International Journal of Analysis and Applications International Journal of Analy sis Journal of Malysis and Applications

Derivations of Hilbert Algebras

Aiyared lampan ${ }^{1, *}$, R. Alayakkaniamuthu ${ }^{2}$, P. Gomathi Sundari ${ }^{2}$, N. Rajesh ${ }^{2}$
${ }^{1}$ Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand
${ }^{2}$ Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan
University), Thanjavur 613005, Tamilnadu, India
* Corresponding author: aiyared.ia@up.ac.th

Abstract

In this paper, we introduce the notions of (I, r)-derivations, (r, l)-derivations, and derivations of Hilbert algebras and investigate some related properties. In addition, we define two subsets for a derivation d of a Hilbert algebra $X, \operatorname{Ker} d(X)$ and $\operatorname{Fix} d(X)$, and we also take a look at some of their characteristics.

1. Introduction and Preliminaries

Logic algebras are a significant class of algebras among several other algebraic structures. The concept of Hilbert algebras was introduced in early 50 -ties by Henkin [9] for some investigations of implication in intuitionistic and other non-classical logics. In 60-ties, these algebras were studied especially by Diego [7] from algebraic point of view. Diego [7] proved that Hilbert algebras form a variety which is locally finite. Hilbert algebras were treated by Busneag [4,5] and Jun [12] and some of their filters forming deductive systems were recognized.

The study of derivations has continued, for example, in 2021, Muangkarn et al. [14] studied $f_{q^{-}}$ derivations, and Bantaojai et al. [3] studied derivations induced by an endomorphism of B-algebras. In 2022, Bantaojai et al. [1,2] studied derivations on d-algebras and B-algebras, and Muangkarn et al. $[13,15]$ studied derivations induced by an endomorphism of $B G$-algebras and d-algebras. lampan et al. $[10,16,17]$ studied derivations on UP-algebras.

Received: Feb. 21, 2023.
2020 Mathematics Subject Classification. 03G25.
Key words and phrases. Hilbert algebra; (I,r)-derivation; (r,l)-derivation; derivation.

The concepts of (I, r)-derivations, (r, I)-derivations, and derivations of Hilbert algebras are introduced in this work along with several related features. In addition, we define two subsets for a derivation d of a Hilbert algebra $X, \operatorname{Ker} d(X)$ and Fix $d(X)$, and we also take a look at some of their characteristics.

Let's go through the idea of Hilbert algebras as it was introduced by Diego [7] in 1966 before we start.

Definition 1.1. [7] A Hilbert algebra is a triplet with the formula $X=(X, \cdot, 1)$, where X is a nonempty set, • is a binary operation, and 1 is a fixed member of X that is true according to the axioms stated below:
(1) $(\forall x, y \in X)(x \cdot(y \cdot x)=1)$,
(2) $(\forall x, y, z \in X)((x \cdot(y \cdot z)) \cdot((x \cdot y) \cdot(x \cdot z))=1)$,
(3) $(\forall x, y \in X)(x \cdot y=1, y \cdot x=1 \Rightarrow x=y)$.

In [8], the following conclusion was established.
Lemma 1.1. Let $X=(X, \cdot, 1)$ be a Hilbert algebra. Then
(1) $(\forall x \in X)(x \cdot x=1)$,
(2) $(\forall x \in X)(1 \cdot x=x)$,
(3) $(\forall x \in X)(x \cdot 1=1)$,
(4) $(\forall x, y, z \in X)(x \cdot(y \cdot z)=y \cdot(x \cdot z))$.

In a Hilbert algebra $X=(X, \cdot, 1)$, the binary relation \leq is defined by

$$
(\forall x, y \in X)(x \leq y \Leftrightarrow x \cdot y=1)
$$

which is a partial order on X with 1 as the largest element.
Definition 1.2. [18] A nonempty subset D of a Hilbert algebra $X=(X, \cdot, 1)$ is called a subalgebra of X if $x \cdot y \in D$ for all $x, y \in D$.

Definition 1.3. [6] A nonempty subset D of a Hilbert algebra $X=(X, \cdot, 1)$ is called an ideal of X if the following conditions hold:
(1) $1 \in D$,
(2) $(\forall x, y \in X)(y \in D \Rightarrow x \cdot y \in D)$,
(3) $\left(\forall x, y_{1}, y_{2} \in X\right)\left(y_{1}, y_{2} \in D \Rightarrow\left(y_{1} \cdot\left(y_{2} \cdot x\right)\right) \cdot x \in D\right)$.

For any x, y in a Hilbert algebra $X=(X, \cdot, 1)$, we define $x \vee y$ by $(y \cdot x) \cdot x$. Note that $x \vee y$ is an upper bound of x and y for all $x, y \in X$. A Hilbert algebra $X=(X, \cdot, 1)$ is said to be commutative [11]
if for all $x, y \in X,(y \cdot x) \cdot x=(x \cdot y) \cdot y$, that is, $x \vee y=y \vee x$. From [11], we know that

$$
\begin{aligned}
& (\forall x \in X)(x \vee x=x), \\
& (\forall x \in X)(x \vee 1=1 \vee x=1) .
\end{aligned}
$$

2. Main Results

In this section, we introduce the notions of an (I, r)-derivation, an (r, I)-derivation and a derivation of a Hilbert algebra and study some of their basic properties. Finally, we define two subsets $\operatorname{Ker} d(X)$ and Fix $d(X)$ for a derivation d of a Hilbert algebra X, and we consider some properties of these as well.

Definition 2.1. Let $X=(X, \cdot, 1)$ be a Hilbert algebra. A self-map $d: X \rightarrow X$ is called an (I, r) derivation of X if it satisfies the identity $d(x \cdot y)=(d(x) \cdot y) \vee(x \cdot d(y))$ for all $x, y \in X$. Similarly, a selfmap $d: X \rightarrow X$ is called an (r, I)-derivation of X if it satisfies the identity $d(x \cdot y)=(x \cdot d(y)) \vee(d(x) \cdot y)$ for all $x, y \in X$. Moreover, if d is both an (I, r)-derivation and an (r, I)-derivation of X, it is called a derivation of X.

Example 2.1. Let $X=\{1,2,3,4\}$ be a Hilbert algebra with a fixed element 1 and a binary operation - defined by the following Cayley table:

.	1	2	3	4
1	1	2	3	4
2	1	1	3	4
3	1	2	1	4
4	1	2	3	1

Define a self-map $d: X \rightarrow X$ by for any $x \in X$,

$$
d(x)= \begin{cases}1 & \text { if } x \neq 2 \\ 2 & \text { if } x=2\end{cases}
$$

Then d is a derivation of X.
Definition 2.2. An (I, r)-derivation (resp., (r, I)-derivation, derivation) d of a Hilbert algebra $X=$ $(X, \cdot, 1)$ is said to be regular if $d(1)=1$.

Theorem 2.1. In a Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) every (I, r)-derivation of X is regular,
(2) every (r, I)-derivation of X is regular.

Proof. (1) Assume that d is an (I, r)-derivation of X. Then $d(1)=d(1 \cdot 1)=(d(1) \cdot 1) \vee(1 \cdot d(1))=$ $1 \vee d(1)=1$. Hence d is regular.
(2) Assume that d is an (r, I)-derivation of X. Then $d(1)=d(1 \cdot 1)=(1 \cdot d(1)) \vee(d(1) \cdot 1)=$ $d(1) \vee 1=1$. Hence d is regular.

Corollary 2.1. Every derivation of a Hilbert algebra $X=(X, \cdot, 1)$ is regular.
Theorem 2.2. In a Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) if d is an (I, r)-derivation of X, then $d(x)=x \vee d(x)$ for all $x \in X$,
(2) if d is an (r, I)-derivation of X, then $d(x)=d(x) \vee x$ for all $x \in X$.

Proof. (1) Assume that d is an (I,r)-derivation of X. Then for all $x \in X, d(x)=d(1 \cdot x)=$ $(d(1) \cdot x) \vee(1 \cdot d(x))=(1 \cdot x) \vee d(x)=x \vee d(x)$.
(2) Assume that d is an (r, I)-derivation of X. Then for all $x \in X, d(x)=d(1 \cdot x)=(1 \cdot d(x)) \vee$ $(d(1) \cdot x)=d(x) \vee(1 \cdot x)=d(x) \vee x$.

Corollary 2.2. If d is a derivation of a Hilbert algebra $X=(X, \cdot, 1)$, then $d(x) \vee x=x \vee d(x)$ for all $x \in X$.

Definition 2.3. Let d be an (I, r)-derivation (resp., (r, I)-derivation, derivation) of a Hilbert algebra $X=(X, \cdot, 1)$. We define a subset $\operatorname{Ker} d(X)$ of X by $\operatorname{Ker} d(X)=\{x \in X: d(x)=1\}$.

Proposition 2.1. Let d be an (I,r)-derivation of a Hilbert algebra $X=(X, \cdot, 1)$. Then the following properties hold: for any $x, y \in X$,
(1) $x \leq d(x)$,
(2) $d(x) \cdot y \leq d(x \cdot y)$,
(3) $d(x \cdot d(x))=1$,
(4) $d(d(x) \cdot x)=1$,
(5) $x \leq d(d(x))$.

Proof. (1) For all $x \in X, x \cdot d(x)=x \cdot(x \vee d(x))=x \cdot((d(x) \cdot x) \cdot x)=1$. Hence $x \leq d(x)$.
(2) For all $x, y \in X,(d(x) \cdot y) \cdot d(x \cdot y)=(d(x) \cdot y) \cdot((d(x) \cdot y) \vee(x \cdot d(y)))=(d(x) \cdot y) \cdot(((x \cdot$ $d(y)) \cdot(d(x) \cdot y)) \cdot(d(x) \cdot y))=1$. Hence $d(x) \cdot y \leq d(x \cdot y)$.
(3) For all $x \in X, d(x \cdot d(x))=(d(x) \cdot d(x)) \vee(x \cdot d(d(x)))=1 \vee(x \cdot d(d(x)))=1$.
(4) For all $x \in X, d(d(x) \cdot x)=(d(d(x)) \cdot x) \vee(d(x) \cdot d(x))=(d(d(x)) \cdot x) \vee 1=1$.
(5) For all $x \in X, d(d(x))=d(x \vee d(x))=d((d(x) \cdot x) \cdot x)=(d(d(x) \cdot x) \cdot x) \vee((d(x) \cdot x)$. $d(x))=(1 \cdot x) \vee((d(x) \cdot x) \cdot d(x))=x \vee((d(x) \cdot x) \cdot d(x))=(((d(x) \cdot x) \cdot d(x)) \cdot x) \cdot x$. Thus $x \cdot d(d(x))=x \cdot((((d(x) \cdot x) \cdot d(x)) \cdot x) \cdot x)=1$. Hence $x \leq d(d(x))$.

Proposition 2.2. Let d be an (r, I)-derivation of a Hilbert algebra $X=(X, \cdot, 1)$. Then the following properties hold: for any $x, y \in X$,
(1) $x \cdot d(y) \leq d(x \cdot y)$,
(2) $d(x \cdot d(x))=1$,
(3) $d(d(x) \cdot x)=1$.

Proof. (1) For all $x, y \in X,(x \cdot d(y)) \cdot d(x \cdot y)=(x \cdot d(y)) \cdot((x \cdot d(y)) \vee(d(x) \cdot y))=(x \cdot d(y))$. $(((d(x) \cdot y) \cdot(x \cdot d(y))) \cdot(x \cdot d(y)))=1$. Hence $x \cdot d(y) \leq d(x \cdot y)$.
(2) For all $x \in X, d(x \cdot d(x))=(x \cdot d(d(x))) \vee(d(x) \cdot d(x))=(x \cdot d(d(x))) \vee 1=1$.
(3) For all $x \in X, d(d(x) \cdot x)=(d(x) \cdot d(x)) \vee(d(d(x)) \cdot x)=1 \vee(d(d(x)) \cdot x)=1$.

Theorem 2.3. Let $d_{1}, d_{2}, \ldots, d_{n}$ be (I,r)-derivations of a Hilbert algebra $X=(X, \cdot, 1)$ for all $n \in \mathbb{N}$. Then $x \leq d_{n}\left(d_{n-1}\left(\ldots\left(d_{2}\left(d_{1}(x)\right)\right) \ldots\right)\right)$ for all $x \in X$. In particular, if d is an (I, r)-derivation of X, then $x \leq d_{n}(x)$ for all $n \in \mathbb{N}$ and $x \in X$.

Proof. For $n=1$, it follows from Proposition 2.1 (1) that $x \leq d_{1}(x)$ for all $x \in X$. Let $n \in \mathbb{N}$ and assume that $x \leq d_{n}\left(d_{n-1}\left(\ldots\left(d_{2}\left(d_{1}(x)\right)\right) \ldots\right)\right)$ for all $x \in X$. Let $D_{n}=d_{n}\left(d_{n-1}\left(\ldots\left(d_{2}\left(d_{1}(x)\right)\right) \ldots\right)\right)$. Then

$$
\begin{aligned}
d_{n+1}\left(D_{n}\right) & =d_{n+1}\left(1 \cdot D_{n}\right) \\
& =\left(d_{n+1}(1) \cdot D_{n}\right) \vee\left(1 \cdot d_{n+1}\left(D_{n}\right)\right) \\
& =\left(1 \cdot D_{n}\right) \vee\left(1 \cdot d_{n+1}\left(D_{n}\right)\right) \\
& =D_{n} \vee d_{n+1}\left(D_{n}\right) \\
& =\left(d_{n+1}\left(D_{n}\right) \cdot D_{n}\right) \cdot D_{n} .
\end{aligned}
$$

Thus

$$
D_{n} \cdot d_{n+1}\left(D_{n}\right)=D_{n} \cdot\left(\left(d_{n+1}\left(D_{n}\right) \cdot D_{n}\right) \cdot D_{n}\right)=1
$$

Therefore, $D_{n} \leq d_{n+1}\left(D_{n}\right)$. By assumption, we get

$$
x \leq D_{n} \leq d_{n+1}\left(D_{n}\right)=d_{n+1}\left(d_{n}\left(d_{n-1}\left(\ldots\left(d_{2}\left(d_{1}(x)\right)\right) \ldots\right)\right)\right)
$$

for all $x \in X$. Hence $x \leq d_{n}\left(d_{n-1}\left(\ldots\left(d_{2}\left(d_{1}(x)\right)\right) \ldots\right)\right)$ for all $n \in \mathbb{N}$ and $x \in X$. In particular, put $d=d_{n}$ for all $n \in \mathbb{N}$. Hence $x \leq d_{n}\left(d_{n-1}\left(\ldots\left(d_{2}\left(d_{1}(x)\right)\right) \ldots\right)\right)=d_{n}(x)$ for all $n \in \mathbb{N}$ and $x \in X$.

Definition 2.4. An ideal D of a Hilbert algebra $X=(X, \cdot, 1)$ is said to be invariant (with respect to an (I, r)-derivation (resp., (r, I)-derivation, derivation) d of X) if $d(D) \subseteq D$.

Theorem 2.4. Every ideal of a Hilbert algebra $X=(X, \cdot, 1)$ is invariant with respect to any (I,r)derivation of X.

Proof. Let D be an ideal of X and d an (I,r)-derivation of X. Let $y \in d(D)$. Then $y=d(x)$ for some $x \in D$. It follows that $y \cdot x=d(x) \cdot x=1 \in D$, which implies $y \in D$. Thus $d(D) \subseteq D$. Hence D is invariant with respect to an $(1, r)$-derivation d of X.

Corollary 2.3. Every ideal of a Hilbert algebra $X=(X, \cdot, 1)$ is invariant with respect to any derivation of X.

Theorem 2.5. In a Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) if d is an $(1, r)$-derivation of X, then $y \vee x \in \operatorname{Kerd}(X)$ for all $y \in \operatorname{Ker} d(X)$ and $x \in X$,
(2) if d is an (r, I)-derivation of X, then $y \vee x \in \operatorname{Ker} d(X)$ for all $y \in \operatorname{Ker} d(X)$ and $x \in X$.

Proof. (1) Assume that d is an (I,r)-derivation of X. Let $y \in \operatorname{Ker} d(X)$ and $x \in X$. Then $d(y)=1$. Thus $d(y \vee x)=d((x \cdot y) \cdot y)=(d(x \cdot y) \cdot y) \vee((x \cdot y) \cdot d(y))=(d(x \cdot y) \cdot y) \vee((x \cdot y) \cdot 1)=(d(x \cdot y) \cdot y) \vee 1=1$. Hence $y \vee x \in \operatorname{Ker} d(X)$.
(2) Assume that d is an (r, I)-derivation of X. Let $y \in \operatorname{Ker} d(X)$ and $x \in X$. Then $d(y)=1$. Thus $d(y \vee x)=d((x \cdot y) \cdot y)=((x \cdot y) \cdot d(y)) \vee(d(x \cdot y) \cdot y)=((x \cdot y) \cdot 1) \vee(d(x \cdot y) \cdot y)=1 \vee(d(x \cdot y) \cdot y)=1$. Hence $y \vee x \in \operatorname{Ker} d(X)$.

Corollary 2.4. If d is a derivation of a Hilbert algebra $X=(X, \cdot, 1)$, then $y \vee x \in \operatorname{Ker} d(X)$ for all $y \in \operatorname{Ker} d(X)$ and $x \in X$.

Theorem 2.6. In a commutative Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) if d is an (I,r)-derivation of X and for any $x, y \in X$ is such that $y \leq x$ and $y \in \operatorname{Ker} d(X)$, then $x \in \operatorname{Ker} d(X)$,
(2) if d is an (r, I)-derivation of X and for any $x, y \in X$ is such that $y \leq x$ and $y \in \operatorname{Ker} d(X)$, then $x \in \operatorname{Ker} d(X)$.

Proof. (1) Assume that d is an (I,r)-derivation of X. Let $x, y \in X$ be such that $y \leq x$ and $y \in \operatorname{Ker} d(X)$. Then $y \cdot x=1$ and $d(y)=1$. Thus $d(x)=d(1 \cdot x)=d((y \cdot x) \cdot x)=d((x \cdot y) \cdot y)=$ $(d(x \cdot y) \cdot y) \vee((x \cdot y) \cdot d(y))=(d(x \cdot y) \cdot y) \vee((x \cdot y) \cdot 1)=(d(x \cdot y) \cdot y) \vee 1=1$. Hence $x \in \operatorname{Ker} d(X)$.
(2) Assume that d is an (r, I)-derivation of X. Let $x, y \in X$ be such that $y \leq x$ and $y \in \operatorname{Ker} d(X)$. Then $y \cdot x=1$ and $d(y)=1$. Thus $d(x)=d(1 \cdot x)=d((y \cdot x) \cdot x)=d((x \cdot y) \cdot y)=((x \cdot y) \cdot d(y)) \vee$ $(d(x \cdot y) \cdot y)=((x \cdot y) \cdot 1) \vee(d(x \cdot y) \cdot y)=1 \vee(d(x \cdot y) \cdot y)=1$. Hence $x \in \operatorname{Ker} d(X)$.

Corollary 2.5. If d is a derivation of a commutative Hilbert algebra $X=(X, \cdot, 1)$ and for any $x, y \in X$ is such that $y \leq x$ and $y \in \operatorname{Ker} d(X)$, then $x \in \operatorname{Ker} d(X)$.

Theorem 2.7. In a Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) if d is an (I, r)-derivation of X, then $y \cdot x \in \operatorname{Ker} d(X)$ for all $x \in \operatorname{Ker} d(X)$ and $y \in X$,
(2) if d is an (r, l)-derivation of X, then $y \cdot x \in \operatorname{Ker} d(X)$ for all $x \in \operatorname{Ker} d(X)$ and $y \in X$.

Proof. (1) Assume that d is an (I, r)-derivation of X. Let $x \in \operatorname{Ker} d(X)$ and $y \in X$. Then $d(x)=1$. Thus $d(y \cdot x)=(d(y) \cdot x) \vee(y \cdot d(x))=(d(y) \cdot x) \vee(y \cdot 1)=(d(y) \cdot x) \vee 1=1$. Hence $y \cdot x \in \operatorname{Ker} d(X)$.
(2) Assume that d is an (r, I)-derivation of X. Let $x \in \operatorname{Ker} d(X)$ and $y \in X$. Then $d(x)=1$. Thus $d(y \cdot x)=(y \cdot d(x)) \vee(d(y) \cdot x)=(y \cdot 1) \vee(d(y) \cdot x)=1 \vee(d(y) \cdot x)=1$. Hence $y \cdot x \in \operatorname{Ker} d(X)$.

Corollary 2.6. If d is a derivation of a Hilbert algebra $X=(X, \cdot, 1)$, then $y \cdot x \in \operatorname{Ker} d(X)$ for all $x \in \operatorname{Ker} d(X)$ and $y \in X$.

Theorem 2.8. In a Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) if d is an (I, r)-derivation of X, then $\operatorname{Ker} d(X)$ is a subalgebra of X,
(2) if d is an (r, I)-derivation of X, then $\operatorname{Ker} d(X)$ is a subalgebra of X.

Proof. (1) Assume that d is an (I,r)-derivation of X. By Theorem $2.1(1)$, we have $d(1)=1$ and so $1 \in \operatorname{Ker} d(X) \neq \emptyset$. Let $x, y \in \operatorname{Ker} d(X)$. Then $d(x)=1$ and $d(y)=1$. Thus $d(x \cdot y)=$ $(d(x) \cdot y) \vee(x \cdot d(y))=(1 \cdot y) \vee(x \cdot 1)=y \vee 1=1$. Hence $x \cdot y \in \operatorname{Ker} d(X)$, so $\operatorname{Ker} d(X)$ is a subalgebra of X.
(2) Assume that d is an (r, I)-derivation of X. By Theorem 2.1 (2), we have $d(1)=1$ and so $1 \in \operatorname{Ker} d(X) \neq \emptyset$. Let $x, y \in \operatorname{Ker} d(X)$. Then $d(x)=1$ and $d(y)=1$. Thus $d(x \cdot y)=$ $(x \cdot d(y)) \vee(d(x) \cdot y)=(x \cdot 1) \vee(1 \cdot y)=1 \vee y=1$. Hence $x \cdot y \in \operatorname{Ker} d(X)$, so $\operatorname{Ker} d(X)$ is a subalgebra of X.

Corollary 2.7. If d is a derivation of a Hilbert algebra $X=(X, \cdot, 1)$, then $\operatorname{Ker} d(X)$ is a subalgebra of X.

Definition 2.5. Let d be an (I, r)-derivation (resp., (r, I)-derivation, derivation) of a Hilbert algebra $X=(X, \cdot, 1)$. We define a subset Fix $d(X)$ of X by Fix $d(X)=\{x \in X: d(x)=x\}$.

Theorem 2.9. In a Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) if d is an (I, r)-derivation of X, then Fix $d(X)$ is a subalgebra of X,
(2) if d is an (r, l)-derivation of X, then $\operatorname{Fix} d(X)$ is a subalgebra of X.

Proof. (1) Assume that d is an (I,r)-derivation of X. By Theorem 2.1 (1), we have $d(1)=1$ and so $1 \in \operatorname{Fix} d(X) \neq \emptyset$. Let $x, y \in \operatorname{Fix} d(X)$. Then $d(x)=x$ and $d(y)=y$. Thus $d(x \cdot y)=$ $(d(x) \cdot y) \vee(x \cdot d(y))=(x \cdot y) \vee(x \cdot y)=x \cdot y$. Hence $x \cdot y \in \operatorname{Fix} d(X)$, so Fix $d(X)$ is a subalgebra of X.
(2) Assume that d is an (r, I)-derivation of X. By Theorem 2.1 (2), we have $d(1)=1$ and so $1 \in \operatorname{Fix} d(X) \neq \emptyset$. Let $x, y \in \operatorname{Fix} d(X)$. Then $d(x)=x$ and $d(y)=y$. Thus $d(x \cdot y)=$ $(x \cdot d(y)) \vee(d(x) \cdot y)=(x \cdot y) \vee(x \cdot y)=x \cdot y$. Hence $x \cdot y \in \operatorname{Fix} d(X)$, so Fix $d(X)$ is a subalgebra of X.

Corollary 2.8. If d is a derivation of a Hilbert algebra $X=(X, \cdot, 1)$, then Fix $d(X)$ is a subalgebra of X.

Theorem 2.10. In a Hilbert algebra $X=(X, \cdot, 1)$, the following statements hold:
(1) if d is an (I, r)-derivation of X, then $x \vee y \in \operatorname{Fix} d(X)$ for all $x, y \in \operatorname{Fix} d(X)$,
(2) if d is an (r, I)-derivation of X, then $x \vee y \in \operatorname{Fix} d(X)$ for all $x, y \in \operatorname{Fix} d(X)$.

Proof. (1) Assume that d is an (I,r)-derivation of X. Let $x, y \in \operatorname{Fix} d(X)$. Then $d(x)=x$ and $d(y)=y$. By Theorem $2.9(1)$, we get $d(y \cdot x)=y \cdot x$. Thus $d(x \vee y)=d((y \cdot x) \cdot x)=$ $(d(y \cdot x) \cdot x) \vee((y \cdot x) \cdot d(x))=((y \cdot x) \cdot x) \vee((y \cdot x) \cdot x)=(y \cdot x) \cdot x=x \vee y$. Hence $x \vee y \in \operatorname{Fix} d(X)$.
(2) Assume that d is an (r, I)-derivation of X. Let $x, y \in \operatorname{Fix} d(X)$. Then $d(x)=x$ and $d(y)=y$. By Theorem $2.9(2)$, we get $d(y \cdot x)=y \cdot x$. Thus $d(x \vee y)=d((y \cdot x) \cdot x)=((y \cdot x) \cdot d(x)) \vee(d(y \cdot x) \cdot x)=$ $((y \cdot x) \cdot x) \vee((y \cdot x) \cdot x)=(y \cdot x) \cdot x=x \vee y$. Hence $x \vee y \in \operatorname{Fix} d(X)$.

Corollary 2.9. If d is a derivation of a Hilbert algebra $X=(X, \cdot, 1)$, then $x \vee y \in \operatorname{Fix} d(X)$ for all $x, y \in \operatorname{Fix} d(X)$.

3. Conclusion

In this article, we introduced the ideas of (I, r)-derivations, (r, I)-derivations, and derivations of Hilbert algebras, and deduced their significant features. Additionally, two subsets $\operatorname{Ker} d(X)$ and Fix $d(X)$ for a derivation d of a Hilbert algebra X are defined. As a result, we have found that Ker $d(X)$ and Fix $d(X)$ are subalgebras of X.

Acknowledgment: This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF66-UoE017).
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, A Bi-endomorphism Induces a New Type of Derivations on B-Algebras, Italian J. Pure Appl. Math. 48 (2022), 336-348.
[2] T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, A Novel Derivation Induced by Some Binary Operations on d-Algebras, Int. J. Math. Comput. Sci. 17 (2022), 173-182.
[3] T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, New Derivations Utilizing Bi-endomorphisms on B-Algebras, J. Math. Comput. Sci. 11 (2021), 6420-6432. https://doi.org/10.28919/jmcs/6376.
[4] D. Busneag, A Note on Deductive Systems of a Hilbert Algebra, Kobe J. Math. 2 (1985), 29-35. https://cir. nii.ac.jp/crid/1570854175360486400.
[5] D. Busneag, Hilbert Algebras of Fractions and Maximal Hilbert Algebras of Quotients, Kobe J. Math. 5 (1988), 161-172. https://cir.nii.ac.jp/crid/1570572702603831808.
[6] I. Chajda, R. Halas, Congruences and Ideals in Hilbert Algebras, Kyungpook Math. J. 39 (1999), 429-429.
[7] A. Diego, Sur les Algébres de Hilbert, Collect. Logique Math. Ser. A (Ed. Hermann, Paris), 21 (1966), 1-52.
[8] W.A. Dudek, On fuzzification in Hilbert Algebras, Contrib. Gen. Algebra, 11 (1999), 77-83.
[9] L. Henkin, An Algebraic Characterization of Quantifiers, Fund. Math. 37 (1950), 63-74.
[10] A. Iampan, Derivations of UP-Algebras by Means of UP-Endomorphisms, Algebr. Struct. Appl. 3 (2016), 1-20.
[11] Y.B. Jun, Commutative Hilbert Algebras, Soochow J. Math. 22 (1996), 477-484.
[12] Y.B. Jun, Deductive Systems of Hilbert Algebras, Math. Japon. 43 (1996), 51-54. https://cir.nii.ac.jp/crid/ 1571417124616097792.
[13] P. Muangkarn, C. Suanoom, A. Iampan, New Derivations of d-Algebras Based on Endomorphisms, Int. J. Math. Comput. Sci. 17 (2022), 1025-1032.
[14] P. Muangkarn, C. Suanoom, P. Pengyim, A. Iampan, f_{q}-Derivations of B-Algebras, J. Math. Comput. Sci. 11 (2021), 2047-2057. https://doi.org/10.28919/jmcs/5472.
[15] P. Muangkarn, C. Suanoom, A. Yodkheeree, A. Iampan, Derivations Induced by an Endomorphism of BG-Algebras, Int. J. Math. Comput. Sci. 17 (2022), 847-852.
[16] K. Sawika, R. Intasan, A. Kaewwasri, A. Iampan, Derivations of UP-Algebras, Korean J. Math. 24 (2016), 345-367. https://doi.org/10.11568/KJM.2016.24.3.345.
[17] T. Tippanya, N. lam-Art, P. Moonfong, A. lampan, A New Derivation of UP-Algebras by Means of UPEndomorphisms, Algebra Lett. 2017 (2017), 4.
[18] J. Zhan, Z. Tan, Intuitionistic Fuzzy Deductive Systems in Hilbert Algebra, Southeast Asian Bull. Math. 29 (2005), 813-826.

