International Journal of Analysis and Applications

 International Journal of natysisand Applications

The Möbius Invariant \mathcal{Q}_{H}^{T} Spaces

Munirah Aljuaid*©
Department of Mathematics, Northern Border University, Arar 73222, Saudi Arabia
*Corresponding author: moneera.mutlak@nbu.edu.sa

Abstract

In this article, we introduce a new space of harmonic mappings that is an extension of the well known space \mathcal{Q}^{T} in the unit disk \mathbb{D} in term of non decreasing function. Several characterizations of the space \mathcal{Q}_{H}^{T} are investigated. We also define the little subspace of \mathcal{Q}_{H}^{T}. Finally, the boundedness of the composition operators C_{φ} mapping into the space \mathcal{Q}_{H}^{T} and $\mathcal{Q}_{H, 0}^{T}$ are considered.

1. Introduction

A harmonic mapping on a simply connected domain ψ is a complex-valued function k such that the Laplace's equation satisfied

$$
\Delta k:=4 k_{\eta \bar{\eta}} \equiv 0, \quad \text { on } \psi
$$

where $k_{\eta \bar{\eta}}$ represents the mixed complex derivative of k.
The harmonic mapping k admits a representaion of the form $f+\bar{g}$, where f and g are analytic functions. This representaion is unique up to an additive constant. In this work, we consider all the functions defined on the open unit disk $\mathbb{D}:=\{\eta \in \mathbb{C}:|\eta|<1\}$ so, the representaion of k is given by $k=f+\bar{g}$ and $g(0)=0$.

Let $H(\mathbb{D})$ denotes the collection of all analytic functions on \mathbb{D} and $\mathcal{H}(\mathbb{D})$ be the collection of harmonic mappings on \mathbb{D}.

The operator theory of spaces of analytic functions on a various settings on the unit disk has been completely analyzed and a enormous amount of research papers on this matter have appeared in the literature, but the study of a similarly coverage in the harmonic setting is still limited.

Received: Jan. 27, 2023.
2020 Mathematics Subject Classification. 47B33.
Key words and phrases. \mathcal{Q}_{T} space; harmonic mapping; composition operators.

In recent years, some papers have concentrated on the study of harmonic mappings. Besides [2], for characterization of Bloch type spaces of harmonic mapping, see [6], for harmonic zygmund spaces. In [18], the authors investigate the compactness and boundedness of C_{φ} mapping into weighted Banach spaces of harmonic mappings. We also encourage the reader to see the additional references related to the harmonic mappings such as [[21] [5], [16], [14], [15], [17], [13], [7], [8], [10], [11], [12], [17], [9]].

The results carried out in [19] bring the interesting question for whether we can extend the space \mathcal{Q}^{T} to the harmonic setting and study the operator theoretic properties of C_{φ}.

2. preliminaries and background

We start this section with several preliminaries facts on the spaces that will be used in this work.
Harmonic Bloch space \mathcal{B}_{H} can be seen as the collection of $k \in \mathcal{H}(\mathbb{D})$ and the a semi-norm b_{k} satisfies the following condition

$$
\begin{equation*}
b_{k}:=\sup _{\eta \in \mathbb{D}}\left(1-|\eta|^{2}\right)\left(\left|f^{\prime}(\eta)\right|+\left|g^{\prime}(\eta)\right|\right)<\infty . \tag{2.1}
\end{equation*}
$$

\mathcal{B}_{H} is a Banach space when it is equipped with the harmonic Bloch norm defined as

$$
\|k\|_{\mathcal{B}_{H}}:=|k(0)|+b_{k} .
$$

\mathcal{B}_{H} space extends the well known Bloch space \mathcal{B}. An analytic function $f \in \mathcal{B}$ if and only if

$$
\begin{equation*}
b_{f}=\sup _{\eta \in \mathbb{D}}\left(1-|\eta|^{2}\right)\left|f^{\prime}(\eta)\right|<\infty, \tag{2.2}
\end{equation*}
$$

with norm

$$
\|f\|_{\mathcal{B}}=|f(0)|+b_{f} .
$$

In [3], the author obtains that the Bloch constant of k can be written as follows

$$
\begin{equation*}
b_{k}:=\sup _{\eta \in \mathbb{D}}\left(1-|\eta|^{2}\right)\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)<\infty . \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{b_{f}, b_{g}\right\} \leq b_{k} \leq b_{f}+b_{g} \tag{2.4}
\end{equation*}
$$

Consequently, a harmonic mapping k belongs to the harmonic Bloch space if and only if the functions $f, g \in H(\mathbb{D})$ such that $k=f+\bar{g}$ with $g(0)=0$ are in the classical Bloch space. For more details, see [2].

The little harmonic Bloch space $\mathcal{B}_{H, 0}$ is the subspace of \mathcal{B}_{H} such that

$$
\mathcal{B}_{H, 0}:=\left\{k \in \mathcal{B}_{H}: \lim _{|\eta| \rightarrow 1}\left(1-|\eta|^{2}\right)\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)=0\right\} .
$$

and the little Bloch spaces \mathcal{B}_{0} defined as

$$
\mathcal{B}_{0}:=\left\{f \in \mathcal{B}: \lim _{|\eta| \rightarrow 1}\left(1-|\eta|^{2}\right)\left|f^{\prime}(\eta)\right|=0\right\}
$$

Consider nondecreasing function $T:[0,+\infty) \rightarrow[0,+\infty)$. The logarithmic order of $T(r)$ is given by

$$
\lambda=\overline{\lim }_{r \rightarrow \infty} \frac{\log ^{*} \log ^{*} T(r)}{\log r}
$$

where $\log ^{*} \gamma=\max \{0, \log \gamma\}$
If $\lambda>0$, the logarithmic type of the function $T(r)$ is given by

$$
\Gamma=\varlimsup_{r \rightarrow \infty} \frac{\log ^{*} T(r)}{r^{\lambda}}
$$

The space \mathcal{Q}^{T} is the collection of analytic functions f defined on \mathbb{D} and

$$
q^{T}(f)=\sup _{\nu \in \mathbb{D}}\left(\int_{\mathbb{D}}\left(\left|f^{\prime}(\eta)\right|^{2} T(g(\eta, \nu)) d A(\eta)\right)^{\frac{1}{2}}<\infty\right.
$$

where $d A(\eta)$ represents the area measure on the unit disk and $g(\eta, \nu)=-\log \left|\sigma_{\nu}(\eta)\right|$ is the Green function of \mathbb{D} with pole at $\nu \in \mathbb{D}$ and $\sigma_{\nu}(\eta)=\frac{(\nu-\eta)}{(1-\bar{\nu} \eta)}$ be a Möbius transformation of \mathbb{D}.
3. The Möbius invariant \mathcal{Q}_{H}^{T} spaces

We now introduce the harmonic \mathcal{Q}_{H}^{T} space of harmonic mapping by a nondecreasing function $T(r)$ on $r \in[0, \infty)$.

Definition 3.1. For nondecreasing function $T:[0,+\infty) \rightarrow[0,+\infty)$. A harmonic mapping $k \in \mathcal{H}(\mathbb{D})$ is said to be in the class \mathcal{Q}_{H}^{T} if

$$
\left[q^{T}(k)\right]^{2}=\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)<\infty
$$

and the norm of \mathcal{Q}_{H}^{T} is defined as:

$$
\begin{equation*}
\|k\|_{\mathcal{Q}_{H}^{T}}:=|k(0)|+q^{T}(k) \tag{3.1}
\end{equation*}
$$

The little harmonic $\mathcal{Q}_{H, 0}^{T}$ is the subspace of \mathcal{Q}_{H}^{T} such that

$$
\mathcal{Q}_{H, 0}^{T}:=\left\{k \in \mathcal{H}(\mathbb{D}): \lim _{|\eta| \rightarrow 1} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)=0\right\} .
$$

Remark 3.1. As a special case when $k \in H(\mathbb{D})$, the functions f, g in the canonical decomosition of k are given by $k=f$ and $g \equiv 0$. Moreover, the collections of analytic function on the unit disk in the \mathcal{Q}_{H}^{T} is just the space \mathcal{Q}^{T}.

Corollary 3.1. For $T:[0,+\infty) \rightarrow[0,+\infty)$ be non-decreasing function. Let $f \in H(\mathbb{D})$, if $k \in \mathcal{H}(\mathbb{D})$ be the real part of f or imaginary part of f then

$$
q^{T}(k)=q^{T}(f)
$$

Proof. Assume $f=\operatorname{Re}(k)$. Then we have,

$$
k=\frac{1}{2}(f+\bar{f}) .
$$

Therefore,

$$
\begin{aligned}
q^{T}(k) & =\left(\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\frac{1}{2}\left|f^{\prime}(\eta)\right|+\frac{1}{2}\left|f^{\prime}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)\right)^{\frac{1}{2}} \\
& =\left(\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(\eta)\right|^{2} T(g(\eta, \nu)) d A(\eta)\right)^{\frac{1}{2}}=q^{T}(f)
\end{aligned}
$$

In a similar way, assume $f=\operatorname{Im}(k)$, then we have

$$
k=\frac{1}{2 i} f-\frac{1}{2 i} \bar{f} .
$$

Thus,

$$
\begin{aligned}
q^{T}(k) & =\left(\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\frac{1}{2}\left|f^{\prime}(\eta)\right|+\frac{1}{2}\left|f^{\prime}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)\right)^{\frac{1}{2}} \\
& =\left(\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(\eta)\right|^{2} T(g(\eta, \nu)) d A(\eta)\right)^{\frac{1}{2}} \\
& =q^{T}(f)
\end{aligned}
$$

Theorem 3.1. For $T:[0,+\infty) \rightarrow[0,+\infty)$ be non-decreasing function. Let $k=f+\bar{g} \in \mathcal{H}(\mathbb{D})$ where $f, g \in H(\mathbb{D})$. Then $f, g \in \mathcal{Q}^{T}$ if and only if $k \in \mathcal{Q}_{H}^{T}$. Moreover, if $g(0)=0$, then

$$
\frac{1}{2}\left(\|f\|_{\mathcal{Q}^{T}}+\|g\|_{\mathcal{Q}^{\top}}\right) \leq\|k\|_{\mathcal{Q}_{H}^{T}} \leq 2\left(\left(\|f\|_{\mathcal{Q}^{T}}+\|g\|_{\mathcal{Q}^{T}}\right)\right)
$$

Proof. Consider $f, g \in \mathcal{Q}^{T}$ and let $k=f+\bar{g}$. Then

$$
f^{\prime}=k_{\eta} \quad \text { and } \quad g^{\prime}=k_{\bar{\eta}} .
$$

Therefore,

$$
\left(\left|k_{\eta}(\eta)\right|+\left|h_{\bar{\eta}}(\eta)\right|\right)^{2}<2^{2}\left(\left|k_{\eta}(\eta)\right|^{2}+\left|k_{\bar{\eta}}(\eta)\right|^{2}\right)
$$

The above inequality follows from the fact that for $c_{1}, c_{2} \geq 0$,

$$
\left(\frac{c_{1}+c_{2}}{2}\right)^{2} \leq\left[\max \left\{c_{1}, c_{2}\right\}\right]^{2}=\max \left\{c_{1}^{2}, c_{2}^{2}\right\} \leq c_{1}^{2}+c_{2}^{2}
$$

we have

$$
\begin{aligned}
q^{T}(k)^{2} & =\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta) \\
& \leq 2^{2}\left[\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)+\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)\right]<\infty
\end{aligned}
$$

Therefore $k \in \mathcal{Q}_{H}^{T}$ and,

$$
\begin{equation*}
q^{T}(f+\bar{g})^{2} \leq 4\left(q^{T}(f)^{2}+q^{T}(g)^{2}\right) \tag{3.2}
\end{equation*}
$$

Taking the square root, we get

$$
\left.q^{T}(k) \leq 2 \sqrt{\left(q^{T}(f)^{2}+q^{T}(g)^{2}\right.}\right)<2\left(q^{T}(f)+q^{T}(g)\right)
$$

Moreover, using $|k(0)| \leq|f(0)|+|g(0)|$, the upper estimate holds

Conversely, let $k \in \mathcal{Q}_{H}^{T}$ and note that

$$
\left|f^{\prime}(\eta)\right|^{2}+\left|g^{\prime}(\eta)\right|^{2} \leq\left(\left|f^{\prime}(\eta)\right|+\left|g^{\prime}(\eta)\right|\right)^{2}
$$

Thus

$$
\begin{aligned}
& \left.\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)+\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)\right) \\
\leq & \sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)<\infty
\end{aligned}
$$

Therefore, both f and g are in the space \mathcal{Q}^{T} and

$$
q^{T}(f)^{2}+q^{T}(g)^{2} \leq q^{T}(k)^{2}
$$

Hence, by 3.2

$$
\frac{1}{2}\left[q^{T}(f)+q^{T}(g)\right] \leq \sqrt{q^{T}(f)^{2}+q^{T}(g)^{2}}
$$

Then, we combine these two inequalities to get

$$
\frac{1}{2}\left[q^{T}(f)+q^{T}(g)\right] \leq q^{T}(k)
$$

By the assumption $g(0)=0$, we have

$$
\frac{1}{2}|f(0)| \leq|f(0)|=|k(0)|
$$

Therefore,

$$
\frac{1}{2}\left[\|f\|_{\mathcal{Q}^{T}}+\|g\|_{\mathcal{Q}^{T}}\right] \leq\|k\|_{\mathcal{Q}_{H}^{T}}
$$

We deduce the lower estimate.

Lemma 3.1. For $T:[0,+\infty) \rightarrow[0,+\infty)$ be non-decreasing function. Then $k \in \mathcal{Q}_{H}^{T}$ if and only if

$$
\begin{equation*}
\sup _{\nu \in \mathbb{D}}\left(\int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T\left(1-\left|\sigma_{\nu}(\eta)\right|^{2}\right) d A(\eta)\right)^{\frac{1}{2}}<\infty \tag{3.3}
\end{equation*}
$$

Proof. Recall that for $s \in(0,1]$, we have

$$
-2 \log s \geq 1-s^{2}
$$

and for $s \in\left(\frac{1}{4}, 1\right)$ we have

$$
-\log s \leq 4\left(1-s^{2}\right)
$$

Assume $k \in \mathcal{Q}_{H}^{T}$ then we have,

$$
\begin{align*}
q^{T}(k) & =\sup _{\nu \in \mathbb{D}}\left(\int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)\right)^{\frac{1}{2}} \tag{3.4}\\
& \leq \sup _{\nu \in \mathbb{D}}\left(\int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T\left(1-\left|\sigma_{\nu}(\eta)\right|^{2}\right) d A(\eta)\right)^{\frac{1}{2}} \tag{3.5}
\end{align*}
$$

Since $\int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2}|d \eta|$ is increasing function on $\delta \in(0,1)$, we have

$$
\int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2}|d \eta| \leq \int_{\mathbb{D} / \mathbb{D}\left(0, \frac{1}{4}\right)}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T\left(1-\left|\sigma_{\nu}(\eta)\right|^{2}\right) d A(\eta) \leq\left(q^{T}(k)\right)^{2} .
$$

This inequality with 3.4 , prove the theorem.
We now study the relationship between $k \in \mathcal{Q}_{H}^{T}$ and the associated real and imaginary parts.
Proposition 3.1. For $T:[0,+\infty) \rightarrow[0,+\infty)$ be non-decreasing function. Let $k \in \mathcal{H}(\mathbb{D})$ and assume that τ be the real part of k and θ is the imaginary part of k such that

$$
\tau=\operatorname{Re}(k) \quad \text { and } \theta=I m(k) .
$$

Then $k \in \mathcal{Q}_{H}^{T}$, if and only if $\tau, \theta \in \mathcal{Q}_{H}^{T}$. Moreover

$$
\frac{1}{4}\left(\|\tau\|_{\mathcal{Q}_{H}^{T}}+\|\theta\|_{\mathcal{Q}_{H}^{T}}\right) \leq\|k\|_{\mathcal{Q}_{H}^{T}} \leq\|\tau\|_{\mathcal{Q}_{H}^{T}}+\|\theta\|_{\mathcal{Q}_{H}^{T}} .
$$

Proof. Assume $\tau, \theta \in \mathcal{Q}_{H}^{T}$. Due to linearity, $k \in \mathcal{Q}_{H}^{T}$ and the upper estimate hold directly by the property of the norm (triangle inequality).

Let $k \in \mathcal{Q}_{H}^{T}$ and recall that

$$
J(\tau, \theta)=\tau_{x} \theta_{y}-\theta_{x} \tau_{y}
$$

We have

$$
\begin{equation*}
2|J(\tau, \theta)| \leq\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2} \tag{3.6}
\end{equation*}
$$

where $\nabla \tau=\left(\tau_{x}, \tau_{y}\right)$, and $\nabla \theta=\left(\theta_{x}, \theta_{y}\right)$.
From this, we get

$$
\begin{equation*}
\left(\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}+2 J(\tau, \theta)\right)^{\frac{1}{2}}+\left(\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}-2 J(\tau, \theta)\right)^{\frac{1}{2}} \geq \sqrt{2}\left(\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}\right)^{\frac{1}{2}} \tag{3.7}
\end{equation*}
$$

By squaring (3.7), the left-hand side becomes

$$
\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}+2 J(\tau, \theta)+\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}-2 J(\tau, \theta)+2\left(\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}\right)^{2}-4\left(J(\tau, \theta)^{2}\right)^{\frac{1}{2}}
$$

Thus, by neglecting the last term and simple calculation, we obtain

$$
2\left(\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}\right)
$$

Now, we may find $\left|k_{\eta}\right|+\left|k_{\bar{\eta}}\right|$ with respect to τ and θ by using the partials with respect to η and $\bar{\eta}$, then calculating the modulus, after that applying (3.7)

$$
\begin{aligned}
\left|k_{\eta}\right|+\left|k_{\bar{\eta}}\right| & =\left|\tau_{\eta}+i \theta_{\eta}\right|+\left|\tau_{\bar{\eta}}+i \theta_{\bar{\eta}}\right| \\
& =\frac{1}{2}\left|\tau_{x}+\theta_{y}+i\left(\theta_{x}-\tau_{y}\right)\right|+\frac{1}{2}\left|\tau_{x}-\theta_{y}+i\left(\theta_{x}+\tau_{y}\right)\right| \\
& =\frac{1}{2} \sqrt{\left(\left(\tau_{x}+\theta_{y}\right)^{2}+\left(\theta_{x}-\tau_{y}\right)^{2}\right)}+\frac{1}{2} \sqrt{\left(\left(\tau_{x}-\theta_{y}\right)^{2}+\left(\theta_{x}+\tau_{y}\right)^{2}\right)} \\
& =\frac{1}{2} \sqrt{\left(\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}+2 J(\tau, \theta)\right)}+\frac{1}{2} \sqrt{\left(\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}-2 J(\tau, \theta)\right)} \\
& \geq \frac{1}{\sqrt{2}} \sqrt{\|\nabla \tau\|^{2}+\|\nabla \theta\|^{2}} \\
& \geq \frac{1}{2}(\|\nabla \tau\|+\|\nabla \theta\|)
\end{aligned}
$$

In the last step, we apply the following inequality

$$
\begin{equation*}
\left\|\left(\eta_{1}, \eta_{2}\right)\right\| \geq \frac{\left|\eta_{1}\right|+\left|\eta_{2}\right|}{\sqrt{2}} \text { for } \eta_{1}, \eta_{2} \in \mathbb{C} \tag{3.8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\left(q^{T}(k)\right)^{2} & \geq \frac{1}{2} \sup _{\eta \in \mathbb{D}} \int_{\mathbb{D}}(\|\nabla \tau(\eta)\|+\|\nabla \theta \eta\|)^{2} T(g(\eta, \nu) d A(\eta) \\
& \geq \frac{1}{2} \max \left\{q_{\tau}^{T}, q_{\theta}^{T}\right\} \\
& \geq \frac{1}{4}\left(q_{\tau}^{T}+q_{\theta}^{T}\right) \tag{3.9}
\end{align*}
$$

Therefore, by using inequality (3.8) one more time, we obtain

$$
\begin{equation*}
|k(0)| \geq \frac{1}{\sqrt{2}}(|\tau(0)|+|\theta(0)|) \tag{3.10}
\end{equation*}
$$

Now, combine (3.9) and (3.10) to get

$$
\|k\|_{\mathcal{Q}_{H}^{T}} \geq \frac{1}{4}\left(\|\tau\|_{\mathcal{Q}_{H}^{T}}+\|\theta\|_{\mathcal{Q}_{H}^{T}}\right)
$$

Thus, τ and θ are in \mathcal{Q}_{H}^{T}, and that the other estimate is hold.
Theorem 3.2. $\left(\mathcal{Q}_{H}^{T},\|\cdot\|_{\mathcal{Q}_{H}^{T}}\right)$ is a Banach space.
Proof. Obviously, \mathcal{Q}_{H}^{T} is a normed linear space, we only wish to show completeness.
For each $n \in \mathbb{N}$, let $\left\{k_{n}\right\}$ be a Cauchy sequence in \mathcal{Q}_{H}^{T}. By Theorem 3.1, the analytic functions $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ such that $k_{n}=f_{n}+\bar{g}_{n}$ with $g_{n}(0)=0$ are in \mathcal{Q}^{T} and $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are Cauchy sequence in \mathcal{Q}^{T}. By proposition 2.2 in [4], \mathcal{Q}^{T} is complete. Thus, $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ converge to f and g, respectively in the \mathcal{Q}^{T} norm.

Define $k=f+\bar{g}$. Then, $k \in \mathcal{Q}_{H}^{T}$ by the estimates in Theorem 3.1, and

$$
\left\|k_{n}-k\right\|_{\mathcal{Q}_{H}^{\top}} \leq 2\left(\left\|f_{n}-f\right\|_{\mathcal{Q}^{T}}+\left\|g_{n}-g\right\|_{\mathcal{Q}^{T}}\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

We ends up with $k_{n} \rightarrow k$ in \mathcal{Q}_{H}^{T}.
Theorem 3.3. For nondecreasing function $T:[0,+\infty) \rightarrow[0,+\infty)$. The space \mathcal{Q}_{H}^{T} is a subset of \mathcal{B}_{H}. Moreover, for $k \in \mathcal{Q}_{H}^{T}$ we have

$$
\|k\|_{\mathcal{B}_{H}} \leq m\|k\|_{\mathcal{Q}_{H}^{\top}},
$$

for some constant $m>0$.
Proof. Assume $k \in \mathcal{Q}_{H}^{T}$ and let

$$
\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta)=M<\infty
$$

For $\delta \in(0,1)$ define $\mathbb{D}(\nsucceq, \npreceq):=\left\{\eta \in \mathbb{D}:\left|\sigma_{\nu}(\eta)\right|<\delta\right\}$. Since T is nondecreasing function and by the change of variable $w=\sigma_{\nu}(\eta)$ we have

$$
\begin{aligned}
M & \geq \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta) \\
& \geq \int_{\mathbb{D}(\nsupseteq, \npreceq)}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T\left(\log \frac{1}{\sigma_{\nu}(\eta)}\right) d A(\eta) \\
& \geq T\left(\log \frac{1}{\delta}\right) \int_{\mathbb{D}(\nsupseteq, \npreceq)}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} d A(\eta) \\
& =T\left(\log \frac{1}{\delta}\right) \int_{|w|<\delta}\left(\left|\left(k \circ \sigma_{\nu}\right)_{w}(w)\right|+\left|\left(k \circ \sigma_{\nu}\right)_{\bar{w}}(w)\right|\right)^{2} d A(w) \\
& \geq \pi \delta^{2} T\left(\log \frac{1}{\delta}\right)\left(\left|\left(k \circ \sigma_{\nu}\right)_{\nu}(0)\right|+\left|\left(k \circ \sigma_{\nu}\right)_{\bar{\nu}}(0)\right|\right)^{2} \\
& =\pi \delta^{2} T\left(\log \frac{1}{\delta}\right)\left(\mid\left(k_{\nu}(\nu)|+|\left(k_{\bar{\nu}}(\nu) \mid\right)^{2}\left(1-|\nu|^{2}\right)^{2}\right.\right.
\end{aligned}
$$

Fix $\delta_{0} \in(0,1)$. Thus

$$
\sup _{\nu \in \mathbb{D}}\left(1-|\nu|^{2}\right)\left[\left\lvert\,\left(k_{\nu}(\nu)|+|\left(k_{\bar{\nu}}(\nu) \mid\right] \leq \sqrt{\frac{M}{\pi \delta_{0}^{2} T\left(\log \frac{1}{\delta_{0}}\right)}}\right.\right.\right.
$$

Therefore,

$$
\begin{equation*}
b_{k} \leq \frac{q^{T}(k)}{\delta_{0} \sqrt{\pi T\left(\log \frac{1}{\delta_{0}}\right)}} \tag{3.11}
\end{equation*}
$$

We obtained that $k \in \mathcal{B}_{H}$ and $\mathcal{Q}_{H}^{T} \subset \mathcal{B}_{H}$.

Theorem 3.4. If the logarithmic type Γ and the logarithmic order λ of $T(r)$ satisfying one of the following cases,
(1) $\lambda>1$,
(2) $\Gamma>2$ and $\lambda=1$,
then the space \mathcal{Q}_{H}^{T} has only constant functions(trivial space).
Proof. By theorem 3.3, it is sufficient to prove that for each non constant harmonic Bloch function k can not be in the space \mathcal{Q}_{H}^{T}. Indeed, if either $\lambda>1$ or $\Gamma>2$ and $\lambda=1$, there is a sequence $\left\{r_{j}\right\}$ as $j \rightarrow \infty$, the sequence $\left\{r_{j}\right\} \rightarrow \infty$ as follows

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\log ^{*} \log ^{*} T\left(r_{j}\right)}{\log r_{j}}=\lambda>1, \tag{3.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\log ^{*} T\left(r_{j}\right)}{r_{j}}=\Gamma>2 \tag{3.13}
\end{equation*}
$$

In the case 3.12 or 3.13 , we get

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{T\left(r_{j}\right)}{e^{2 r_{j}}}=\infty \tag{3.14}
\end{equation*}
$$

Set $h_{j}=e^{-r_{j}}$, for $j \in \mathbb{N}$, then

$$
\begin{equation*}
\lim _{j \rightarrow \infty} h_{j}^{2} T\left(\log \frac{1}{h_{j}}\right)=\infty \tag{3.15}
\end{equation*}
$$

Assume $k \in \mathcal{B}_{H}$ be a non-constant. Then it is clear that the semi-norm $b_{k} \neq 0$.
However, by 3.11 , and 3.15 , as $j \rightarrow \infty$ we obtain

$$
\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}}\left(\left|k_{\eta}(\eta)\right|+\left|k_{\bar{\eta}}(\eta)\right|\right)^{2} T(g(\eta, \nu)) d A(\eta) \geq \pi b_{k}^{2} h_{j}^{2} T\left(\log \frac{1}{h_{j}}\right) \rightarrow \infty .
$$

That implies $k \notin \mathcal{Q}_{H}^{T}$ which proves the theorem.
The next theorem shows that the Möbius invariance of \mathcal{Q}^{T} space extends to the harmonic setting.

Theorem 3.5. For $T:[0,+\infty) \rightarrow[0,+\infty)$ be non-decreasing function. \mathcal{Q}_{H}^{T} is a Möbius invariant space.

Proof. It is obvious that rotations have no effect on the semi-norm $q^{T}(k)$. We wish to show $q^{T}(k \circ$ $\left.\varphi_{\nu}\right)=q^{T}(k)$, for $\nu \in \mathbb{D}$ and $k \in \mathcal{Q}_{H}^{T}$.

For $\nu \in \mathbb{D}$, and since φ_{ν} is its own inverse, we have

$$
\left(1-|\eta|^{2}\right)\left|\varphi^{\prime}(\eta)\right|=1-\left|\varphi_{\nu}(\eta)\right|^{2}
$$

and

$$
\varphi_{\nu}^{\prime}\left(\varphi_{\nu}(\eta)\right)=\frac{1}{\varphi_{\nu}^{\prime}(\eta)}
$$

By change of variables $\xi=\varphi_{\nu}(\eta)$, we get

$$
\begin{aligned}
q^{T}\left(k \circ \varphi_{\nu}\right)^{2} & =\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} T\left(1-\left|\varphi_{\nu}(\eta)\right|^{2}\right)\left[\left|\left(k \circ \varphi_{\nu}\right)_{\eta}(\eta)\right|+\left|\left(k \circ \varphi_{\nu}\right)_{\bar{\eta}}(\eta)\right|\right]^{2} d A(\eta) \\
& =\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} T\left(1-\left|\varphi_{\nu}(\eta)\right|^{2}\right)\left[\left|k_{\eta}\left(\varphi_{\nu}(\eta)\right) \varphi_{\nu}^{\prime}(\eta)\right|+\mid\left(k_{\bar{\eta}}\left(\varphi_{\nu}(\eta)\right) \overline{\left.\varphi_{\nu}^{\prime}(\eta)\right) \mid}\right]^{2} d A(\eta)\right. \\
& =\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} T\left(1-\left|\varphi_{\nu}(\eta)\right|^{2}\right)\left|\varphi_{\nu}^{\prime}(\eta)\right|^{2}\left[\left|k_{\eta}\left(\varphi_{\nu}(\eta)\right)\right|+\left|k_{\bar{\eta}}\left(\varphi_{\nu}(\eta)\right)\right|\right]^{2} d A(\eta) \\
& =\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} T\left(1-|\xi|^{2}\right)\left|\varphi_{\nu}^{\prime}\left(\varphi_{\nu}(\xi)\right)\right|^{2}\left[\left|k_{\eta}(\xi)\right|+\left|\left(k_{\bar{\eta}}(\xi)\right)\right|\right]^{2}\left|\varphi_{\nu}^{\prime}(\xi)\right|^{2} d A(\xi) \\
& =\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} T\left(1-|\xi|^{2}\right) \frac{1}{\left|\varphi_{\nu}^{\prime}(\xi)\right|^{2}}\left[\left|h_{\eta}(\xi)\right|+\left|h_{\bar{\eta}}(\eta)\right|\right]^{2}\left|\varphi_{\nu}^{\prime}(\xi)\right|^{2} d A(\xi) \\
& =\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} T\left(1-|\xi|^{2}\right)\left[\left|k_{\eta}(\xi)\right|+\left|k_{\bar{\eta}}(\xi)\right|\right]^{2} d A(\xi) \\
& =q^{T}(k)^{2}
\end{aligned}
$$

as desired.
Finally, we move our attention to study the boundedness of composition operator C_{φ} from the harmonic Bloch space \mathcal{B}_{H} to \mathcal{Q}_{H}^{T} and $\mathcal{Q}_{H, 0}^{T}$.

4. Boundedness

Due to the representation of the harmonic mapping, the composition operator C_{φ} induced by analytic or a conjugate analytic self-maps of \mathbb{D} is given by

$$
C_{\varphi} k=k \circ \varphi,
$$

for all k belonging to a class of harmonic mappings.
The following is a basic property of the harmonic Bloch space was introduced in [20].

Lemma 4.1. For $\eta \in \mathbb{D}$. If $k_{1}, k_{2} \in \mathcal{B}_{H}$ we have

$$
\left(1-|\eta|^{2}\right)^{-1} \leq\left(k_{1}\right)_{\eta}(\eta)\left|+\left|\left(k_{1}\right)_{\bar{\eta}}(\eta)\right|+\left|\left(k_{2}\right)_{\eta}(\eta)\right|+\left|\left(k_{2}\right)_{\bar{\eta}}(\eta)\right| .\right.
$$

The next result which will be used in the proof of the main theorem of this section is a special case of Theorem 3.6 in [1]

Lemma 4.2. For $k \in \mathcal{B}_{H}$ and $\varphi: \mathbb{D} \rightarrow \mathbb{D}$,

$$
|k(\varphi(0))| \leq|k(0)|+\frac{1}{2} \log \frac{1+|\varphi(0)|}{1-|\varphi(0)|} b_{k} .
$$

Theorem 4.1. For $T:[0,+\infty) \rightarrow[0,+\infty)$ be non-decreasing function. Let φ be analytic function such that $\varphi: \mathbb{D} \rightarrow \mathbb{D}$. Then $C_{\varphi}: \mathcal{B}_{H} \rightarrow \mathcal{Q}_{H}^{\top}$ is bounded operator if and only if

$$
\begin{equation*}
\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(\eta)\right|^{2}}{\left(1-|\varphi(\eta)|^{2}\right)^{2}} T(g(\eta, \nu)) d A(\eta)<\infty \tag{4.1}
\end{equation*}
$$

Proof. Let us assume 4.1 holds and let ρ_{1}^{2} be the supremum in 4.1. Let $\eta \in \mathbb{D}$ and $k \in \mathcal{B}_{H}$, then

$$
\begin{gathered}
\int_{\mathbb{D}} T(g(\eta, \nu))\left[\left|(k \circ \varphi)_{\eta}(\eta)\right|+\left|(k \circ \varphi)_{\bar{\eta}}(\eta)\right|\right]^{2} d A(\eta) \\
=\int_{\mathbb{D}} T(g(\eta, \nu))\left|\varphi^{\prime}(\eta)\right|^{2}\left[\left|k_{\eta}(\varphi(\eta))\right|+\left|k_{\bar{\eta}}(\varphi(\eta))\right|\right]^{2} d A(\eta) \\
\leq b_{k}^{2} \int_{\mathbb{D}} T(g(\eta, \nu)) \frac{\left|\varphi_{z}^{\prime}(\xi)\right|^{2}}{\left(1-|\varphi(\eta)|^{2}\right)^{2}} d A(\eta) \\
\leq \rho_{1}^{2} b_{k}^{2} .
\end{gathered}
$$

Therefore, $q^{T}(k \circ \varphi) \leq \rho_{1} b_{k}$. Since $k \in \mathcal{B}_{H}$ we have

$$
\begin{aligned}
\left\|C_{\varphi} k\right\|_{\mathcal{Q}_{H}^{T}}^{2} & =\left(|k \circ \varphi(0)|+q^{T}\left(C_{\varphi} k\right)\right)^{2} \\
& \left.\leq\left(|k(0)|+\frac{1}{2} \log \frac{1+|\varphi(0)|}{1-|\varphi(0)|} b_{k}+\rho_{1} b_{k}\right)\right)^{2} \\
& \leq \rho^{2}\left(|k(0)|+b_{k}\right)^{2}=\rho^{2}\|k\|_{\mathcal{B}_{H}}^{2} .
\end{aligned}
$$

where $\rho=\max \left\{1, \rho_{1}+\frac{1}{2} \log \frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right\}$.
Therefore, $\left\|C_{\varphi} k\right\|_{\mathcal{Q}_{H}^{T}} \leq \rho\|k\|_{\mathcal{B}_{H}}$ which implies that $C_{\varphi}: \mathcal{B}_{H} \rightarrow \mathcal{Q}_{H}^{T}$ is bounded. Conversely, Assume the boundedness of $C_{\varphi}: \mathcal{B}_{H} \rightarrow \mathcal{Q}_{H}^{T}$ holds, then there is a positive constant $\rho>0$ for all $k \in \mathcal{B}_{H}$, we have

$$
\left\|C_{\varphi} k\right\|_{\mathcal{Q}_{H}^{T}} \leq \rho\|k\|_{\mathcal{B}_{H}} .
$$

On the other hand, by Lemma 4.1 for all $\eta \in \mathbb{D}$, there exist $k_{1}, k_{2} \in \mathcal{B}_{H}$ such that

$$
\left(1-|\eta|^{2}\right)^{-1} \leq\left|\left(k_{1}\right)_{\eta}(\eta)\right|+\left|\left(k_{1}\right)_{\bar{\eta}}(\eta)\right|+\left|\left(k_{2}\right)_{\eta}(\eta)\right|+\left|\left(k_{2}\right)_{\bar{\eta}}(\eta)\right|
$$

Therefore,

$$
\begin{aligned}
\frac{\left|\varphi(\eta)^{\prime}\right|^{2}}{\left[1-|\varphi(\eta)|^{2}\right]^{2}} & \leq 2\left|\left(k_{1} \circ \varphi\right)_{\eta}(\eta)\right|^{2}+2\left|\left(k_{1} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|^{2}+2\left|\left(k_{2} \circ \varphi\right)_{\eta}(\eta)\right|^{2}+2\left|\left(k_{2} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|^{2} \\
& \leq 2\left[\left|\left(k_{1} \circ \varphi\right)_{\eta}(\eta)\right|+\left|\left(k_{1} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|\right]^{2}+2\left[\left|\left(k_{2} \circ \varphi\right)_{\eta}(\eta)\right|+\left|\left(k_{2} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|\right]^{2}
\end{aligned}
$$

where the last inequity follows from the fact that for $c_{1}, c_{2} \geq 0$ and $m>1$ we have

$$
c_{1}^{m}+c_{2}^{m} \leq\left(c_{1}+c_{2}\right)^{m}
$$

Moreover,

$$
\begin{aligned}
& \int_{\mathbb{D}} T(g(\eta, \nu)) \frac{\left|\varphi(\eta)^{\prime}\right|^{2}}{\left(1-|\varphi(\eta)|^{2}\right)^{2}} d A(\eta) \\
& \leq 2 \int_{\mathbb{D}}\left[\left[\left|\left(k_{1} \circ \varphi\right)_{\eta}(\eta)\right|+\left|\left(k_{1} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|\right]^{2}+\left[\left|\left(k_{2} \circ \varphi\right)_{\eta}(\eta)\right|+\left|\left(k_{2} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|\right]^{2}\right] T(g(\eta, \nu)) d A(\eta) \\
& \leq 2 \rho^{2}\left(\left\|k_{1}\right\|_{\mathcal{B}_{H}}^{2}+\left\|k_{2}\right\|_{\mathcal{B}_{H}}^{2}\right)
\end{aligned}
$$

Thus, take the supremum over all $\eta \in \mathbb{D}$, the quantity 4.1 holds since ρ is a constant and $k \in \mathcal{B}_{H}$.

Theorem 4.2. For nondecreasing function $T:[0,+\infty) \rightarrow[0,+\infty)$. Let φ be analytic function such that $\varphi: \mathbb{D} \rightarrow \mathbb{D}$. Then $C_{\varphi}: \mathcal{B}_{H} \rightarrow \mathcal{Q}_{H, 0}^{T}$ is bounded operator if and only if

$$
\begin{equation*}
\lim _{|\nu| \rightarrow 1} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(\eta)\right|^{2}}{\left(1-|\varphi(\eta)|^{2}\right)^{2}} T(g(\eta, \nu)) d A(\eta)=0 \tag{4.2}
\end{equation*}
$$

Proof. By theorem 4.1, we know that $C_{\varphi}: \mathcal{B}_{H} \rightarrow \mathcal{Q}_{H}^{T}$ is bounded since the condition 4.2 implies the following

$$
\sup _{\nu \in \mathbb{D}} \int_{\mathbb{D}} \frac{\left|\varphi^{\prime}(\eta)\right|^{2}}{\left(1-|\varphi(\eta)|^{2}\right)^{2}} T(g(\eta, \nu)) d A(\eta)<\infty
$$

We only wish to show that $C_{\varphi} k \in \mathcal{Q}_{H, 0}^{T}$ for each $k \in \mathcal{B}_{H}$ and this comes from the inequality

$$
\begin{gathered}
\int_{\mathbb{D}} T(g(\eta, \nu))\left[\left|(k \circ \varphi)_{\eta}(\eta)\right|+\left|(k \circ \varphi)_{\bar{\eta}}(\eta)\right|\right]^{2} d A(\eta) \\
=\int_{\mathbb{D}} T(g(\eta, \nu))\left|\varphi^{\prime}(\eta)\right|^{2}\left[\left|k_{\eta}(\varphi(\eta))\right|+\left|k_{\bar{\eta}}\left(\varphi_{z}(\eta)\right)\right|\right]^{2} d A(\eta) \\
\quad \leq b_{k}^{2} \int_{\mathbb{D}} T(g(\eta, \nu)) \frac{\left|\varphi_{z}^{\prime}(\eta)\right|^{2}}{\left(1-|\varphi(\eta)|^{2}\right)^{2}} d A(\eta)
\end{gathered}
$$

Thus, $C_{\varphi} k \in \mathcal{Q}_{H, 0}^{T}$.
Conversely, consider $C_{\varphi}: \mathcal{B}_{H} \rightarrow \mathcal{Q}_{H, 0}^{T}$ is bounded. By Lemma 4.1 there exist $k_{1}, k_{2} \in \mathcal{B}_{H}$ such that

$$
\left(1-|\eta|^{2}\right)^{-1} \leq\left|\left(k_{1}\right)_{\eta}(\eta)\right|+\left|\left(k_{1}\right)_{\bar{\eta}}(\eta)\right|+\left|\left(k_{2}\right)_{\eta}(\eta)\right|+\left|\left(k_{2}\right)_{\bar{\eta}}(\eta)\right|
$$

Then $C_{\varphi} k_{1}, C_{\varphi} k_{2} \in \mathcal{Q}_{H, 0}^{T}$.

Therefore,

$$
\begin{aligned}
& \lim _{|\nu| \rightarrow 1} \int_{\mathbb{D}} T(g(\eta, \nu)) \frac{\left|\varphi(\eta)^{\prime}\right|^{2}}{\left[1-|\varphi(\eta)|^{2}\right]^{2}} d A(\eta) \\
& \leq 2 \lim _{|\nu| \rightarrow 1} \int_{\mathbb{D}} T(g(\eta, \nu))\left(\left[\left|\left(k_{1} \circ \varphi\right)_{\eta}(\eta)\right|+\left|\left(k_{1} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|\right]^{2}+\left[\left|\left(k_{2} \circ \varphi\right)_{\eta}(\eta)\right|+\left|\left(k_{2} \circ \varphi\right)_{\bar{\eta}}(\eta)\right|\right]^{2}\right) d A(\eta)=0
\end{aligned}
$$

Then 4.2 holds and this complete the proof.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper.

References

[1] M. Aljuaid, The Operator Theory on Some Spaces of Harmonic Mappings, Doctoral Dissertation, George Mason University, 2019.
[2] M. Aljuaid, F. Colonna, Characterizations of Bloch-Type Spaces of Harmonic Mappings, J. Funct. Spaces. 2019 (2019), 5687343. https://doi.org/10.1155/2019/5687343.
[3] F. Colonna, The Bloch Constant of Bounded Harmonic Mappings, Indiana Univ. Math. J. 38 (1989), 829-840. https://www.jstor.org/stable/24895370.
[4] P. Wu, H. Wulan, Composition Operators From the Bloch Space Into the Spaces \mathcal{Q}_{T}, Int. J. Math. Math. Sci. 2003 (2003), 1973-1979. https://doi.org/10.1155/s0161171203207122.
[5] M. Aljuaid, F. Colonna, Composition Operators on Some Banach Spaces of Harmonic Mappings, J. Funct. Spaces. 2020 (2020), 9034387. https://doi.org/10.1155/2020/9034387.
[6] M. Aljuaid, F. Colonna, On the Harmonic Zygmund Spaces, Bull. Aust. Math. Soc. 101 (2020), 466-476. https: //doi.org/10.1017/s0004972720000180.
[7] C. Boyd, P. Rueda, Isometries of Weighted Spaces of Harmonic Functions, Potential Anal. 29 (2008), 37-48. https://doi.org/10.1007/s11118-008-9086-4.
[8] S. Chen, S. Ponnusamy, A. Rasila, Lengths, Areas and Lipschitz-Type Spaces of Planar Harmonic Mappings, Nonlinear Anal.: Theory Methods Appl. 115 (2015), 62-70. https://doi.org/10.1016/j.na.2014.12.005.
[9] Sh. Chen, S. Ponnusamy, X. Wang, Landau's Theorem and Marden Constant for Harmonic ν-Bloch Mappings, Bull. Aust. Math. Soc. 84 (2011), 19-32. https://doi.org/10.1017/s0004972711002140.
[10] Sh. Chen, S. Ponnusamy, X. Wang, On Planar Harmonic Lipschitz and Planar Harmonic Hardy Classes, Ann. Acad. Sci. Fen. Math. 36 (2011), 567-576.
[11] Sh. Chen, X. Wang, on Harmonic Bloch Spaces in the Unit Ball Of \mathbb{C}^{n}, Bull. Aust. Math. Soc. 84 (2011), 67-78. https://doi.org/10.1017/s0004972711002164.
[12] X. Fu, X. Liu, On Characterizations of Bloch Spaces and Besov Spaces of Pluriharmonic Mappings, J. Inequal. Appl. 2015 (2015), 360. https://doi.org/10.1186/s13660-015-0884-0.
[13] J. Laitila, H.O. Tylli, Composition Operators on Vector-Valued Harmonic Functions and Cauchy Transforms, Indiana Univ. Math. J. 55 (2006), 719-746. https://www. jstor.org/stable/24902369.
[14] W. Lusky, On Weighted Spaces of Harmonic and Holomorphic Functions, J. Lond. Math. Soc. 51 (1995), 309-320. https://doi.org/10.1112/jlms/51.2.309.
[15] W. Lusky, On the Isomorphism Classes of Weighted Spaces of Harmonic and Holomorphic Functions, Stud. Math. 175 (2006), 19-45.
[16] A.L. Shields, D.L. Williams, Bounded Projections, Duality, and Multipliers in Spaces of Harmonic Functions, J. Reine Angew. Math. 299-300 (1978), 256-279. https://doi.org/10.1515/crll.1978.299-300. 256.
[17] R. Yoneda, A Characterization of the Harmonic Bloch Space and the Harmonic Besov Spaces by an Oscillation, Proc. Edinburgh Math. Soc. 45 (2002), 229-239. https://doi.org/10.1017/s001309159900142x.
[18] M. Aljuaid, F. Colonna, Norm and Essential Norm of Composition Operators Mapping Into Weighted Banach Spaces of Harmonic Mappings, Preprint.
[19] H. Wulan, P. Wu, Characterizations of \mathcal{Q}_{T} Spaces, J. Math. Anal. Appl. 254 (2001), 484-497.
[20] A. Kamal, Q-Type Spaces of Harmonic Mappings, J. Math. 2022 (2022), 1342051. https://doi.org/10.1155/ 2022/1342051.
[21] M. Aljuaid, M.A. Bakhit, On Characterizations of Weighted Harmonic Bloch Mappings and Its Carleson Measure Criteria, J. Funct. Spaces. 2023 (2023), 8500633. https://doi.org/10.1155/2023/8500633.

