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Abstract. Various statistical distributions are still being used extensively over the previous decades

for modeling data in numerous areas such as engineering, sciences, and finance. Nonetheless, in a

lot of applied areas, there is a continuous need for expanded forms of these distributions. However,

many common distributions do not fit the data well. Thus, new distributions have been constructed

in literature. The purpose of this article is to present a new family of distributions using the Dagum

distribution as a generator and to study its properties such as hazard rate functions, moments, quan-

tile function, ordered statistics and Renyi entropy. Moreover, one sub model called Dagum-Frechet

distribution is discussed with some of its properties. The maximum likelihood estimation is employed

to estimate the parameters of the proposed distribution, and the confidence intervals are obtained.

Finally, two real data sets are analyzed to illustrate the performance of the purposed distribution.

1. Introduction

Statistical literature is abounding with many statistical distributions that are used for data modeling

in various areas of applied life, such as engineering, actuarial sciences, education, demography, eco-

nomics, finance, insurance, environmental, medical, and biological studies. The quality of statistical

distribution is based on fitting the assumed probability distribution to the data. However, there are

various issues where any of these distributions do not fit the data appropriately, especially in the areas

of engineering, finance, medicine and environmental hazards. Therefore, a significant effort has been

made in developing different families of distributions. Recently, there has been a growing interest of

generating wide families of distributions from existing families of distributions by adding one or more

additional parameter(s) to the baseline distribution. There are a lot of well-known family of distribu-

tions, such as Beta-G by [1], KumaraSwamy-G by [2], Exponentiated generalized-G by [3], Gamma-X
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family by [4] and Logistic-X by [5]. Moreover, [6] and [7] introduced the odd Lomax-G family of dis-

tributions and the Lomax Gumbel distribution respectively. The Zubair-G family of distributions was

studied by [8] and the Zubair-Weibull distribution is obtained. [9] proposed the exponentiated Gumbel

family of distributions and evolved three separate models.

The transformed transformer (T-X) method is considered as one of the most important ways to

generalize distributions, which many have relied on in their researches. It is introduced by [10] for

generating families of continuous distributions.

Let r(t) be the probability density function (PDF) of a random variable T, where T ∈ [a, b], for −∞
≤ a ≤ b ≤ ∞. Assume W(G(x)) be a function of the cumulative density function (CDF) G(x) of any

random variable X, where W(G(x)) satisfies the following:

i. W(G(x)) ∈ [a, b].

ii. W(G(x)) is differentiable and monotonically nondecreasing.

iii. W(G(x)) → a as x→ −∞ and W(G(x)) → b as x→ ∞.

The CDF and PDF of the T-X family of distributions are given respectively as:

F (x) =

∫ W (G(x))

a

r(t)dt, (1.1)

f (x) =

[
d

dx
W (G(x))

]
r [W (G(x))]. (1.2)

The definition of W(G(x)) depends on the support of the random variable T as follows:

(1) When the support of T is bounded: W(G(x)) can be defined as G(x) or G(x)α.

(2) When the support of T is [a,∞), for a ≥ 0: W(G(x)) can be defined as −log(1 − G(x)) or

G(x)/(1− G(x)) or −log(1− G(x)α).

(3) When the support of T is (−∞,∞): W(G(x)) can be defined as log[−log(1 − G(x))] or

log[G(x)/(1− G(x))] ( [10]).

The main purpose of this article is to introduce a new family of distributions, called the Dagum-

X family of distributions that are more adaptable to data in a wide range of applications. This

article is organized as follows: In Section 2, Dagum-X family of distribution is defined. Also, its

propability and cumulative distribution functions are introduced. Some special models of this family

are presented in Section 3. Section 4 shows some mathematical properties of the Dagum-X family

of distributions including survival, hazard function, rth moments, quantile function, Renyi entropy

and order statistics. The characterizations of one sub-model of this family are studied in Section

5. The maximum likelihood method for parameter estimation is discussed in section 6. In section 7

simulation studies will be conducted to show the performance of the maximum likelihood estimation

(MLE) method. Section 8 provides a real data application to show the flexibility of the Dagum-X

family. Finally, concluding remarks are presented in Section 9.
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2. The Dagum - X Family

The importance of a statistical model lies in the fitness of the probability distribution to the data.

Thus, different families of probability distributions have been developed for fitting different types of

data. However, there are still several constraints that affect on fitting the formed distributions to the

data appropriately especially in particular applications.

As mentioned earlier, Dagum distribution has received interest from researchers because of its

competition with other models. Different extensions that include Dagum distribution have been

proposed and developed using different approaches in attempt to provide more flexibility in fitting

data. Using the kurtosis diagram provided by [11] and [12], [13] presented the log-Dagum distribution

and examined the changes in the kurtosis. More structural properties and parameter estimates for

the log-Dagum distribution were addressed by [14]. [15] proposed a new class of distributions called

Mc-Dagum distribution. Several distributions, including the beta-Dagum, beta-Burr III, beta-Fisk,

Dagum, Burr III, and Fisk distributions, are included in this class of distributions as special cases.

They obtained the properties of the model and the maximum likelihood estimates of the model

parameters. [16] proposed a new class of weighted Dagum and related distributions and discussed this

class in detail. [17] studied a new five-parameter model called the extended Dagum distribution and

discussed the features of the model. The proposed model contains as special cases the log-logistic

and Burr III distributions among others. [18] proposed a new four parameter distribution called the

Dagum-Poisson (DP) distribution by compounding Dagum and Poisson distributions. The structural

properties and the maximum likelihood estimates (MLEs) of the parameters are obtained. [19] pro-

posed the exponentiated generalized exponential Dagum distribution. There are several sub-models

in this family of distributions, including the Dagum distribution, Burr III distribution, exponentiated

generalized Dagum distribution, Fisk distribution, and exponentiated generalized exponential Burr

III distribution. [20] introduced a new model called a power log-Dagum distribution. The model

consists of many new sub-models such as: linear log-Dagum, power logistic, log-Dagum distributions

and linear logistic among them. Three distinct estimating procedures are given along with the

model’s properties. The odd Dagum-G family, which [21] introduced, is a new family of continuous

distributions with three additional shape parameters. The properties of the suggested family and the

model parameters estimates are attained.

Using the T-X approach, several new distributions have been introduced in the literature. We

generalized the Dagum distribution using T-X method by [10]. The new family of Dagum distribution,

called Dagum-X, can be defined as follows: Let F (t) and f (t) be the CDF and the PDF for a Dagum

random variable T ∈ [0,∞), given by
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F (t;λ, δ, β) = (1 + λt−δ)
−β

, t > 0, λ, δ, β > 0, (2.1)

and

f (t;λ, δ, β) = βλδt−δ−1(1 + λt−δ)
−β−1

, t > 0, λ, δ, β > 0, (2.2)

where ≥ is a scale parameter and ◦ and � are shape parameters.

By replacing t in Equation (2.1) by the W (G(X)) =
G(x ;θ)

G(x ;θ)
, we obtained the CDF of a new family

namely, Dagum-X family, where G(x ; θ) and G(x ; θ)=1-G(x ; θ) are the baseline CDF and survival

function (SF) depending on a parameter vector θ.

F (x ;λ, δ, β, θ) =

(
1 + λ

[
G(x ; θ)

G(x ; θ)

]−δ)−β
, (2.3)

The PDF is obtained by differentiating Equation (2.3) with respect to (w. r. t.) x as follows:

f (x ;λ, δ, β, θ) = βλδg(x)
[G(x)]−δ−1

[1− G(x)]−δ+1

[
1 + λ

(
G(x)

1− G(x)

)−δ]−β−1
, t > 0, λ, δ, β > 0.

(2.4)

3. Special Models

One of the main reasons for the desire to generate different families of distributions is to provide

different extensions of appropriate distributions that are more flexible to use with data in various

applications. In this section, some Dagum-X special distributions are introduced, such as Dagum-

Weibull(D-W), Dagum-exponential(D-exp), Dagum-Rayleigh(D-R) and Dagum-Fréchet(D-Fr).

3.1. The Dagum- Weibull distribution. The Weibull distribution is one of the lifetime distributions

that is most frequently used in different areas, such as economics, biology, hydrology and engineering

sciences due to its simplicity and versatility. It generalizes the exponential model to include non

constant failure rate functions. In particular, it encompasses both increasing and decreasing failure

rate functions. As it is well known that Weibull distribution (with scale and shape parameters a, b >

0) has CDF and PDF given by:

G(x ; a, b) = 1− e−(
x
a
)b , x > 0, a, b > 0 (3.1)

and

g(x ; a, b) =
b

ab
xb−1e−(

x
a
)b , x > 0, a, b > 0 (3.2)

The CDF and PDF of Dagum-Weibull distribution can be obtained by substituting Equations (3.1)

and Equations (3.2) in Equations (2.3) and Equations (2.4) as follows:

F (x ;λ, δ, β, a, b) =

1 + λ

[
1− e−(

x
a
)b

e−(
x
a
)b

]−δ−β, x > 0, λ, δ, β, a, b > 0, (3.3)
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and

f (x ;λ, δ, β, a, b) =

(
βλδb

ab

)
xb−1

(1− e−(
x
a
)b)
−δ−1

(e−(
x
a
)b)
−δ

1 + λ

[
1− e−(

x
a
)b

(e−(
x
a
)b)

]−δ−β−1, (3.4)

x > 0, λ, δ, β, a, b > 0.

3.2. The Dagum-exponential distribution. The exponential distribution is one of the common dis-

tributions in reliability analysis. It is a particular case of the gamma distribution and often used to

model the time elapsed between events. The exponential distribution (with parameter a > 0) has

CDF and PDF given by:

G(x ; a) = 1− e−(
x
a
), x > 0, a > 0 (3.5)

and

g(x ; a) =
1

a
e−(

x
a
), x > 0, a > 0 (3.6)

The CDF and PDF of Dagum-exponential distribution can be obtained by substituting Equations (3.5)

and Equations (3.6) in Equations (2.3) and Equations (2.4) as follows:

F (x ;λ, δ, β, a) =

1 + λ

[
1− e−(

x
a
)

e−(
x
a
)

]−δ−β, x > 0, λ, δ, β, a > 0, (3.7)

and

f (x ;λ, δ, β, a) =

(
βλδ

a

)
(1− e−(

x
a
))
−δ−1

(e−(
x
a
))
−δ

1 + λ

[
1− e−(

x
a
)

(e−(
x
a
))

]−δ−β−1, x > 0, λ, δ, β, a > 0.

(3.8)

3.3. The Dagum-Rayleigh distribution. The Rayleigh distribution is a continuous probability distri-

bution introduced by [22]. It is a special case of the Weibull distribution with a scale parameter of 2.

It plays an essential role in modeling and analyzing lifetime data such as survival and reliability analysis,

theory of communication, physical sciences, technology, diagnostic imaging and applied statistics. The

Rayleigh distribution (with scale parameter a > 0) has CDF and PDF given by:

G(x ; a) = 1− e−(
x
a
)2 , x > 0, a > 0 (3.9)

and

g(x ; a) =
2

a2
xe−(

x
a
)2 , x > 0, a > 0 (3.10)

The CDF and PDF of Dagum-Rayleigh distribution can be obtained by substituting Equations (3.9)

and Equations (3.10) in Equations (2.3) and Equations (2.4) as follows:

F (x ;λ, δ, β, a) =

1 + λ

[
1− e−(

x
a
)2

e−(
x
a
)2

]−δ−β, x > 0, λ, δ, β, a > 0 (3.11)
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and

f (x ;λ, δ, β, a) =

(
2βλδ

a2

)
(x)

(1− e−(
x
a
)2)
−δ−1

(e−(
x
a
)2)
−δ

1 + λ

[
1− e−(

x
a
)2

(e−(
x
a
)2)

]−δ−β−1, (3.12)

x > 0, λ, δ, β, a > 0.

3.4. The Dagum-Fréchet distribution. The Fréchet (Fr) Distribution was developed in the 1920s

by French mathematician Maurice René Fréchet to model maximum values in a data set that came

from different phenomena such as flood analysis, horse racing, human lifespans, maximum rainfalls

and river discharges in hydrology. It is considered as one of the extreme value distributions (EV Ds),

known as the EV D Type II. The Fr distribution (with scale and shape parameters a, b > 0 ) has CDF

and PDF given by:

G(x ; a, b) = e−(
a
x
)b , x > 0, a, b > 0 (3.13)

and

g(x ; a, b) = babx−b−1e−(
a
x
)b , x > 0, a, b > 0 (3.14)

The CDF and PDF of Dagum-Fréchet distribution can be obtained by substituting Equations (3.13)

and Equations (3.14) in Equations (2.3) and Equations (2.4) as follows:

F (x ;λ, δ, β, a, b) =

1 + λ

[
e−(

a
x
)b

(1− e−(
a
x
)b)

]−δ−β, x > 0, λ, δ, β, a, b > 0, (3.15)

and

f (x ;λ, δ, β, a, b) = βλδbabx−b−1
(e−(

a
x
)b)
−δ

(1− e−(
a
x
)b)
−δ+1

1 + λ

[
e−(

a
x
)b

(1− e−(
a
x
)b)

]−δ−β−1, x > 0,

λ, δ, β, a, b > 0.

4. Mathematical Properties of the Dagum-X Family

This section describes some of mathematical properties of the Dagum-X family of distributions.

4.1. Survival and Hazard rate functions. Let the random variable T be the time to failure of

the Dagum-X family of distributions. The survival and hazard rate functions of Dagum-X family of

distributions are, respectively, given by:

S(t; θ) = 1−

(
1 + λ

[
G(t; θ)

G(t; θ)

]−δ)−β
, (4.1)

and

h(t; θ) =
βλδg(t) [G(t)]−δ−1

[1−[G(t)]]−δ+1

[
1 + λ( G(t)

1−G(t))
−δ]−β−1

1−
(

1 + λ
[
G(t;θ)

G(t;θ)

]−δ)−β , (4.2)
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where θ = (β, λ, δ)T is a vector of parameters of baseline distribution.

4.2. Moments. Let X be a random variable follows the Dagum-X family with the density function

given in Equation (2.4). The rth moment of X is given by:

E(Xr ) = βλδ

∫ ∞
0

x rg(x)
[G(x)]−δ−1

[1− [G(x)]]−δ+1

[
1 + λ

(
G(x)

1− G(x)

)−δ]−β−1
dx.

Using the expansion (see [23]):

(1 + x)−(n+1) =

∞∑
k=0

(
n + k

k

)
(−1)kxk , (4.3)

we have

E(Xr ) =βλδ

∫ ∞
0

x rg(x)
[G(x)]−δ−1

[1− [G(x)]]−δ+1

∞∑
k=0

(−1)kλk
(
β + k

k

)(
G(x)

1− G(x)

)−δk
dx,

=βδ

∫ ∞
0

x rg(x)

∞∑
k=0

(−1)kλk+1
(
β + k

k

)
[G(x)]−δ(k+1)−1[1− G(x)]δ(k+1)−1dx,

and using the following expansion (see [24])

(1− x)n =

∞∑
k=0

(
n

k

)
(−1)kxk , (4.4)

we have

E(Xr ) =βδ

∫ ∞
0

x rg(x)

∞∑
k=0

(−1)kλk+1
(
β + k

k

)
[G(x)]−δ(k+1)−1

∞∑
m=0

(−1)m
(
δ(k + 1)− 1

m

)
[G(x)]mdx,

=βδ

∫ ∞
0

x rg(x)

∞∑
k,m=0

(−1)k+mλk+1
(
β + k

k

)(
δ(k + 1)− 1

m

)
[G(x)]Jdx

Therefore,

E(Xr ) = C1

∫ ∞
0

x rg(x)[G(x)]Jdx. (4.5)

where C1 = βδ
∑∞
k,m=0 (−1)k+mλk+1

(
β+k
k

)(
δ(k+1)−1

m

)
, J = m − δ(k + 1)− 1.

4.3. Quantail function. Let X be a random variable that has the CDF given in Equation (2.3). The

quantile function, Q(u) of X can be derived as follows:

Let

u = F (x) =

(
1 + λ

[
G(x ; θ)

G(x ; θ)

]−δ)−β
,

After simplification, the quantile function is expressed as

Q(u) = G−1


(
[u]
− 1
β −1
λ

)−1
δ

1 +

(
[u]
− 1
β −1
λ

)−1
δ

 , (4.6)
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where, u is a uniform random number on the interval (0, 1) and G−1(.) is the inverse function of G(.).

In particular, Q(0.5) is the median of the family and defined by substituting u = 0.5 in Equation (4.6):

Q(0.5) = G−1


(
[0.5]

− 1
β −1
λ

)−1
δ

1 +

(
[0.5]

− 1
β −1
λ

)−1
δ

 .
The first and third quartiles can be obtained also by substituting u = 0.25 and u = 0.75, respectively,

in Equation (4.6), as follows:

Q(0.25) = G−1


(
[0.25]

− 1
β −1

λ

)−1
δ

1 +

(
[0.25]

− 1
β −1

λ

)−1
δ

 ,
and

Q(0.75) = G−1


(
[0.75]

− 1
β −1

λ

)−1
δ

1 +

(
[0.75]

− 1
β −1

λ

)−1
δ

 .

4.4. Rényi Entropys. The entropy of a random variable X represents a measure of uncertainty vari-

ation. Let X be a random variable that has the PDF given in Equation (2.4), then the Rényi entropy

of the random variable X is defined as:

Rθ(x) = (1− θ)−1log

[∫ ∞
0

f (x)θdx

]
, θ > 0 and θ 6= 1. (4.7)

Therefore, by applying Equation (2.4) into Equation (4.7), we have:

Rθ(x) =
1

1− θ log

∫ ∞
0

(βλδ)θ[g(x)]θ

[
[G(x)]−θ(δ+1)

[1− G(x)]−θ(δ−1)

][
1 + λ

(
G(x)

1− G(x)

)−δ]−θ(β+1)
dx

 .
Using the expansions in Equation (4.3) and Equation (4.4), the Rényi entropy of the Dagum-X,

Rθ(x), can be written as:

Rθ(x) =
1

1− θ log
∫ ∞
0

(βλδ)θ[g(x)]θ
∞∑

k,r=0

(
θ(β + 1) + k − 1

k

)(
θ(δ − 1) + δk

r

)
× (−1)r+kλk [G(x)]−θ(δ+1)−δk+rdx

Thus,

Rθ(x) =
1

1− θ log
[
C1

∫ ∞
0

[g(x)]θ[G(x)]J1dx

]
(4.8)
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where J1 and C1 are resbectivaly, defined as follow:

J1 =− θ(δ + 1)− δk + r

C1 =(βλδ)θ
∞∑

k,r=0

(
θ(β + 1) + k − 1

k

)(
θ(δ − 1) + δk

r

)
(−1)r+kλk

4.5. Order Statistics. Let x1:n, x2:n, ..., xn:n be the order statistics obtained from the Dagum-X with

CDF F (x) and PDF f (x), respectively, given in Equation (2.3) and Equation (2.4). The PDF of the

i th order statistics can be expressed as:

fi :n(x) =
n!βλδg(x)

(i − 1)!(n − i)!

[G(x)]−δ−1

[1− [G(x)]]−δ+1

[
1 + λ

(
G(x)

1− G(x)

)−δ]−β−1

×

[1 + λ

(
G(x)

1− G(x)

)−δ]−βi−11−

[
1 + λ

(
G(x)

1− G(x)

)−δ]−βn−i

Let

u =

[
1 + λ

(
G(x)

1− G(x)

)−δ]−β
, (4.9)

then

fi :n(x) =
n!βλδg(x)

(i − 1)!(n − i)!

[G(x)]−δ−1

[1− [G(x)]]−δ+1
u(1+

1
β
)[u]i−1[1− u]n−i ,

=
n!βλδg(x)

(i − 1)!(n − i)!

[G(x)]−δ−1

[1− [G(x)]]−δ+1
u(i+

1
β
)[1− u]n−i ,

By applying the expansion in Equation (4.4), we have

fi :n(x) =
n!βδg(x)

(i − 1)!(n − i)!

∞∑
k,m=0

(
n − i
k

)(
βi + βk +m

m

)
(−1)k+m(λ)m+1G(x)−(δm+δ+1)

×
∞∑
l=0

(
δm + δ − 1

l

)
(−1)lG(x)l ,

=
n!βδg(x)

(i − 1)!(n − i)!

∞∑
k,m,l=0

(
n − i
k

)(
βi + βk +m

m

)(
δm + δ − 1

l

)
(−1)k+m+l(λ)m+1G(x)l−(δm+δ+1).

(4.10)

5. Dagum-Fréchet Distribution and Its Properties

The Fréchet distribution is becoming increasingly a preferred distribution in extending new statistical

models. [25] introduced a distribution that generalizes the Fréchet distribution, known as the exponen-

tiated Fréchet distribution and included a detailed analysis of the mathematical properties of this new

distribution. [26] introduced and studied three component mixtures of the Fréchet distributions when
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the shape parameter is known under Bayesian view point. [27] developed a new compound continuous

distribution named the Gompertz Fréchet distribution which extends the Frèchet distribution. [28]

proposed a new four-parameter Fréchet distribution called the odd Lomax Fréchet distribution. The

new model can be expressed as a linear mixture of Fréchet densities.

The D-Fr distribution is introduced briefly in (3.4) as a special model of the Dagum-X family. The

CDF and PDF of the distribution are given in Equations (3.15) and (??), respectively. In this section,

mathematical properties of the new distribution are presented and the maximum likelihood estimation

is employed to estimate the parameters of the new distribution. Monte Carlo Simulation by using R

program to assess the performance of the maximum likelihood estimation is applied and discussed.

Finally, real data sets are analyzed to illustrate the performance of the proposed distribution. The plot

of the PDF is presented using different values for the five parameters to study its behaviour, as shown

in Figure (1).

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

x

P
D

F

parameters
β=1.5, λ=0.5, δ=0.75, a=1.0, b=1.5     
β=2.0, λ=1.0, δ=0.85, a=1.5, b=2.0     
β=2.5, λ=1.5, δ=0.95, a=2.0, b=2.5     
β=3.0, λ=2.0, δ=1.15, a=2.5, b=3.0     

Figure 1. The D-Fr density function when all shape and scale parameters are changing.

Figure (1) displays the density function of the D-Fr for different values of the shape and scale

parameters. It is right skewed and has different levels of kurtosis which shows the flexibility of the

distribution for modelling skew data.

5.1. Survival and Hazrd functions. The survival and hazard rate functions of D-Fr are given by

substituting Equation (3.13) and (3.14) in Equation (4.1) and (4.2) respectively as follows:

S(x ; θ) = 1−

1 + λ

[
e−(

a
x
)b

(1− e−(
a
x
)b)

]−δ−β, (5.1)
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and

h(x ; θ) =

βλδbabx−b−1
(

(e−(
a
x )
b
)
−δ

(1−e−(
a
x )
b
)
−δ+1

)(
1 + λ

[
e−(

a
x )
b

(1−e−(
a
x )
b
)

]−δ)−β−1

1−

(
1 + λ

[
e−(

a
x )
b

(1−e−(
a
x )
b
)

]−δ)−β . (5.2)
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0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

x

h
(x

)

parameters
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β=3.0, λ=2.0, δ=1.15, a=2.5, b=3.0     

Figure 2. The D-Fr hazard rate function when all shape and scale parameters are changing.

Various curves of the hazard function of Dagum-Fréchet distribution are shown in Figure (2). By

assuming different values of the shape and scale parameters, the curves appear to be unimodal and

positive skewed with different levels of skewness and kurtosis.

5.2. Moments. The r th moment of the D-Fr distribution is obtained by substituting Fréchet distri-

bution’s CDF and PDF in Equations (3.13) and (3.14) into the rth moment of Dagum-X in Equation

(4.5). As a result, the rth moment of D-Fr distribution is given as

E(Xr ) = C1

∫ ∞
0

x rg(x)[G(x)]Jdx,

= C1

∫ ∞
0

x r
(
babx−b−1e−(

a
x
)b
) [
e−(

a
x
)b
]J
dx,

= C2

∫ ∞
0

x r−b−1
[
e−(

a
x
)b
]J2

dx,

where,

C1 = βδ

∞∑
k,m=0

(−1)k+mλk+1
(
β + k

k

)(
δ(k + 1)− 1

m

)
,

C2 = C1ba
b,
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and

J2 = J + 1 = m − δ(k + 1)

Using integration by substitution,

let

u = J2

[
(
a

x
)
b
]
then x =

[
a(
u

J2
)
−( 1

b
)
]
and dx = (

−a
bJ2

)(
u

J2
)
(−1
b
−1)
du.

Hence,

E(Xr ) = C2

∫ ∞
0

x r−b−1
[
e−(

a
x
)b
]J2

dx

= C2

∫ 0
∞

[
a(
u

J2
)
−( 1

b
)
]r−b−1

e−u(
−a
bJ2

)(
u

J2
)
(−1
b
−1)
du

= C2
ar−b

b

(
1

J2

)−r
b
+1 ∫ ∞

0

u
−r
b e−udu

= C2
ar−b

b

(
1

J2

)−r
b
+1

Γ(−
r

b
+ 1)

= βδbab
∞∑

k,m=0

(−1)k+mλk+1
(
β + k

k

)(
δ(k + 1)− 1

m

)
ar−b

b

(
1

J2

)−r
b
+1

Γ(−
r

b
+ 1)

= βδar
∞∑

k,m=0

(−1)k+mλk+1
(
β + k

k

)(
δ(k + 1)− 1

m

)(
1

J2

)−r
b
+1

Γ(−
r

b
+ 1)

Then, the moment of Dagum-Fréche distribution is given as

E(Xr ) = C3

(
1

J2

)−r
b
+1

arΓ(−
r

b
+ 1), [1−

r

b
] > 0 (5.3)

where,

C3 = βδ

∞∑
k,m=0

(−1)k+mλk+1
(
β + k

k

)(
δ(k + 1)− 1

m

)
,

and

J2 = m − δ(k + 1).

5.2.1. Mean and Variance. The mean of D-Fr distribution can be obtained by setting (r = 1) in

Equation (5.3), which results in the following form:

E(X) = C3

(
1

J2

)−1
b
+1

aΓ(−
1

b
+ 1), (5.4)

where,

C3 = βδ

∞∑
k,m=0

(−1)k+mλk+1
(
β + k

k

)(
δ(k + 1)− 1

m

)
,
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and

J2 = m − δ(k + 1).

The 2nd moment E(X2) can be found by setting (r = 2) in Equation (5.3), then the variance of

D-Fr distribution can be obtained as follows:

V ar(X) = [C3

(
1

J2

)−2
b
+1

a2Γ(−
2

b
+ 1)]− [C3

(
1

J2

)−1
b
+1

aΓ(−
1

b
+ 1)]

2

. (5.5)

where,

C3 = βδ

∞∑
k,m=0

(−1)k+mλk+1
(
β + k

k

)(
δ(k + 1)− 1

m

)
,

and

J2 = m − δ(k + 1).

5.3. Quantail function. The quantail function of the D-Fr distribution, x = F−1(u), can be obtained

by inverting the CDF in Equation (3.15) as follows:

x = Q(u) =
a−log

[
(u)
− 1
β −1
λ

]− 1
δ

1+( (u)− 1β −1λ

)− 1
δ




1
b

. (5.6)

where, u is a uniform random number on the interval (0, 1). Therefore, the median of the D-Fr can

be found by substituting u = 0.5 in Equation (5.6) as follows:

Q(0.5) =
a−log

[
(0.5)

− 1
β −1

λ

]− 1
δ

1+( (0.5)− 1β −1λ

)− 1
δ




1
b

. (5.7)

The first and third quartiles can also be obtained by substituting u = 0.25 and u = 0.75 in Equation

(5.6), respectively as follows:

Q(0.25) =
a−log

[
(0.25)

− 1
β −1

λ

]− 1
δ

1+( (0.25)− 1β −1λ

)− 1
δ




1
b

,
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and

Q(0.75) =
a−log

[
(0.75)

− 1
β −1

λ

]− 1
δ

1+( (0.75)− 1β −1λ

)− 1
δ




1
b

.

5.4. Rényi Entropys. Using the definition of the Rényi entropy in Equation (4.7), and applying the

CDF and PDF of Frechet distribution in Equation (3.13) and (3.14), we have:

Rθ(x) =
1

1− θ log
[
C1

∫ ∞
0

(babx−b−1e−(
a
x
)b)

θ
(e−(

a
x
)b)

J1
dx

]

=
1

1− θ log
[
C2

∫ ∞
0

(x−θ(b+1))(e−(
a
x
)b)

θ
(e−(

a
x
)b)

J1
dx

]

=
1

1− θ log
[
C2

∫ ∞
0

x−θ(b+1)(e−(
a
x
)bJ2)dx

]
where,

C1 =(βλδ)θ
∞∑

k,r=0

(
θ(β + 1) + k − 1

k

)(
θ(δ − 1) + δk

r

)
(−1)r+kλk ,

C2 =C1(ba
b)
θ
,

J1 =−θ(δ + 1)− δk + r ,

and

J2 =θ + J1.

Using integration by substitution and after simplification, we get

Rθ(x) =
1

1− θ log
[
C3

∫ ∞
0

uθ+
θ
b
− 1
b
−1e−udu

]
,

Rθ(x) =
1

(1− θ)
log

[
C3Γ(θ +

θ

b
−

1

b
)

]
, [θ +

θ

b
−

1

b
] > 0 (5.8)

where C3 and J2 are, respectively, as follows:

C3 =(βδ)θbθ−1a1−θ
∞∑

k,r=0

(
θ(β + 1) + k − 1

k

)(
θ(δ − 1) + δk

r

)
(−1)r+kλk+θ

(
1

J2

)(θ+ θ−1
b
)

,

J2 =−δ(θ + k) + r .
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5.5. Order Statistics. The order statistics of D-Fr distribution is obtained by substituting the Fr

distribution’s CDF and PDF in Equation (3.13) and (3.14) in the order statistics of Dagum-X family,

in Equation (4.10), as follows:

fi :n(x) =
n!

(i − 1)!(n − i)!
βδbabx (−b−1)

∞∑
k,m,l=0

(
n − i
k

)(
βi + βk +m

m

)(
δm + δ − 1

l

)
(−1)k+m+l

× (λ)m+1[e−(
a
x
)b ]
l−δm−δ

.

(5.9)

6. Maximum Likelihood Estimation

In this section, the MLE method will be applied to estimate the unknown parameters of the D-Fr

distribution. Assume that x1, x2, ...xn is a random sample of the D-Fr distribution, then the likelihood

function for the vector of parameters θ = (β, λ, δ, a, b)T is given by:

L(θ) =

n∏
i=1

βλδbabx−b−1
(e−(

a
x
)b)
−δ

(1− e−(
a
x
)b)
−δ+1

1 + λ

[
e−(

a
x
)b

(1− e−(
a
x
)b)

]−δ−β−1, (6.1)

then the log likelihood function can be written as:

l = logL = nlogβ + nlogλ+ nlogδ + nlogb + nbloga − (b + 1)

n∑
i=1

log[x ]− δ
n∑
i=1

log[e−(
a
x
)b ]

+(δ − 1)

n∑
i=1

log[1− e−(
a
x
)b ]− (β + 1)

n∑
i=1

log

1 + λ

(
e−(

a
x
)b

1− e−(
a
x
)b

)−δ.
(6.2)

The first partial derivatives of the log likelihood function in Equation (6.2) with respect to �, ≥,
◦, a and b are respectively given as follows:

∂l

∂β
=
n

β
−

n∑
i=1

log

1 + λ

 e
−( a

xi
)b

1− e−(
a
xi
)b

−δ
, (6.3)

∂l

∂λ
=
n

λ
− (β + 1)

n∑
i=1

(
e
−( axi

)
b

1−e−(
a
xi
)
b

)−δ
1 + λ

(
e
−( axi

)
b

1−e−(
a
xi
)
b

)−δ , (6.4)

∂l

∂δ
=
n

δ
−

n∑
i=1

log[e
−( a

xi
)b

]− (β + 1)

n∑
i=1

−

(
e
−( axi

)
b

1−e−(
a
xi
)
b

)−δ
λlog

(
e
−( axi

)
b

1−e−(
a
xi
)
b

)
1 + λ

(
e
−( axi

)
b

1−e−(
a
xi
)
b

)−δ +

n∑
i=1

log[1− e−(
a
xi
)b

],

(6.5)
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∂l

∂a
=
nb

a
− (β + 1)

n∑
i=1

λ

be
−2( axi

)
b

 e
−( axi

)
b

1−e
−( axi

)
b

−δ−1δ( a
xi
)−1+b

xi (1−e
−( axi

)
b

)2
+

be
−( axi

)
b

 e
−( axi

)
b

1−e
−( axi

)
b

−δ−1δ( a
xi
)−1+b

x(1−e−(
a
xi
)
b

)




[
1 + λ

(
e
−( axi

)
b

1−e−(
a
xi
)
b

)−δ]
−δ
∑n
i=1

b[ a
xi
]−1+b

xi
+ (−1 + δ)

∑n
i=1

be
−( axi

)
b

( a
xi
)−1+b

xi [1−e
−( axi

)
b

]

,

(6.6)

∂l

∂b
=
n

b
+ nloga −

n∑
i=1

log[xi ]

−(β + 1)

n∑
i=1

λ

e
−2( axi

)
b

 e
−( axi

)
b

1−e
−( axi

)
b

−δ−1δlog( a
xi
)( a
xi
)b

(1−e−(
a
xi
)
b

)2
+

e
−( axi

)
b

 e
−( axi

)
b

1−e
−( axi

)
b

−δ−1δlog( a
xi
)( a
xi
)b

1−e−(
a
xi
)
b




[
1 + λ

(
e
−( axi

)
b

1−e−(
a
xi
)
b

)−δ]
−δ
∑n
i=1−log( axi )( axi )

b + (−1 + δ)
∑n
i=1

e
−( axi

)
b

log( a
xi
)( a
xi
)b

1−e−(
a
xi
)
b

.

(6.7)

The MLEs β̂, λ̂, δ̂, â, b̂ of β, λ, δ, a, b can be obtained by equating the results to zero and solving

the system of nonlinear equations numerically.

For interval estimation of the model parameters, inverting Fisher information matrix is required,

but finding the expectation of the Fisher information matrix is not easy. Therefore, the 5x5 observed

information matrix is used to generate confidence intervals for the model parameters. The observed

information matrix is given as follows:

I(θ̂)=



− ∂2l
∂β2

− ∂2l
∂β∂λ − ∂2l

∂β∂δ − ∂2l
∂β∂a − ∂2l

∂β∂b

− ∂2l
∂λ∂β − ∂2l

∂λ2
− ∂2l
∂λ∂δ − ∂2l

∂λ∂a − ∂2l
∂λ∂b

− ∂2l
∂δ∂β − ∂2l

∂δ∂λ − ∂2l
∂δ2

− ∂2l
∂δ∂a − ∂2l

∂δ∂b

− ∂2l
∂a∂β − ∂2l

∂a∂λ − ∂2l
∂a∂δ − ∂2l

∂a2
− ∂2l
∂a∂b

− ∂2l
∂b∂β − ∂2l

∂b∂λ − ∂2l
∂b∂δ − ∂2l

∂b∂a − ∂2l
∂b2


The expectation of the observed information matrix can be solved iteratively using R software.

Therefore, the multivariate normal distribution N5(0, I−1) can be used to construct 100(1-�)% two

sided approximate confidence intervals for the model parameters �, ≥, ◦, a and b where α is the

significant level.

7. Simulation Study

In this Section, simulation studies have been performed using R program to evaluate the theoretical

results of the estimation process. The performance of the MLEs of the parameters has been consid-

ered. Furthermore, the approximate confidence intervals with confidence level 90% are obtained. The
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algorithm for the simulation procedure is described below:

Step 1: 5000 random samples of size n=75, 100, 200, 300, 600 and 1000 are generated from the

D-Fr distribution. The true parameter values are assumed as ( �=0.75, ≥=0.2, ◦=0.1, a = 0.9 and

b = 0.7).

Step 2: The parameters of the distribution are estimated using the MLE method for each sample.

Step 3: The R function (nlminb) is used to solve the five nonlinear likelihood for �, ≥, ◦, a and b.

Step 4: For each simulation, the average biases (ABs) and the mean sqare errors (MSEs) are calcu-

lated by: Bias(ŷ) =
∑5000
i=1

1
5000(ŷ − y), MSE(ŷ) =

∑5000
i=1

1
5000(ŷ − y)2.

Table 1. MLEs, ABs, MSE and 90% confidence limits of the parameters when n=

75, 100, 200, 300, 600 and 1000.
Sample Parameter Estimate Bias MSE Lower Limit Upper Limit Length

β 0.8054288 0.053428772 0.121979438 0.23019589 1.3706617 1.1404658

λ 0.2755135 0.075513528 0.254675089 0.54778984 1.0988169 0.5510270

n=75 δ 0.1209819 0.020981874 0.002012837 0.05554949 0.1864143 0.1308648

a 0.8423633 -0.057636675 0.153099671 0.20379481 1.4809318 1.2771370

b 0.7091435 0.009143525 0.009290203 0.55082434 0.8674627 0.3166384

β 0.8005119 0.050511859 0.084791214 0.33123212 1.2757916 0.9445595

λ 0.2197650 0.019764989 0.057678640 0.17516100 0.6146910 0.4398520

n=100 δ 0.1173703 0.017370314 0.001444903 0.06158238 0.1731582 0.1115759

a 0.8595773 -0.040422730 0.100288315 0.34132407 1.3778305 1.0365064

b 0.6978595 -0.008140522 0.004583588 0.58620669 0.8095123 0.2233056

β 0.7746440 0.024643973 0.0211146825 0.53835754 1.0109304 0.4725729

λ 0.1953267 -0.004673258 0.0038030341 0.09386590 0.2967876 0.2029217

n=200 δ 0.1090029 0.009002877 0.0007865224 0.06517773 0.1528280 0.0876503

a 0.8856043 -0.014395702 0.0190316874 0.65922062 1.1119880 0.4527674

b 0.6917052 -0.007294776 0.0010332734 0.64046296 0.7429475 0.1024845

β 0.7622825 0.012282484 0.0073377378 0.62240298 0.9021620 0.27975901

λ 0.1955416 -0.004458362 0.0008766267 0.14724566 0.2438376 0.09659195

n=300 δ 0.1051773 0.005177325 0.0001848952 0.08443121 0.1259234 0.04149223

a 0.8932748 -0.006725190 0.0063372406 0.76239317 1.0241565 0.26176328

b 0.6936197 -0.006380267 0.0004032663 0.66220213 0.7250373 0.06283520

β 0.7520984 0.002098386 1.419876e-03 0.69002082 0.8141759 0.12415513

λ 0.1987551 -0.001244911 1.054027e-04 0.18194023 0.2155699 0.03362971

n=600 δ 0.1014451 0.001445127 5.141023e-05 0.08985726 0.1130330 0.02317574

a 0.8981831 -0.001816934 8.178124e-04 0.85109266 0.9452735 0.09418082

b 0.6982087 -0.001791341 6.182002e-05 0.68557661 0.7108407 0.02526411

β 0.7501594 0.0001594468 6.794310e-05 0.73656144 0.7637575 0.027196020

λ 0.1998049 -0.0001951371 7.570256e-06 0.19527647 0.2043333 0.009056788

n=1000 δ 0.1001842 0.0001841564 2.657683e-06 0.09751148 0.1028568 0.005345358

a 0.8996841 -0.0003158548 7.301607e-05 0.88559462 0.9137737 0.028179044

b 0.6997525 -0.0002474826 4.987021e-06 0.69609049 0.7034145 0.007324047
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From Table (1), It can be observed that, as the sample size increases, the MLEs approach to

the initial values of the parameters. For each sample size n, the MLEs are evaluated using two

accuracy measures which are ABs and MSE. As the sample size increases, the ABs and MSEs of

the estimated parameters decrease. This indicates that the maximum likelihood estimation method

provides consistent estimators for the parameters and approaches the population parameters’ values

as the sample size increases. It is also noted that the lengths of the confidence intervals for the

estimated parameters decrease as the sample size increases.

8. Application

For more illustration, this section compares the efficiency of the goodness-of-fit for the D-Fr dis-

tribution with some selected distributions in literature. In particular, two real data sets are used to

compare the proposed model with four other distributions, namely, beta-Fréchet(BF) by [29], Gamma-

Extended-Fréchet(GEF) by [30], Exponentiated-Exponential-Fréchet(EEF) by [31] and Fréchet(F) dis-

tributions by [32] which is also sudied by [33].

The first data set in Table (2) that is used in comparison is provided by Cordeiro and Silva [34]. The

data represent the strengths of 1.5 cm glass fibers, measured at the National Physical Laboratory,

England.

The second data in Table (3) represents breaking stress of carbon fibers of 50 mm length (GPa) and

have been previously used by [35].

Table 2. Strength of 1.5 cm glass fibres data (data set 1).

0.55 0.74 0.77 0.81 0.84 1.24 0.93 1.04 1.11 1.13

1.30 1.25 1.27 1.28 1.29 1.48 1.36 1.39 1.42 1.48

1.51 1.49 1.49 1.50 1.50 1.55 1.52 1.53 1.54 1.55

1.61 1.58 1.59 1.60 1.61 1.63 1.61 1.61 1.62 1.62

1.67 1.64 1.66 1.66 1.66 1.70 1.68 1.68 1.69 1.70

1.78 1.73 1.76 1.76 1.77 1.89 1.81 1.82 1.84 1.84

2.00 2.01 2.24

Table 3. Breaking stress of carbon fibers of 50 mm length data (data set 2).
0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84

1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50

2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82

2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15

3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39

3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90

Certain criteria are used in order to compare between the distributions. The distribution with best

fit is the one that has the lowest value of the information criteria (AIC, AICc, BIC and HQIC) that

are defined as
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AIC = −2l(θ̂) + 2p,

BIC = −2l(θ̂) + plog(n),

AICc = AIC +
2p(p + 1)

n − p − 1
,

HQIC = −2l(θ̂) + 2plog(log(n)).

where l(θ̂) is denoted by the log likelihood function evaluated at the maximum likelihood estimates,

p is the number of parameters in the model and n is the sample size.

Table 4. The log likelihood, AIC, AICc, BIC and HQIC for the data set 1

Distribution l̂ AIC AICc BIC HQIC

D-Fr 12.7337 35.46739 36.52003 46.18307 39.68192

BF 30.22177 68.44353 69.13319 77.01607 71.81516

GEF 30.66209 69.32417 70.01383 77.89671 72.69579

F 46.85336 97.70672 97.90672 101.993 99.39253

EEF 47.63954 103.2791 103.9687 111.8516 106.6507

Table 5. The log likelihood, AIC, AICc, BIC and HQIC for the data set 2

Distribution l̂ AIC AICc BIC HQIC

D-Fr 85.27445 180.5489 181.5489 191.4972 184.8751

BF 100.276 208.552 209.2077 217.3106 212.0129

EEF 100.4079 208.8158 209.4716 217.5744 212.2768

GEF 101.1724 210.3448 211.0006 219.1035 213.8058

F 121.195 246.39 246.5805 250.7693 248.1205

Table 6. The MLEs for the data sets 1 and 2
Data Distribution β λ δ a b

D-Fr 0.2231043 15.0981157 15.6678754 1.0476744 0.9305450

BF 0.6071596 1.9876964 ... 17.9057801 41.5883328

Data 1 GEF 0.7120245 1.7786321 ... 35.0796598 13.7818068

F ... ... ... 1.263794 2.887747

EEF 33.4764197 4.7270858 ... 27.9266876 0.3634021

D-Fr 0.2502454 0.7341762 22.7850195 1.1852932 0.3223076

BF 0.3798751 3.1899014 ... 20.5420435 40.0668395

Data 2 GEF 0.5395719 3.5837019 ... 23.1357231 8.5334421

F ... ... ... 2.034154 1.649719

EEF 30.5722159 2.2994984 ... 34.5713778 0.4487714
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Tables (4) and (5), demonstrate that the D-Fr model has the lowest value of the information criteria

which implies that the proposed model provides a better fit than the other comparative models.
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Figure 3. Fitted density curves to the first real data.
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Figure 4. Fitted density curves to the second real data.

Plots of the fitted densities of the five distributions are shown in Figures (3) and (4). The plots

illustrate that the D-Fr distribution provides a better fit to the data than other distributions.

9. Conclusion

The development of generalizing families of distributions have attracted the attention of both

theoretical and applied statisticians. In this paper, a new family of distributions, called the Dagum-X

family of distribution is introduced. The mathematical properties of Dagum-X family of distributions

are discussed. A sub model called Dagum-Frechet distribution is presented with some of its properties.

The maximum likelihood estimation method was employed for estimating the model parameters and



Int. J. Anal. Appl. (2023), 21:45 21

investigated through a simulation study. The simulation study indicates that the maximum likelihood

estimation method provides consistent estimators for the parameters. The performance of the Dagum-

Frechet distribution was compared to that of beta Frechet, Gamma-Extended-Frechet, Exponentiated-

Exponential-Frechet, and Frechet distributions using two real-life data sets for demonstration purposes.

The proposed distribution has better fit than other competing distributions. It is concluded that the

Dagum-Fréchet distribution is a competitive model for modeling real-life data in different areas.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.
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