International Journal of Analysis and Applications

A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons

Mobin Ahmad ${ }^{1, *}$, Gazala ${ }^{1}$, Maha Atif Al-Shabrawi ${ }^{2}$
${ }^{1}$ Department of Mathematics and statistics, Integral University, Kursi Road, Lucknow-226026, India
${ }^{2}$ Department of Mathematical Sciences, Umm UI Qura University, Makkah, Saudi Arabia
* Corresponding author: mobinahmad68@gmail.com

Abstract

In the current note, we study Lorentzian para-Kenmotsu (in brief, LP-Kenmotsu) manifolds admitting conformal Ricci-Yamabe solitons (CRYS) and gradient conformal Ricci-Yamabe soliton (gradient CRYS). At last by constructing a 5-dimensional non-trivial example we illustrate our result.

1. Introduction

As a generalization of the classical Ricci flow [8], the concept of conformal Ricci flow was introduced by Fischer [5], which is defined on an n-dimensional Riemannian manifold M by the equations

$$
\frac{\partial g}{\partial t}=-2\left(S+\frac{g}{n}\right)-p g, \quad r(g)=-1,
$$

where p defines a time dependent non-dynamical scalar field (also called the conformal pressure), g is the Riemannian metric; r and S represent the scalar curvature and the Ricci tensor of M, respectively. The term -pg plays a role of constraint force to maintain r in the above equation.

In [1], the authors Basu and Bhattacharyya proposed the concept of conformal Ricci soliton on M and is defined by

$$
£_{K} g+2 S+\left(2 \Lambda-\left(p+\frac{2}{n}\right)\right) g=0
$$

where $£_{K}$ represents the Lie derivative operator along the smooth vector field K on M and $\Lambda \in \mathbb{R}$ (the set of real numbers).

[^0]Very recently, a scalar combination of Ricci and Yamabe flows was proposed by the authors Güler and Crasmareanu [7], this advanced class of geometric flows called Ricci-Yamabe (RY) flow of type (σ, ρ) and is defined by

$$
\frac{\partial}{\partial t} g(t)+2 \sigma S(g(t))+\rho r(t) g(t)=0, \quad g(0)=g_{0}
$$

for some scalars σ and ρ. A solution to the RY flow is called Ricci-Yamabe soliton (RYS) if it depends only on one parameter group of diffeomorphism and scaling. A Riemannian (or semi-Riemannian) manifold M is said to have a RYS if $[9,10]$

$$
\begin{equation*}
£_{K} g+2 \sigma S+(2 \Lambda-\rho r) g=0 . \tag{1.1}
\end{equation*}
$$

A Riemannian (or semi-Riemannian) manifold M is said to have a conformal Ricci-Yamabe soliton (CRYS) if [20]

$$
\begin{equation*}
£_{K} g+2 \sigma S+\left(2 \Lambda-\rho r-\left(p+\frac{2}{n}\right)\right) g=0 \tag{1.2}
\end{equation*}
$$

where $\sigma, \rho, \wedge \in \mathbb{R}$.
If K is the gradient of a smooth function v on M, then (1.2) is called the gradient conformal Ricci-Yamabe soliton (gradient CRYS) and hence (1.2) turns to

$$
\begin{equation*}
\nabla^{2} v+\sigma S+\left(\Lambda-\frac{\rho r}{2}-\frac{1}{2}\left(p+\frac{2}{n}\right)\right) g=0 \tag{1.3}
\end{equation*}
$$

where $\nabla^{2} v$ is the Hessian of v and is defined by Hess $v=\nabla \nabla v$.
A CRYS is said to be shrinking, steady or expanding if $\Lambda<0,=0$ or >0, respectively. A CRYS is said to be a

- Conformal Ricci soliton if $\sigma=1, \rho=0$,
- Conformal Yamabe soliton if $\sigma=0, \rho=1$,
- Conformal Einstein soliton if $\sigma=1, \rho=-1$.

As a continuation of this study, we tried to study CRYS and gradient CRYS in the frame-work of $L P$-Kenmotsu manifolds of dimension n. We recommend the papers [2-4,6,13-17] and the references therein for more details about the related studies.

2. Preliminaries

An n-dimensional differentiable manifold M with structure (φ, ζ, ν, g) is said to be a Lorentzian almost paracontact metric manifold, if it admits a (1,1)-tensor field φ, a contravariant vector field ζ, a 1 -form ν and a Lorentzian metric g satisfying

$$
\begin{gather*}
\nu(\zeta)+1=0 \tag{2.1}\\
\varphi^{2} E=E+\nu(E) \zeta \tag{2.2}\\
\varphi \zeta=0, \quad \nu(\varphi E)=0 \\
g(\varphi E, \varphi F)=g(E, F)+\nu(E) \nu(F)
\end{gather*}
$$

$$
\begin{gather*}
g(E, \zeta)=\nu(E) \tag{2.3}\\
\varphi(E, F)=\varphi(F, E)=g(E, \varphi F)
\end{gather*}
$$

for any vector fields $E, F \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields on M.
If ζ is a killing vector field, the (para) contact structure is called a K-(para) contact. In such a case, we have

$$
\nabla_{E} \zeta=\varphi E
$$

Recently, the authors Haseeb and Prasad defined and studied the following notion:
Definition 2.1. A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmostu manifold if [11]

$$
\left(\nabla_{E} \varphi\right) F=-g(\varphi E, F) \zeta-\nu(F) \varphi E
$$

for any E, F on M.
In an LP-Kenmostu manifold, we have

$$
\begin{gather*}
\nabla_{E} \zeta=-E-\nu(E) \zeta \tag{2.4}\\
\left(\nabla_{E} \nu\right) F=-g(E, F)-\nu(E) \nu(F) \tag{2.5}
\end{gather*}
$$

where ∇ denotes the Levi-Civita connection respecting to the Lorentzian metric g.
Furthermore, in an LP-Kenmotsu manifold, the following relations hold [11]:

$$
\begin{gather*}
g(R(E, F) G, \zeta)=\nu(R(E, F) G)=g(F, G) \nu(E)-g(E, G) \nu(F) \\
R(\zeta, E) F=-R(E, \zeta) F=g(E, F) \zeta-\nu(F) E \\
R(E, F) \zeta=\nu(F) E-\nu(E) F \\
R(\zeta, E) \zeta=E+\nu(E) \zeta \tag{2.6}\\
S(E, \zeta)=(n-1) \nu(E), S(\zeta, \zeta)=-(n-1) \tag{2.7}\\
Q \zeta=(n-1) \zeta
\end{gather*}
$$

for any $E, F, G \in \chi(M)$, where R, S and Q represent the curvature tensor, the Ricci tensor and the Q Ricci operator, respectively.

Definition 2.2. [19] An LP-Kenmotsu manifold M is said to be ν-Einstein manifold if its $S(\neq 0)$ is of the form

$$
S(E, F)=a g(E, F)+b \nu(E) \nu(F)
$$

where a and b are smooth functions on M. In particular, if $b=0$, then M is termed as an Einstein manifold.

Remark 2.1. [12] In an LP-Kenmotsu manifold of n-dimension, S is of the form

$$
\begin{equation*}
S(E, F)=\left(\frac{r}{n-1}-1\right) g(E, F)+\left(\frac{r}{n-1}-n\right) \nu(E) \nu(F), \tag{2.8}
\end{equation*}
$$

where r is the scalar curvature of the manifold.
Lemma 2.1. In an n-dimensional LP-Kenmotsu manifold, we have

$$
\begin{gather*}
\zeta(r)=2(r-n(n-1)) \tag{2.9}\\
\left(\nabla_{E} Q\right) \zeta=Q E-(n-1) E \tag{2.10}\\
\left(\nabla_{\zeta} Q\right) E=2 Q E-2(n-1) E \tag{2.11}
\end{gather*}
$$

for any E on M.
Proof. Equation (2.8) yields

$$
\begin{equation*}
Q E=\left(\frac{r}{n-1}-1\right) E+\left(\frac{r}{n-1}-n\right) \nu(E) \zeta . \tag{2.12}
\end{equation*}
$$

Taking the covariant derivative of (2.12) with respect to F and making use of (2.4) and (2.5), we lead to

$$
\left(\nabla_{F} Q\right) E=\frac{F(r)}{n-1}(E+\nu(E) \zeta)-\left(\frac{r}{n-1}-n\right)(g(E, F) \zeta+\nu(E) F+2 \nu(E) \nu(F) \zeta) .
$$

By contracting F in the foregoing equation and using trace $\left\{F \rightarrow\left(\nabla_{F} Q\right) E\right\}=\frac{1}{2} E(r)$, we find

$$
\frac{n-3}{2(n-1)} E(r)=\left\{\frac{\zeta(r)}{n-1}-(r-n(n-1))\right\} \nu(E),
$$

which by replacing E by ζ and using (2.1) gives (2.9). We refer the readers to see [13] for the proof of (2.10) and (2.11).

Remark 2.2. From the equation (2.9), it is noticed that if an n-dimensional LP-Kenmotsu manifold possesses the constant scalar curvature, then $r=n(n-1)$ and hence (2.8) reduces to $S(E, F)=$ $(n-1) g(E, F)$. Thus the manifold under consideration is an Einstein manifold.

3. CRYS on LP-Kenmotsu Manifolds

Let the metric of an n-dimensional LP-Kenmotsu manifold be a conformal Ricci-Yamabe soliton, thus (1.2) holds. By differentiating (1.2) covariantly with resprct to G, we have

$$
\begin{equation*}
\left(\nabla_{G} £_{K} g\right)(E, F)=-2 \sigma\left(\nabla_{G} S\right)(E, F)+\rho(G r) g(E, F) . \tag{3.1}
\end{equation*}
$$

Since $\nabla g=0$, then the following formula [18]

$$
\left(£_{K} \nabla_{E} g-\nabla_{E} £_{K} g-\nabla_{[K, E]} g\right)(F, G)=-g\left(\left(£_{K} \nabla\right)(E, F), G\right)-g\left(\left(£_{K} \nabla\right)(E, G), F\right)
$$

turns to

$$
\left(\nabla_{E} £_{K} g\right)(F, G)=g\left(\left(£_{K} \nabla\right)(E, F), G\right)+g\left(\left(£_{K} \nabla\right)(E, G), F\right)
$$

Since the operator $£_{K} \nabla$ is symmetric, therefore we have

$$
2 g\left(\left(£_{K} \nabla\right)(E, F), G\right)=\left(\nabla_{E} £_{K} g\right)(F, G)+\left(\nabla_{F} £_{K} g\right)(E, G)-\left(\nabla_{G} £_{K} g\right)(E, F)
$$

which by using (3.1) takes the form

$$
\begin{align*}
2 g\left(\left(£_{K} \nabla\right)(E, F), G\right)= & -2 \sigma\left[\left(\nabla_{E} S\right)(F, G)+\left(\nabla_{F} S\right)(G, E)-\left(\nabla_{G} S\right)(E, F)\right] \\
& +\rho[(E r) g(F, G)+(F r) g(G, E)-(G r) g(E, F)] . \tag{3.2}
\end{align*}
$$

Putting $F=\zeta$ in (3.2) and using (2.3), we find

$$
\begin{align*}
2 g\left(\left(£_{K} \nabla\right)(E, \zeta), G\right)= & -2 \sigma\left[\left(\nabla_{E} S\right)(\zeta, G)+\left(\nabla_{\zeta} S\right)(G, E)-\left(\nabla_{G} S\right)(E, \zeta)\right] \\
& +\rho[(E r) \nu(G)+2(r-n(n-1)) g(E, G)-(G r) \nu(E)] . \tag{3.3}
\end{align*}
$$

By virtue of (2.10) and (2.11), (3.3) leads to

$$
\begin{aligned}
2 g\left(\left(£_{K} \nabla\right)(E, \zeta), G\right)= & -4 \sigma[S(E, G)-(n-1) g(E, G)] \\
& +\rho[(E r) \nu(G)+2(r-n(n-1)) g(E, G)-(G r) \nu(E)]
\end{aligned}
$$

By eliminating G from the foregoing equation, we have

$$
\begin{align*}
2\left(£_{K} \nabla\right)(F, \zeta)= & \rho g(D r, F) \zeta-\rho(D r) \nu(F)-4 \sigma Q F \tag{3.4}\\
& +[4 \sigma(n-1)+2 \rho(r-n(n-1))] F
\end{align*}
$$

If we take r as constant, then from (2.9) it follows that $r=n(n-1)$, and hence (3.4) reduces to

$$
\begin{equation*}
\left(£_{K} \nabla\right)(F, \zeta)=-2 \sigma Q F+2 \sigma(n-1) F \tag{3.5}
\end{equation*}
$$

Taking covariant derivative of (3.5) with respect to E, we have

$$
\begin{align*}
\left(\nabla_{E} £_{K} \nabla\right)(F, \zeta) & =\left(£_{K} \nabla\right)(F, E)-2 \sigma \nu(E)[Q F-(n-1) F] \tag{3.6}\\
& -2 \sigma\left(\nabla_{E} Q\right) F .
\end{align*}
$$

Again from [18], we have

$$
\left(£_{K} R\right)(E, F) G=\left(\nabla_{E} £_{K} \nabla\right)(F, G)-\left(\nabla_{F} £_{K} \nabla\right)(E, G)
$$

which by putting $G=\zeta$ and using (3.6) takes the form

$$
\begin{align*}
\left(£_{K} R\right)(E, F) \zeta= & 2 \sigma \nu(F)(Q E-(n-1) E)-2 \sigma \nu(E)(Q F-(n-1) F) \tag{3.7}\\
& -2 \sigma\left(\left(\nabla_{E} Q\right) F-\left(\nabla_{F} Q\right) E\right) .
\end{align*}
$$

Putting $F=\zeta$ in (3.7) then using (2.1), (2.2), (2.10) and (2.11), we arrive at

$$
\begin{equation*}
\left(£_{K} R\right)(E, \zeta) \zeta=0 . \tag{3.8}
\end{equation*}
$$

The Lie derivative of (2.6) along K leads to

$$
\begin{equation*}
\left(£_{K} R\right)(E, \zeta) \zeta-g\left(E, £_{K} \zeta\right) \zeta+2 \nu\left(£_{K} \zeta\right) E=-\left(£_{K} \nu\right)(E) \zeta . \tag{3.9}
\end{equation*}
$$

From (3.8) and (3.9), we have

$$
\begin{equation*}
\left(£_{K} \nu\right)(E) \zeta=-2 \nu\left(£_{K} \zeta\right) E+g\left(E, £_{K} \zeta\right) \zeta \tag{3.10}
\end{equation*}
$$

Taking the Lie derivative of $g(E, \zeta)=\nu(E)$, we find

$$
\begin{equation*}
\left(£_{K} \nu\right)(E)=g\left(E, £_{K} \zeta\right)+\left(£_{K} g\right)(E, \zeta) \tag{3.11}
\end{equation*}
$$

By putting $F=\zeta$ in (1.2) and using (2.7), we have

$$
\begin{equation*}
\left(£_{K} g\right)(E, \zeta)=-\left\{2 \sigma(n-1)+2 \wedge-\rho n(n-1)-\left(p+\frac{2}{n}\right)\right\} \nu(E) \tag{3.12}
\end{equation*}
$$

where $r=n(n-1)$ being used.
Taking the Lie derivative of $g(\zeta, \zeta)=-1$ along K we lead to

$$
\begin{equation*}
\left(£_{K} g\right)(\zeta, \zeta)=-2 \nu\left(£_{K} \zeta\right) \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13), we find

$$
\begin{equation*}
\nu\left(£_{K} \zeta\right)=-\left\{\sigma(n-1)+\Lambda-\frac{\rho n(n-1)}{2}-\frac{1}{2}\left(p+\frac{2}{n}\right)\right\} . \tag{3.14}
\end{equation*}
$$

Now combining the equations (3.10), (3.11), (3.12) and (3.14), we find

$$
\begin{equation*}
\Lambda=\frac{\rho n(n-1)}{2}-\sigma(n-1)+\frac{1}{2}\left(p+\frac{2}{n}\right) . \tag{3.15}
\end{equation*}
$$

Thus we have

Theorem 3.1. Let (M, g) be an n-dimensional LP-Kenmotsu manifold admitting CRYS with constant scalar curvature tensor, then $\Lambda=\frac{\rho n(n-1)}{2}-\sigma(n-1)+\frac{1}{2}\left(p+\frac{2}{n}\right)$.

Corollary 3.1. Let the metric of n-dimensional LP-Kenmotsu manifold is CRYS. Then we have

Values of σ, ρ	Soliton type	Soliton constant	CRYS to be expanding, shrinking or steady
$\sigma=1, \rho=0$	conformal Ricci soliton	$\Lambda=\frac{1}{2}\left(p+\frac{2}{n}\right)-(n-$ 1)	CRYS is shrinking, steady and expanding if $p>$ $\frac{2\left(n^{2}-n-1\right)}{n}, p=\frac{2\left(n^{2}-n-1\right)}{n}$ and $p<\frac{2\left(n^{2}-n-1\right)}{n}$, resp.
$\sigma=0, \rho=1$	conformal Yamabe soliton	$\begin{aligned} & \Lambda=\frac{1}{2}\left(p+\frac{2}{n}\right)+ \\ & \frac{n(n-1)}{2} \end{aligned}$	CRYS is shrinking, steady and expanding if $p<$ $\frac{-\left(n^{3}-n^{2}+2\right)}{n}, p=\frac{-\left(n^{3}-n^{2}+2\right)}{n}$ and $p>\frac{-\left(n^{3}-n^{2}+2\right)}{n}$, resp.
$\sigma=1, \rho=-1$	conformal Einstein soliton	$\begin{aligned} & \Lambda=\frac{1}{2}\left(p+\frac{2}{n}\right)- \\ & \frac{(n-1)(n+2)}{2} \end{aligned}$	$\begin{array}{llr} \text { CRYS } & \text { is } & \text { shrinking, } \\ \text { steady } \quad \text { and } \quad \text { expand- } \end{array}, \begin{aligned} & \text { ing if } p<\frac{(n+1)\left(n^{2}-2\right)}{n}, \\ & p<\frac{(n+1)\left(n^{2}-2\right)}{n} \text { and } \\ & p> \\ & \hline \frac{(n+1)\left(n^{2}-2\right)}{n}, \text { resp. } \\ & \hline \end{aligned}$

4. Gradient CRYS on LP-Kenmotsu Manifolds

Let M be an n-dimensional $L P$-Kenmotsu manifold with g as a gradient CRYS. Then equation (1.3) can be written as

$$
\begin{equation*}
\nabla_{E} D v+\sigma Q E+\left(\Lambda-\frac{\rho r}{2}-\frac{1}{2}\left(p+\frac{2}{n}\right)\right) E=0 \tag{4.1}
\end{equation*}
$$

for all vector fields E on M, where D denotes the gradient operator of g. Taking the covariant derivative of (4.1) with respect to F, we have

$$
\begin{align*}
\nabla_{F} \nabla_{E} D v= & -\sigma\left\{\left(\nabla_{F} Q\right) E+Q\left(\nabla_{F} E\right)\right\}+\rho \frac{F(r)}{2} E \tag{4.2}\\
& -\left(\Lambda-\frac{\rho r}{2}-\frac{1}{2}\left(p+\frac{2}{n}\right)\right) \nabla_{F} E
\end{align*}
$$

Interchanging E and F in (4.2), we lead to

$$
\begin{align*}
\nabla_{E} \nabla_{F} D v= & -\sigma\left\{\left(\nabla_{E} Q\right) F+Q\left(\nabla_{E} F\right)\right\}+\rho \frac{E(r)}{2} F \tag{4.3}\\
& -\left(\Lambda-\frac{\rho r}{2}-\frac{1}{2}\left(p+\frac{2}{n}\right)\right) \nabla_{E} F
\end{align*}
$$

By making use of (4.1)-(4.3), we find

$$
\begin{equation*}
R(E, F) D v=\sigma\left\{\left(\nabla_{F} Q\right) E-\left(\nabla_{E} Q\right) F\right\}+\frac{\rho}{2}\{E(r) F-F(r) E\} \tag{4.4}
\end{equation*}
$$

Now from (2.8), we find

$$
Q E=\left(\frac{r}{n-1}-1\right) E+\left(\frac{r}{n-1}-n\right) \nu(E) \zeta
$$

which on taking covariant derivative with repect to F leads to

$$
\begin{align*}
\left(\nabla_{F} Q\right) E= & \frac{F(r)}{n-1}(E+\nu(E) \zeta)-\left(\frac{r}{n-1}-n\right)(g(E, F) \zeta \tag{4.5}\\
& +2 \nu(E) \nu(F) \zeta+\nu(E) F)
\end{align*}
$$

By using (4.5) in (4.4), we have

$$
\begin{align*}
R(E, F) D v= & \frac{(n-1) \rho-2 \sigma}{2(n-1)}\{E(r) F-F(r) E\}+\frac{\sigma}{n-1}\{F(r) \nu(E) \zeta-E(r) \nu(F) \zeta\} \\
& -\sigma\left(\frac{r}{n-1}-n\right)(\nu(E) F-\nu(F) E) \tag{4.6}
\end{align*}
$$

Contracting forgoing equation along E gives

$$
\begin{align*}
S(F, D v)= & -\left\{\frac{(n-1)^{2} \rho-2 \sigma(n-2)}{2(n-1)}\right\} F(r) \tag{4.7}\\
& +\frac{\sigma(n-3)(r-n(n-1))}{n-1} \nu(F)
\end{align*}
$$

From the equation (2.8), we have

$$
\begin{equation*}
S(F, D v)=\left(\frac{r}{n-1}-1\right) F(v)+\left(\frac{r}{n-1}-n\right) \nu(F) \zeta(v) \tag{4.8}
\end{equation*}
$$

Now by equating (4.7) and (4.8), then putting $F=\zeta$ and using (2.1), (2.9), we find

$$
\begin{equation*}
\zeta(v)=\frac{r-n(n-1)}{n-1}\{\sigma-(n-1) \rho\} . \tag{4.9}
\end{equation*}
$$

Taking the inner product of (4.6) with ζ, we get

$$
F(v) \nu(E)-E(v) \nu(F)=\frac{\rho}{2}\{E(r) \nu(F)-F(r) \nu(E)\},
$$

which by replacing E by ζ then using (2.9) and (4.9), we infer

$$
\begin{equation*}
F(v)=-\frac{\sigma(r-n(n-1))}{n-1} \nu(F)-\frac{\rho}{2} F(r) . \tag{4.10}
\end{equation*}
$$

If we take r as constant, then from Remark 2.5, we get $r=n(n-1)$. Thus (4.10) leads to $F(v)=0$. This implies that v is constant. Thus the soliton under the consideration is trivial. Hence we state:

Theorem 4.1. If the metric of an n-dimensional LP-Kenmotsu manifold of constant scalar curvature tensor admitting a special type of vector field is gradient CRYS, then the soliton is trivial.

For v constant, (1.3) turns to

$$
\sigma Q E=-\left(\Lambda-\frac{\rho r}{2}-\frac{1}{2}\left(p+\frac{2}{n}\right)\right) E,
$$

which leads to

$$
\begin{equation*}
S(E, F)=-\frac{1}{\sigma}\left(\Lambda-\frac{\rho n(n-1)}{2}-\frac{1}{2}\left(p+\frac{2}{n}\right)\right) g(E, F), \quad \sigma \neq 0 . \tag{4.11}
\end{equation*}
$$

By putting $E=F=\zeta$ in (4.11) and using (2.7), we obtain

$$
\begin{equation*}
\Lambda=\frac{\rho n(n-1)}{2}-\sigma(n-1)+\frac{1}{2}\left(p+\frac{2}{n}\right) . \tag{4.12}
\end{equation*}
$$

Corollary 4.1. If an n-dimensional LP-Kenmotsu manifold admits a gradient CRYS with the constant scalar curvature, then the manifold under the consideration is an Einstein manifold and $\Lambda=\frac{\rho n(n-1)}{2}$ -$\sigma(n-1)+\frac{1}{2}\left(p+\frac{2}{n}\right)$.

5. Example

We consider the 5-dimensional manifold $M^{5}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{5}>0\right\}$, where $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ are the standard coordinates in \mathbb{R}^{5}. Let $\varrho_{1}, \varrho_{2}, \varrho_{3}, \varrho_{4}$ and ϱ_{5} be the vector fields on M^{5} given by

$$
\varrho_{1}=e^{x_{5}} \frac{\partial}{\partial x_{1}}, \varrho_{2}=e^{x_{5}} \frac{\partial}{\partial x_{2}}, \varrho_{3}=e^{x_{5}} \frac{\partial}{\partial x_{3}}, \varrho_{4}=e^{x_{5}} \frac{\partial}{\partial x_{4}}, \varrho_{5}=\frac{\partial}{\partial x_{5}}=\zeta
$$

which are linearly independent at each point of M^{5}. Let g be the Lorentzian metric defined by

$$
\begin{aligned}
& g\left(\varrho_{i}, \varrho_{i}\right)=1, \quad \text { for } \quad 1 \leq i \leq 4 \quad \text { and } \quad g\left(\varrho_{5}, \varrho_{5}\right)=-1, \\
& g\left(\varrho_{i}, \varrho_{j}\right)=0, \quad \text { for } \quad i \neq j, \quad 1 \leq i, j \leq 5 .
\end{aligned}
$$

Let ν be the 1 -form defined by $\nu(E)=g\left(E, \varrho_{5}\right)=g(E, \zeta)$ for all $E \in \chi\left(M^{5}\right)$, and let φ be the (1, 1)-tensor field defined by

$$
\varphi \varrho_{1}=-\varrho_{2}, \varphi \varrho_{2}=-\varrho_{1}, \varphi \varrho_{3}=-\varrho_{4}, \varphi \varrho_{4}=-\varrho_{3}, \varphi \varrho_{5}=0
$$

By applying linearity of φ and g, we have

$$
\nu(\zeta)=g(\zeta, \zeta)=-1, \varphi^{2} E=E+\nu(E) \zeta \text { and } g(\varphi E, \varphi F)=g(E, F)+\nu(E) \nu(F)
$$

for all $E, F \in \chi\left(M^{5}\right)$. Thus for $\varrho_{5}=\zeta$, the structure (φ, ζ, ν, g) defines a Lorentzian almost paracontact metric structure on M^{5}. Then we have

$$
\begin{aligned}
& {\left[\varrho_{i}, \varrho_{j}\right]=-\varrho_{i}, \quad \text { for } \quad 1 \leq i \leq 4, j=5,} \\
& {\left[\varrho_{i}, \varrho_{j}\right]=0, \quad \text { otherwise. }}
\end{aligned}
$$

By using Koszul's formula, we can easily find we obtain

$$
\nabla_{\varrho_{i}} \varrho_{j}=\left\{\begin{array}{l}
-\varrho_{5}, \quad 1 \leq i=j \leq 4 \\
-\varrho_{i}, \quad 1 \leq i \leq 4, j=5 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Also one can easily verify that

$$
\nabla_{E} \zeta=-E-\eta(E) \zeta \quad \text { and } \quad\left(\nabla_{E} \varphi\right) F=-g(\varphi E, F) \zeta-\nu(F) \varphi E
$$

Therefore, the manifold is an $L P$-Kenmotsu manifold.
From the above results, we can easily obtain the non-vanishing components of R as follows:

$$
\begin{gathered}
R\left(\varrho_{1}, \varrho_{2}\right) \varrho_{1}=-\varrho_{2}, R\left(\varrho_{1}, \varrho_{2}\right) \varrho_{2}=\varrho_{1}, R\left(\varrho_{1}, \varrho_{3}\right) \varrho_{1}=-\varrho_{3}, R\left(\varrho_{1}, \varrho_{3}\right) \varrho_{3}=\varrho_{1}, \\
R\left(\varrho_{1}, \varrho_{4}\right) \varrho_{1}=-v_{4}, R\left(\varrho_{1}, \varrho_{4}\right) \varrho_{4}=\varrho_{1}, R\left(\varrho_{1}, \varrho_{5}\right) \varrho_{1}=-\varrho_{5}, R\left(\varrho_{1}, \varrho_{5}\right) \varrho_{5}=-\varrho_{1}, \\
R\left(\varrho_{2}, \varrho_{3}\right) \varrho_{2}=-\varrho_{3}, R\left(\varrho_{2}, \varrho_{3}\right) \varrho_{3}=\varrho_{2}, R\left(\varrho_{2}, \varrho_{4}\right) \varrho_{2}=-\varrho_{4}, R\left(\varrho_{2}, \varrho_{4}\right) \varrho_{4}=\varrho_{2} \\
R\left(\varrho_{2}, \varrho_{5}\right) \varrho_{2}=-\varrho_{5}, R\left(\varrho_{2}, \varrho_{5}\right) \varrho_{5}=-\varrho_{2}, R\left(\varrho_{3}, \varrho_{4}\right) \varrho_{3}=-\varrho_{4}, R\left(\varrho_{3}, \varrho_{4}\right) \varrho_{4}=\varrho_{3} \\
R\left(\varrho_{3}, \varrho_{5}\right) \varrho_{3}=-\varrho_{5}, R\left(\varrho_{3}, \varrho_{5}\right) \varrho_{5}=-\varrho_{3}, R\left(\varrho_{4}, \varrho_{5}\right) \varrho_{4}=-\varrho_{5}, R\left(\varrho_{4}, \varrho_{5}\right) \varrho_{5}=-\varrho_{4} .
\end{gathered}
$$

Also, we calculate the Ricci tensors as follows:

$$
S\left(\varrho_{1}, \varrho_{1}\right)=S\left(\varrho_{2}, \varrho_{2}\right)=S\left(\varrho_{3}, \varrho_{3}\right)=S\left(\varrho_{4}, \varrho_{4}\right)=4, \quad S\left(\varrho_{5}, \varrho_{5}\right)=-4
$$

Therefore, we have

$$
r=S\left(\varrho_{1}, \varrho_{1}\right)+S\left(\varrho_{2}, \varrho_{2}\right)+S\left(\varrho_{3}, \varrho_{3}\right)+S\left(\varrho_{4}, \varrho_{4}\right)-S\left(\varrho_{5}, \varrho_{5}\right)=20
$$

Now by taking $D v=\left(\varrho_{1} v\right) \varrho_{1}+\left(\varrho_{2} v\right) \varrho_{2}+\left(\varrho_{3} v\right) \varrho_{3}+\left(\varrho_{4} v\right) \varrho_{4}+\left(\varrho_{5} v\right) \varrho_{5}$, we have

$$
\begin{aligned}
\nabla_{\varrho_{1}} D v= & \left(\varrho_{1}\left(\varrho_{1} v\right)-\left(\varrho_{5} v\right)\right) \varrho_{1}+\left(\varrho_{1}\left(\varrho_{2} v\right)\right) \varrho_{2}+\left(\varrho_{1}\left(\varrho_{3} v\right)\right) \varrho_{3}+\left(\varrho_{1}\left(\varrho_{4} v\right)\right) \varrho_{4} \\
& +\left(\varrho_{1}\left(\varrho_{5} v\right)-\left(\varrho_{1} v\right)\right) \varrho_{5},
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{\varrho_{2}} D v=\left(\varrho_{2}\left(\varrho_{1} v\right)\right) \varrho_{1}+\left(\varrho_{2}\left(\varrho_{2} v\right)-\left(\varrho_{5} v\right)\right) \varrho_{2}+\left(\varrho_{2}\left(\varrho_{3} v\right)\right) \varrho_{3}+\left(\varrho_{2}\left(\varrho_{4} v\right)\right) \varrho_{4} \\
&+\left(\varrho_{2}\left(\varrho_{5} v\right)-\left(\varrho_{2} v\right)\right) \varrho_{5} \\
& \nabla_{\varrho_{3}} D v=\left(\varrho_{3}\left(\varrho_{1} v\right)\right) \varrho_{1}+\left(\varrho_{3}\left(\varrho_{2} v\right)\right) \varrho_{2}+\left(\varrho_{3}\left(\varrho_{3} v\right)-\left(\varrho_{5} v\right)\right) \varrho_{3}+\left(\varrho_{3}\left(\varrho_{4} v\right)\right) \varrho_{4} \\
&+\left(\varrho_{3}\left(\varrho_{5} v\right)-\left(\varrho_{3} v\right)\right) \varrho_{5} \\
& \nabla_{\varrho_{4}} D v=\left(\varrho_{4}\left(\varrho_{1} v\right)\right) \varrho_{1}+\left(\varrho_{4}\left(\varrho_{2} v\right)\right) \varrho_{2}+\left(\varrho_{4}\left(\varrho_{3} v\right)\right) \varrho_{3}+\left(\varrho_{4}\left(\varrho_{4} v\right)-\left(\varrho_{5} v\right)\right) \varrho_{4} \\
&+\left(\varrho_{4}\left(\varrho_{5} v\right)-\left(\varrho_{4} v\right)\right) \varrho_{5} \\
& \nabla_{\varrho_{5}} D v=\left(\varrho_{5}\left(\varrho_{1} v\right)\right) \varrho_{1}+\left(\varrho_{5}\left(\varrho_{2} v\right)\right) \varrho_{2}+\left(\varrho_{5}\left(\varrho_{3} v\right)\right) \varrho_{3}+\left(\varrho_{5}\left(\varrho_{4} v\right)\right) \varrho_{4}+\left(\varrho_{5}\left(\varrho_{5} v\right)\right) \varrho_{5}
\end{aligned}
$$

Thus by virtue of (4.1), we obtain

$$
\left\{\begin{array}{l}
\varrho_{1}\left(\varrho_{1} v\right)-\varrho_{5} v=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \tag{5.1}\\
\varrho_{2}\left(\varrho_{2} v\right)-\varrho_{5} v=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
\varrho_{3}\left(\varrho_{3} v\right)-\varrho_{5} v=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
\varrho_{4}\left(\varrho_{4} v\right)-\varrho_{5} v=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
\varrho_{5}\left(\varrho_{5} v\right)=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
\varrho_{1}\left(\varrho_{2} v\right)=\varrho_{1}\left(\varrho_{3} v\right)=\varrho_{1}\left(\varrho_{4} v\right)=0, \\
\varrho_{2}\left(\varrho_{1} v\right)=\varrho_{2}\left(\varrho_{3} v\right)=\varrho_{2}\left(\varrho_{4} v\right)=0, \\
\varrho_{3}\left(\varrho_{1} v\right)=\varrho_{3}\left(\varrho_{2} v\right)=\varrho_{3}\left(\varrho_{4} v\right)=0, \\
\varrho_{4}\left(\varrho_{1} v\right)=\varrho_{4}\left(\varrho_{2} v\right)=\varrho_{4}\left(\varrho_{3} v\right)=0, \\
\varrho_{1}\left(\varrho_{5} v\right)-\left(\varrho_{1} v\right)=\varrho_{2}\left(\varrho_{5} v\right)-\left(\varrho_{2} v\right)=0 \\
\varrho_{3}\left(\varrho_{5} v\right)-\left(\varrho_{3} v\right)=\varrho_{4}\left(\varrho_{5} v\right)-\left(\varrho_{4} v\right)=0
\end{array}\right.
$$

Thus the equations in (5.1) are respectively amounting to

$$
\begin{gathered}
e^{2 x_{5}} \frac{\partial^{2} v}{\partial x_{1}^{2}}-\frac{\partial v}{\partial x_{5}}=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
e^{2 x_{5}} \frac{\partial^{2} v}{\partial x_{2}^{2}}-\frac{\partial v}{\partial x_{5}}=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
e^{2 x_{5}} \frac{\partial^{2} v}{\partial x_{3}^{2}}-\frac{\partial v}{\partial x_{5}}=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
e^{2 x_{5}} \frac{\partial^{2} v}{\partial x_{4}^{2}}-\frac{\partial v}{\partial x_{5}}=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
\frac{\partial^{2} v}{\partial x_{5}^{2}}=-\left(\Lambda+4 \sigma-10 \rho-\frac{1}{2}\left(p+\frac{2}{5}\right)\right), \\
\frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} v}{\partial x_{1} \partial x_{3}}=\frac{\partial^{2} v}{\partial x_{1} \partial x_{4}}=\frac{\partial^{2} v}{\partial x_{2} \partial x_{3}}=\frac{\partial^{2} v}{\partial x_{2} \partial x_{4}}=\frac{\partial^{2} v}{\partial x_{3} \partial x_{4}}=0,
\end{gathered}
$$

$$
e^{x_{5}} \frac{\partial^{2} v}{\partial x_{5} \partial x_{1}}+\frac{\partial v}{\partial x_{1}}=e^{x_{5}} \frac{\partial^{2} v}{\partial x_{5} \partial x_{2}}+\frac{\partial v}{\partial x_{2}}=e^{x_{5}} \frac{\partial^{2} v}{\partial x_{5} \partial x_{3}}+\frac{\partial v}{\partial x_{3}}=e^{x_{5}} \frac{\partial^{2} v}{\partial x_{5} \partial x_{4}}+\frac{\partial v}{\partial x_{4}}=0 .
$$

From the above equations it is observed that v is constant for $\Lambda=-4 \sigma+10 \rho+\frac{1}{2}\left(p+\frac{2}{5}\right)$. Hence equation (4.1) is satisfied. Thus, g is a gradient RYS with the soliton vector field $K=D v$, where v is constant and $\Lambda=-4 \sigma+10 \rho+\frac{1}{2}\left(p+\frac{2}{5}\right)$. Thus, Theorem 4.1 is verified.
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.
Acknowledgement: The first and second authors would like to thank the Integral University, Lucknow, India, for providing the manuscript number IU/R\&D/2022-MCN0001737 to the present work.

References

[1] N. Basu, A. Bhattacharyya, Conformal Ricci Soliton in Kenmotsu Manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4 (2015), 15-21.
[2] A. M. Blaga, Some Geometrical Aspects of Einstein, Ricci and Yamabe Solitons, J. Geom. Symmetry Phys. 52 (2019), 17-26. https://doi.org/10.7546/jgsp-52-2019-17-26.
[3] S. Chidananda, V. Venkatesha, Yamabe and Riemann Solitons on Lorentzian Para-Sasakian Manifolds, Commun. Korean Math. Soc. 37 (2022), 213-228. https://doi.org/10.4134/CKMS. C200365.
[4] U.C. De, A. Sardar, K. De, Ricci-Yamabe Solitons and 3-Dimensional Riemannian Manifolds, Turk. J. Math. 46 (2022), 1078-1088. https://doi.org/10.55730/1300-0098.3143.
[5] A.E. Fischer, An Introduction to Conformal Ricci Flow, Class. Quantum Grav. 21 (2004), S171-S218. https: //doi.org/10.1088/0264-9381/21/3/011.
[6] D. Ganguly, S. Dey, A. Ali, A. Bhattacharyya, Conformal Ricci Soliton and Quasi-Yamabe Soliton on Generalized Sasakian Space Form, J. Geom. Phys. 169 (2021), 104339. https://doi.org/10.1016/j.geomphys. 2021. 104339.
[7] S. Güler, M. Crasmareanu, Ricci-Yamabe Maps for Riemannian Flows and Their Volume Variation and Volume Entropy, Turk. J. Math. 43 (2019), 2631-2641. https://doi.org/10.3906/mat-1902-38.
[8] R.S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity, Contemp. Math. 71 (1988), 237-262.
[9] A. Haseeb, M. Bilal, S.K. Chaubey, A.A.H. Ahmadini, ζ-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons, Mathematics, 11 (2023), 212. https://doi.org/10.3390/math11010212.
[10] A. Haseeb, S.K. Chaubey, M.A. Khan, Riemannian 3-Manifolds and Ricci-Yamabe Solitons, Int. J. Geom. Methods Mod. Phys. 20 (2023), 2350015. https://doi.org/10.1142/s0219887823500159.
[11] A. Haseeb, R. Prasad, Certain Results on Lorentzian Para-Kenmotsu Manifolds, Bol. Soc. Parana. Mat. 39 (2021), 201-220. https://doi.org/10.5269/bspm. 40607.
[12] A. Haseeb, R. Prasad, Some results on Lorentzian para-Kenmotsu manifolds, Bull. Transilvania Univ. Brasov. 13(62) (2020), 185-198. https://doi.org/10.31926/but.mif.2020.13.62.1.14.
[13] Y. Li, A. Haseeb, M. Ali, LP-Kenmotsu Manifolds Admitting η-Ricci Solitons and Spacetime, J. Math. 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127.
[14] M.A. Lone, I.F. Harry, Ricci Solitons on Lorentz-Sasakian Space Forms, J. Geom. Phys. 178 (2022), 104547. https://doi.org/10.1016/j.geomphys.2022.104547.
[15] Pankaj, S.K. Chaubey, R. Prasad, Three-Dimensional Lorentzian Para-Kenmotsu Manifolds and Yamabe Solitons, Honam Math. J. 43 (2021), 613-626. https://doi.org/10.5831/HMJ. 2021.43.4.613.
[16] J.P. Singh, M. Khatri, On Ricci-Yamabe Soliton and Geometrical Structure in a Perfect Fluid Spacetime, Afr. Mat. 32 (2021), 1645-1656. https://doi.org/10.1007/s13370-021-00925-2.
[17] H.I. Yoldaș, On Kenmotsu Manifolds Admitting η-Ricci-Yamabe Solitons, Int. J. Geom. Methods Mod. Phys. 18 (2021), 2150189. https://doi.org/10.1142/s0219887821501899.
[18] K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, Vol. I, Marcel Dekker, New York, 1970.
[19] K. Yano, M. Kon, Structures on Manifolds, World Scientific Publishing Co., Singapore, 1984.
[20] P. Zhang, Y. Li, S. Roy, S. Dey, A. Bhattacharyya, Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton, Symmetry 14 (2022), 594. https://doi. org/10.3390/sym14030594.

[^0]: Received: Feb. 3, 2023.
 2010 Mathematics Subject Classification. 53C20, 53C21, 53C25, 53E20.
 Key words and phrases. Lorentzian para-Kenmotsu manifolds; conformal Ricci-Yamabe solitons; Einstein manifolds; ν-Einstein manifolds.

