion

In this article, we introduced the ideas of (l , r)-derivations, (r, l)-derivations, and derivations of

Hilbert algebras, and deduced their significant features. Additionally, two subsets Ker d(X) and

Fix d(X) for a derivation d of a Hilbert algebra X are defined. As a result, we have found that

Ker d(X) and Fix d(X) are subalgebras of X.
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