International Journal of Analysis and Applications

The Prominentness of Fuzzy GE-Filters in GE-Algebras

Sun Shin Ahn^{1,*}, Rajab Ali Borzooei², Young Bae Jun³

¹Department of Mathematics Education, Dongguk University, Seoul 04620, Korea ²Department of Mathematics, Shahid Beheshti University, Tehran 1983963113, Iran ³Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

* Corresponding author: sunshine@dongguk.edu

Abstract. Based on the concept of fuzzy points, the notion of a prominent fuzzy GE-filter is defined, and the various properties involved are investigated. The relationship between a fuzzy GE-filter and a prominent fuzzy GE-filter is discussed, and the characterization of a prominent fuzzy GE-filter is considered. The conditions under which a fuzzy GE-filter can be a prominent fuzzy GE-filter are explored, and conditions for the trivial fuzzy GE-filter to be a prominent fuzzy GE-filter are provided. The conditions under which the \in_t -set and Q_t -set can be prominent GE-filters are explored. Finally, the extension property for the prominent fuzzy GE-filter is discussed.

1. Introduction

Henkin and Scolem introduced the concept of Hilbert algebra in the implication investigation in intuitionistic logics and other nonclassical logics. Diego [6] established that Hilbert algebras form a locally finite variety. Later several researchers extended the theory on Hilbert algebras (see [4,5,7,8]). The notion of BE-algebra was introduced by Kim et al. [9] as a generalization of a dual BCK-algebra. Rezaei et al. [13] discussed relations between Hilbert algebras and BE-algebras. As a generalization of Hilbert algebras, Bandaru et al. [2] introduced the notion of GE-algebras, and investigated several properties. Bandaru et al. [3] introduced the concept of bordered GE-algebra and investigated its properties. Later, Ozturk et al. [10] introduced the concept of strong GE-filters, GE-ideals of bordered GE-algebras and investigated its properties. Song et al. [14] introduced the concept of Imploring GE-filters of GE-algebras and discussed its properties. Rezaei et al. [12] introduced the concept of strong GE-filters of GE-algebras and discussed its properties.

Received: Jan. 24, 2023.

²⁰²⁰ Mathematics Subject Classification. 03G25, 06F35, 08A72.

Key words and phrases. (prominent) GE-filter; (prominent) fuzzy GE-filter; trivial fuzzy GE-filter; \in_t -set; Q_t -set.

prominent GE-filters in GE-algebras and discussed its properties. Bandaru et al. [1] discussed the fuzzy notion of GE-filters in GE-algebras.

The purpose of this paper is to define a prominent fuzzy GE-filter using the concept of fuzzy points and investigate the various properties involved. We consider the relationship between a fuzzy GE-filter and a prominent fuzzy GE-filter. We explore the conditions under which a fuzzy GE-filter can be a prominent fuzzy GE-filter. We discuss the characterization of a prominent fuzzy GE-filter. We provide conditions for the trivial fuzzy GE-filter to be a prominent fuzzy GE-filter. We explore the conditions under which the \in_t -set and Q_t -set can be prominent GE-filters. We finally discuss the extension property for the prominent fuzzy GE-filter.

2. Preliminaries

2.1. Basics related to GE-algebras.

Definition 2.1 ([2]). By a GE-algebra we mean a set X with a constant "1" and a binary operation "*" satisfying the following axioms:

$$(GE1) a * a = 1,$$

 $(GE2) 1 * a = a,$
 $(GE3) a * (b * c) = a * (b * (a * c))$
for all a, b, c $\in X$.

We denote the GE-algebra by $\mathbf{X} := (X, *, 1)$. A binary relation " \leq " in a GE-algebra $\mathbf{X} := (X, *, 1)$ is defined by:

$$(\forall x, y \in X)(x \le y \iff x \ast y = 1).$$
(2.1)

Definition 2.2 ([2]). A GE-algebra $\mathbf{X} := (X, *, 1)$ is said to be

• transitive if it satisfies:

$$(\forall a, b, c \in X) (a * b \le (c * a) * (c * b)).$$
 (2.2)

• commutative if it satisfies:

$$(\forall a, b \in X) ((a * b) * b = (b * a) * a).$$
 (2.3)

Note that every commutative GE-algebra is transitive and antisymmetric.

Proposition 2.1 ([2]). Every GE-algebra $\mathbf{X} := (X, *, 1)$ satisfies the following items.

$$(\forall a \in X) (a * 1 = 1). \tag{2.4}$$

$$(\forall a, b \in X) (a * (a * b) = a * b).$$

$$(2.5)$$

$$(\forall a, b \in X) (a \le b * a).$$
(2.6)

$$(\forall a, b, c \in X) (a * (b * c) \le b * (a * c)).$$
(2.7)

$$(\forall a \in X) (1 \le a \implies a = 1).$$
(2.8)

$$(\forall a, b \in X) (a \le (a * b) * b).$$

$$(2.9)$$

If $\mathbf{X} := (X, *, 1)$ is transitive, then

$$(\forall a, b, c \in X) (a \le b \implies c * a \le c * b, b * c \le a * c).$$

$$(2.10)$$

$$(\forall a, b, c \in X) (a * b \le (b * c) * (a * c)).$$
(2.11)

$$(\forall a, b, c \in X) (a * b \le (c * a) * (c * b)).$$
(2.12)

Definition 2.3. A subset F of a GE-algebra $\mathbf{X} := (X, *, 1)$ is called

• a GE-filter of $\mathbf{X} := (X, *, 1)$ (see [2]) if it satisfies:

$$1 \in F, \tag{2.13}$$

$$(\forall a, b \in X)(a \in F, a * b \in F \implies b \in F).$$

$$(2.14)$$

• a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ (see [12]) if it satisfies (2.13) and

$$(\forall a, b, c \in X)(a * (b * c) \in F, a \in F \Rightarrow ((c * b) * b) * c \in F).$$

$$(2.15)$$

Lemma 2.1 ([2]). Every GE-filter F of $\mathbf{X} := (X, *, 1)$ satisfies:

$$(\forall x, y \in X)(x \le y, x \in F \implies y \in F).$$
(2.16)

Lemma 2.2 ([12]). Every prominent GE-filter is a GE-filter.

2.2. Basics related to fuzzy sets. A fuzzy set f in a set X of the form

$$f(b) := \begin{cases} t \in (0, 1] & \text{if } b = a, \\ 0 & \text{if } b \neq a, \end{cases}$$

is said to be a *fuzzy point* with support a and value t and is denoted by $\frac{a}{t}$.

For a fuzzy set f in a set X and $t \in (0, 1]$, we say that a fuzzy point $\frac{a}{t}$ is

- (i) contained in f, denoted by $\frac{a}{t} \in f$, (see [11]) if $f(a) \ge t$.
- (ii) quasi-coincident with f, denoted by $\frac{a}{t} q f$, (see [11]) if f(a) + t > 1.

If $\frac{a}{t} \alpha f$ is not established for $\alpha \in \{\in, q\}$, it is denoted by $\frac{a}{t} \overline{\alpha} f$. Given $t \in (0, 1]$ and a fuzzy set f in a set X, consider the following sets

$$(f, t)_{\in} := \{x \in X \mid \frac{x}{t} \in f\} \text{ and } (f, t)_q := \{x \in X \mid \frac{x}{t} q f\}$$

which are called an \in_t -set and Q_t -set of f, respectively, in X.

Definition 2.4 ([1]). A fuzzy set f in a GE-algebra $\mathbf{X} := (X, *, 1)$ is called a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ if it satisfies:

$$(\forall t \in (0, 1]) ((f, t)_{\epsilon} \neq \emptyset \implies 1 \in (f, t)_{\epsilon}), \qquad (2.17)$$

$$x * y \in (f, t_b)_{\in}, x \in (f, t_a)_{\in} \Rightarrow y \in (f, \min\{t_a, t_b\})_{\in}$$
(2.18)

for all $x, y \in X$ and $t_a, t_b \in (0, 1]$.

3. The Prominentness of Fuzzy GE-Filters

In what follows, let $\mathbf{X} := (X, *, 1)$ denote a GE-algebra unless otherwise specified.

Definition 3.1. A fuzzy set f in X is called a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ if it satisfies (2.17) and

$$(\forall x, y, z \in X)(\forall t_a, t_b \in (0, 1]) \left(\begin{array}{c} x * (y * z) \in (f, t_b)_{\in}, x \in (f, t_a)_{\in} \Rightarrow \\ ((z * y) * y) * z \in (f, \min\{t_a, t_b\})_{\in} \end{array} \right).$$
(3.1)

Example 3.1. Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ be a set with a binary operation "*" given by Table 1.

*	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	1	1	1	4	6	6	1
3	1	2	1	5	5	5	7
4	1	1	3	1	1	1	1
5	1	2	1	1	1	1	7
6	1	2	3	1	1	1	1
7	1	2	3	6	5	6	1

Table 1. Cayley table for the binary operation "*"

Then $\mathbf{X} := (X, *, 1)$ is a GE-algebra (see [12]). Define a fuzzy set f in X as follows:

$$f: X \to [0, 1], \ x \mapsto \begin{cases} 0.85 & \text{if } x \in \{1, 2, 3, 7\}, \\ 0.37 & \text{otherwise.} \end{cases}$$

It is routine to verify that f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$.

We discuss the relationship between a fuzzy GE-filter and a prominent fuzzy GE-filter.

Theorem 3.1. Every prominent fuzzy GE-filter is a fuzzy GE-filter.

Proof. Let f be a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$. Let $x, y \in X$ and $t_a, t_b \in (0, 1]$ be such that $x \in (f, t_a)_{\in}$ and $x * y \in (f, t_b)_{\in}$. Then $x * (1 * y) = x * y \in (f, t_b)_{\in}$ by (GE2), and so

 $y = ((y * 1) * 1) * y \in (f, t_b)_{\in}$ by (GE1), (GE2), (2.4) and (3.1). Hence f is a fuzzy GE-filter of X := (X, *, 1).

The following example shows that the converse of Theorem 3.1 may not be true.

Example 3.2. Consider the GE-algebra $\mathbf{X} := (X, *, 1)$ in Example 3.1 and let f be a fuzzy set in X defined by

$$f: X \to [0, 1], \ x \mapsto \begin{cases} 0.79 & \text{if } x \in \{1, 3, 7\}, \\ 0.46 & \text{otherwise.} \end{cases}$$

It is routine to verify that f is a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$. But it is not a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ since $3 \in (f, 0.67)_{\in}$ and $3 * (4 * 2) = 1 \in (f, 0.62)_{\in}$, but $((2 * 4) * 4) * 2 = 2 \notin (f, 0.62)_{\in} = (f, \min\{0.67, 0.62\})_{\in}$.

We explore the conditions under which a fuzzy GE-filter can be a prominent fuzzy GE-filter.

Theorem 3.2. Given a fuzzy GE-filter f of $\mathbf{X} := (X, *, 1)$, it is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ if and only if it satisfies:

$$(\forall x, y \in X)(\forall t \in (0, 1])(x * y \in (f, t)_{\in} \implies ((y * x) * x) * y \in (f, t)_{\in}).$$
(3.2)

Proof. Assume that f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ and let $x, y \in X$ and $t \in (0, 1]$ be such that $x * y \in (f, t)_{\in}$. Then $1 * (x * y) = x * y \in (f, t)_{\in}$ by (GE2). Since $1 \in (f, t)_{\in}$, it follows from (3.1) that $((y * x) * x) * y \in (f, t)_{\in}$.

Conversely, let f be a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ that satisfies the condition (3.2). Let $x, y, z \in X$ and $t_a, t_b \in (0, 1]$ be such that $x * (y * z) \in (f, t_b)_{\in}$ and $x \in (f, t_a)_{\in}$. Then $y * z \in (f, \min\{t_a, t_b\})_{\in}$ by (2.18), and so $((z * y) * y) * z \in (f, \min\{t_a, t_b\})_{\in}$ by (3.2). Therefore f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$.

Lemma 3.1 ([1]). Every fuzzy GE-filter f of X satisfies:

$$(\forall x, y \in X)(\forall t_a \in (0, 1]) (x \le y, x \in (f, t_a)_{\in} \Rightarrow y \in (f, t_a)_{\in}),$$

$$(3.3)$$

$$(\forall x, y, z \in X)(\forall t_a, t_b \in (0, 1]) \left(\begin{array}{c} z \le y * x, y \in (f, t_b)_{\in}, z \in (f, t_a)_{\in} \\ \Rightarrow x \in (f, \min\{t_a, t_b\})_{\in} \end{array} \right).$$
(3.4)

Theorem 3.3. In a commutative GE-algebra, every fuzzy GE-filter is a prominent fuzzy GE-filter.

Proof. Let f be a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$. It is sufficient to show that f satisfies the condition (3.1). Let $x, y, z \in X$ and $t_a, t_b \in (0, 1]$ be such that $x * (y * z) \in (f, t_b)_{\in}$ and

 $x \in (f, t_a)_{\in}$. Using (2.3), (2.7), and (2.12), we have

$$1 = ((z * y) * y) * ((y * z) * z)$$

$$\leq (y * z) * (((z * y) * y) * z)$$

$$\leq (x * (y * z)) * (x * (((z * y) * y) * z))$$

$$\leq x * ((x * (y * z)) * (((z * y) * y) * z)),$$

and so x * ((x * (y * z)) * (((z * y) * y) * z)) = 1, i.e., $x \le (x * (y * z)) * (((z * y) * y) * z)$. It follows from Lemma 3.1 that $((z * y) * y) * z \in (f, \min\{t_a, t_b\})_{\in}$. Therefore *f* is a prominent fuzzy GE-filter of X := (X, *, 1).

Theorem 3.4. A fuzzy set f in X is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ if and only if it satisfies:

$$(\forall x \in X)(f(1) \ge f(x)). \tag{3.5}$$

$$(\forall x, y, z \in X)(f(((z * y) * y) * z) \ge \min\{f(x), f(x * (y * z))\}).$$
(3.6)

Proof. Assume that f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$. Suppose there exists $a \in X$ such that f(1) < f(a). Let $t_0 = \frac{1}{2}(f(1) + f(a))$. Then $f(1) < t_0$ and $0 < t_0 < f(a) \le 1$. Hence $a \in (f, t_0)_{\in}$ and so $(f, t_0)_{\in} \neq \emptyset$. Thus $1 \in (f, t_0)_{\in}$, that is, $f(1) \ge t_0$, which is contradiction. Hence $f(1) \ge f(x)$ for all $x \in X$. Let $x, y, z \in X$ be such that $f(x) = t_1$ and $f(x * (y * z)) = t_2$. Then $x \in (f, t_1)_{\in}$ and $x * (y * z) \in (f, t_2)_{\in}$. It follows from (3.1) that $((z * y) * y) * z \in (f, \min\{t_1, t_2\})_{\in}$. Hence $f(((z * y) * y) * z) \ge \min\{t_1, t_2\} = \min(f(x), f(x * (y * z)))$.

Conversely, assume that f satisfies (3.5) and (3.6). Let $t \in (0, 1]$ and $x \in (f, t)_{\in}$. Then $f(x) \ge t$ and hence $f(1) \ge f(x) \ge t$. Thus $1 \in (f, t)_{\in}$. Let $x, y, z \in X$ be such that $x \in (f, t_1)_{\in}$ and $x * (y * z) \in (f, t_2)_{\in}$. Then $f(x) \ge t_1$ and $f(x * (y * z)) \ge t_2$. Therefore $f(((z * y) * y) * z) \ge$ $\min\{f(x), f(x * (y * z))\} \ge \min\{t_1, t_2\}$ by (3.6). Hence $((z * y) * y) * z \in (f, \min\{t_1, t_2\})_{\in}$. Thus fis a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$.

Theorem 3.5. Given an element $b \in X$, define a fuzzy set f_b in X as follows:

$$f_b: X \to [0, 1], x \mapsto \begin{cases} t_1 & \text{if } x \in \vec{b}, \\ t_2 & \text{otherwise.}, \end{cases}$$

where $\vec{b} := \{x \in X \mid b \leq x\}$ and $t_1 > t_2$ in (0, 1]. Then f_b is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ if and only if $\mathbf{X} := (X, *, 1)$ satisfies:

$$(\forall x, y, z \in X)(x \in \vec{b}, x * (y * z) \in \vec{b} \Rightarrow ((z * y) * y) * z \in \vec{b}).$$

$$(3.7)$$

Proof. Assume that f_b is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ and let $x, y, z \in X$ be such that $x \in \vec{b}$ and $x * (y * z) \in \vec{b}$. Then $f_b(x) = t_1 = f_b(x * (y * z))$, which implies from (3.6) that

$$f_b(((z * y) * y) * z) \ge \min\{f_b(x), f_b(x * (y * z))\} = t_1.$$

Hence $f_b(((z * y) * y) * z) = t_1$, and thus $((z * y) * y) * z \in \vec{b}$.

Conversely, suppose that $\mathbf{X} := (X, *, 1)$ satisfies the condition (3.7). Since $1 \in \vec{b}$, we get $f_b(1) = t_1 \ge f_b(x)$ for all $x \in X$. For every $x, y, z \in X$, if $x \notin \vec{b}$ or $x * (y * z) \notin \vec{b}$, then $f_b(x) = t_2$ or $f_b(x * (y * z)) = t_2$. Hence

$$f_b(((z * y) * y) * z) \ge t_2 = \min\{f_b(x), f_b(x * (y * z))\}.$$

If $x \in \vec{b}$ and $x * (y * z) \in \vec{b}$, then $f_b(x) = t_1$ and $f_b(x * (y * z)) = t_1$. Thus

$$f_b(((z*y)*y)*z) = t_1 = \min\{f_b(x), f_b(x*(y*z))\}$$

Therefore f_b is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ by Theorem 3.4.

Consider a fuzzy set f in X which is given by

$$f: X \to [0, 1], x \mapsto \begin{cases} t_1 & \text{if } x = 1, \\ t_2 & \text{otherwise} \end{cases}$$

where $t_1 > t_2$ in (0, 1]. It is clear that f is a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$, which is called the *trivial fuzzy GE-filter* of $\mathbf{X} := (X, *, 1)$. But it is not a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ as seen in the following example.

Example 3.3. Consider the GE-algebra $\mathbf{X} := (X, *, 1)$ in Example 3.1 and let f be a fuzzy set in X defined by

$$f: X \to [0, 1], \ x \mapsto \begin{cases} 0.83 & \text{if } x = 1, \\ 0.57 & \text{otherwise.} \end{cases}$$

Then f is a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$, but it is not a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ since $1 \in (f, 0.69)_{\in}$ and $1 * (4 * 2) = 1 \in (f, 0.64)_{\in}$, but $((2 * 4) * 4) * 2 = 2 \notin (f, \min\{0.69, 0.64\})_{\in}$.

We provide conditions for the trivial fuzzy GE-filter to be a prominent fuzzy GE-filter.

Theorem 3.6. In a commutative GE-algebra, the trivial fuzzy GE-filter is a prominent fuzzy GE-filter.

Proof. Let f be the trivial fuzzy GE-filter of a commutative GE-algebra $\mathbf{X} := (X, *, 1)$. Then

$$(f, t)_{\in} = \begin{cases} \emptyset & \text{if } t \in (t_1, 1], \\ \{1\} & \text{if } t \in (t_2, t_1], \\ X & \text{if } t \in (0, t_2]. \end{cases}$$

It is sufficient to show that $(f, t)_{\in} = \{1\}$ is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$. Let $x, y, z \in X$ be such that $x \in \{1\}$ and $x * (y * z) \in \{1\}$. Using (GE2), (2.3) and (GE1), we get y * z = 1, and thus $((z * y) * y) * z = ((y * z) * z) * z = (1 * z) * z = z * z = 1 \in \{1\}$. Hence $(f, t)_{\in} = \{1\}$ is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$, and therefore f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$.

We explore the conditions under which the \in_t -set and Q_t -set can be prominent GE-filters.

Theorem 3.7. Given a fuzzy set f in X, its \in_t -set $(f, t)_{\in}$ is a prominent GE-filter of X for all $t \in (0.5, 1]$ if and only if f satisfies:

$$(\forall x \in X)(f(x) \le \max\{f(1), 0.5\}),$$
(3.8)

$$(\forall x, y \in X)(\min\{f(x), f(x * (y * z))\} \le \max\{f(((z * y) * y) * z), 0.5\}).$$
(3.9)

Proof. Assume that the \in_t -set $(f, t)_{\in}$ of f is a prominent GE-filter of X for all $t \in (0.5, 1]$. If there exists $a \in X$ such that $f(a) \nleq \max\{f(1), 0.5\}$, then $t := f(a) \in (0.5, 1]$, $\frac{a}{t} \in f$ and $\frac{1}{t} \in f$, that is, $a \in (f, t)_{\in}$ and $1 \notin (f, t)_{\in}$. This is a contradiction, and thus $f(x) \le \max\{f(1), 0.5\}$ for all $x \in X$. If (3.9) is not valid, then

$$\min\{f(a), f(a * (b * c))\} > \max\{f(((c * b) * b) * c), 0.5\}$$

for some $a, b, c \in X$. If we take $t := \min\{f(a), f(a * (b * c))\}$, then $t \in (0.5, 1]$, $\frac{a}{t} \in f$ and $\frac{a*(b*c)}{t} \in f$. Hence $a \in (f, t)_{\in}$ and $a*(b*c) \in (f, t)_{\in}$, which imply that $((c * b) * b) * c \in (f, t)_{\in}$. Thus $\frac{((c*b)*b)*c}{t} \in f$, and so $f(((c * b) * b) * c) \ge t > 0.5$ which is a contradiction. Therefore

$$\min\{f(x), f(x * (y * z))\} \le \max\{f(((z * y) * y) * z), 0.5\}$$

for all $x, y \in X$.

Conversely, suppose that f satisfies (3.8) and (3.9). Let $(f, t)_{\in} \neq \emptyset$ for all $t \in (0.5, 1]$. Then there exists $a \in (f, t)_{\in}$ and thus $\frac{a}{t} \in f$, i.e., $f(a) \ge t$. It follows from (3.8) that $\max\{f(1), 0.5\} \ge f(a) \ge t \ge 0.5$. Thus $\frac{1}{t} \in f$, i.e., $1 \in (f, t)_{\in}$. Let $t \in (0.5, 1]$ and $x, y, z \in X$ be such that $x \in (f, t)_{\in}$ and $x * (y * z) \in (f, t)_{\in}$. Then $\frac{x}{t} \in f$ and $\frac{x*(y*z)}{t} \in f$, that is, $f(x) \ge t$ and $f(x * (y * z)) \ge t$. Using (3.9), we get

$$\max\{f(((z * y) * y) * z), 0.5\} \ge \min\{f(x), f(x * (y * z))\} \ge t > 0.5$$

and so $\frac{((z*y)*y)*z}{t} \in f$, i.e., $((z*y)*y)*z \in (f, t)_{\in}$. Therefore $(f, t)_{\in}$ is a prominent GE-filter of X for all $t \in (0.5, 1]$.

Lemma 3.2 ([1]). A fuzzy set f in X is a fuzzy GE-filter of X if and only if the nonempty \in_t -set $(f, t)_{\in}$ of f in X is a GE-filter of X for all $t \in (0, 1]$.

Lemma 3.3 ([12]). Let F be a GE-filter of X := (X, *, 1). Then it is a prominent GE-filter of X := (X, *, 1) if and only if it satisfies:

$$(\forall x, y \in X)(x * y \in F \implies ((y * x) * x) * y \in F).$$

$$(3.10)$$

Theorem 3.8. A fuzzy set f in X is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ if and only if the nonempty \in_t -set $(f, t)_{\in}$ of f in X is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ for all $t \in (0, 1]$.

Proof. Assume that f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$. Then f is a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ (see Theorem 3.1), and so the nonempty \in_t -set $(f, t)_{\in}$ of f in X is a GE-filter of $\mathbf{X} := (X, *, 1)$ for all $t \in (0, 1]$ by Lemma 3.2. Let $x, y \in X$ and $t \in (0, 1]$ be such that $x * y \in (f, t)_{\in}$. Since f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$, it follows from (3.2) that $((y * x) * x) * y \in (f, t)_{\in}$, and therefore $(f, t)_{\in}$ is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ for all $t \in (0, 1]$ by Lemma 3.3.

Conversely, suppose that the nonempty \in_t -set $(f, t)_{\in}$ of f in X is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ for all $t \in (0, 1]$. Then $(f, t)_{\in}$ is a GE-filter of $\mathbf{X} := (X, *, 1)$ by Lemma 2.2, and thus f is a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ by Lemma 3.2. Let $x, y \in X$ and $t \in (0, 1]$ be such that $x * y \in (f, t)_{\in}$. Then $((y * x) * x) * y \in (f, t)_{\in}$ by Lemma 3.3. It follows from Theorem 3.2 that f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$.

Theorem 3.9. If f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$, then the nonempty Q_t -set $(f, t)_q$ of f is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ for all $t \in (0, 1]$.

Proof. Let f be a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ and assume that $(f, t)_q \neq \emptyset$ for all $t \in (0, 1]$. Then there exists $a \in (f, t)_q$, and so $\frac{a}{t} q f$, i.e., f(a)+t > 1. Hence $f(1)+t \ge f(a)+t > 1$, i.e., $1 \in (f, t)_q$. Let $x, y, z \in X$ be such that $x \in (f, t)_q$ and $x * (y * z) \in (f, t)_q$. Then $\frac{x}{t} q f$ and $\frac{x*(y*z)}{t} q f$, that is, f(x) + t > 1 and f(x * (y * z)) + t > 1. It follows from (3.6) that

$$f(((z * y) * y) * z) + t \ge \min\{f(x), f(x * (y * z))\} + t$$
$$= \min\{f(x) + t, f(x * (y * z)) + t\} > 1.$$

Hence $\frac{((z*y)*y)*z}{t} q f$, and therefore $((z*y)*y)*z \in (f,t)_q$. Consequently, $(f,t)_q$ is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ for all $t \in (0, 1]$.

We finally discuss the extension property for the prominent fuzzy GE-filter.

Question. Let f and g be fuzzy GE-filters of $\mathbf{X} := (X, *, 1)$ such that $f \subseteq g$, that is, $f(x) \leq g(x)$ for all $x \in X$. If f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$, then is g also a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$?

The example below provides a negative answer to the Question.

Example 3.4. Let $X = \{1, 2, 3, 4, 5, 6\}$ be a set with a binary operation "*" given by Table 2. Then $\mathbf{X} := (X, *, 1)$ is a GE-algebra (see [12]). Define a fuzzy set f in X as follows:

$$f: X \to [0, 1], \ x \mapsto \begin{cases} 0.65 & \text{if } x = 1, \\ 0.37 & \text{otherwise.} \end{cases}$$

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	3	4	3	1
3	1	6	1	1	6	6
4	1	2	1	1	2	2
5	1	1	1	4	1	1
6	1	1	3	4	3	1

Table 2. Cayley table for the binary operation "*"

It is routine to verify that f is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$. Now, we define a fuzzy set g in X as follows:

$$g: X \to [0, 1], \ x \mapsto \begin{cases} 0.73 & \text{if } x = 1, \\ 0.67 & \text{if } x \in \{2, 6\}, \\ 0.48 & \text{otherwise.} \end{cases}$$

Then $f(x) \le g(x)$ for all $x \in X$, that is, $f \subseteq g$, and g is a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$. Since $4 * 5 = 2 \in (g, 0.61)_{\in}$ and $((5 * 4) * 4) * 5 = 5 \notin (g, 0.61)_{\in}$, we know that g is not a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ by Theorem 3.2.

We provide conditions for the answer of Question above to be positive.

Theorem 3.10. (Extension property for the prominent fuzzy GE-filter) Let f and g be fuzzy GE-filters of a transitive GE-algebra $\mathbf{X} := (X, *, 1)$ such that $f \subseteq g$, that is, $f(x) \leq g(x)$ for all $x \in X$. If f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$, then so is g.

Proof. If *f* is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$, then it is a fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ by Theorem 3.1 and $(f, t)_{\in}$ is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ for all $t \in (0, 1]$ by Theorem 3.8. Let $a := x * y \in (g, t)_{\in}$ for all $x, y \in X$ and $t \in (0, 1]$. Then $1 \in (f, t)_{\in}$ by (2.17) and $1 = a * (x * y) \le x * (a * y)$ by (GE1) and (2.7). Hence $x * (a * y) \in (f, t)_{\in}$ by (3.3). Using assumption and Theorem 3.2 induces

$$(((a * y) * x) * x) * (a * y) \in (f, t)_{\in} \subseteq (g, t)_{\in}.$$

Since $(((a * y) * x) * x) * (a * y) \le a * ((((a * y) * x) * x) * y)$ by (2.7) and $(g, t)_{\in}$ is a GE-filter of $\mathbf{X} := (X, *, 1)$, we have $a * ((((a * y) * x) * x) * y) \in (g, t)_{\in}$ by Lemma 2.1. Hence $(((a * y) * x) * x) * y) * y \in (g, t)_{\in}$ by (2.14). Since $y \le a * y$ by (2.6), we have

$$(((a * y) * x) * x) * y \le ((y * x) * x) * y$$

by running (2.10) three times. It follows from Lemma 2.1 that $((y * x) * x) * y \in (g, t)_{\in}$. Hence $(g, t)_{\in}$ is a prominent GE-filter of $\mathbf{X} := (X, *, 1)$ by Lemma 3.3, and therefore g is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$ by Theorem 3.8.

Corollary 3.1. Let X := (X, *, 1) be a transitive GE-algebra. Then the trivial fuzzy GE-filter f is a prominent fuzzy GE-filter of X := (X, *, 1) if and only if every fuzzy GE-filter is a prominent fuzzy GE-filter of X := (X, *, 1).

Corollary 3.2. In a commutative GE-algebra, every fuzzy GE-filter is a prominent fuzzy GE-filter.

The following example describes the extension property for the prominent fuzzy GE-filter.

Example 3.5. Let $X = \{1, 2, 3, 4, 5, 6\}$ be a set with a binary operation "*" given by Table 3.

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	3	4	4	6
3	1	2	1	5	5	6
4	1	1	1	1	1	6
5	1	1	1	1	1	6
6	1	2	3	4	5	1

Table 3. Cayley table for the binary operation "*"

Then $\mathbf{X} := (X, *, 1)$ is a GE-algebra (see [12]). Define a fuzzy set f in X as follows:

$$f: X \to [0, 1], x \mapsto \begin{cases} 0.59 & \text{if } x \in \{1, 2, 3\} \\ 0.36 & \text{otherwise.} \end{cases}$$

Then f is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$. If we take a fuzzy set g in X defined as follows:

$$g: X \to [0, 1], \ x \mapsto \begin{cases} 0.69 & \text{if } x \in \{1, 2, 3, 6\}, \\ 0.56 & \text{otherwise}, \end{cases}$$

then $f \subseteq g$ and g is a prominent fuzzy GE-filter of $\mathbf{X} := (X, *, 1)$.

4. Conclusion

Using the concept of fuzzy points, we have introduced the notion of a prominent fuzzy GE-filter in GE-algebras, and have investigated the various properties involved. We have considered the relationship between a fuzzy GE-filter and a prominent fuzzy GE-filter, and have discussed the characterization of a prominent fuzzy GE-filter. We have explored the conditions under which a fuzzy GE-filter can be a prominent fuzzy GE-filter. We have provided conditions for the trivial fuzzy GE-filter to be a

prominent fuzzy GE-filter, and have explored the conditions under which the \in_t -set and Q_t -set can be prominent GE-filters. We finally have discussed the extension property for the prominent fuzzy GE-filter.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] R.K. Bandaru, T.G. Alemayehu, Y.B. Jun, Fuzzy GE-Filters of GE-Algebras, J. Algebra Related Topics. (submitted).
- [2] R. Bandaru, A.B. Saeid, Y.B. Jun, On GE-Algebras, Bull. Sect. Logic. 50 (2020), 81–96. https://doi.org/10. 18778/0138-0680.2020.20.
- [3] R.K. Bandaru, M.A. Öztürk, Y.B. Jun, Bordered GE-algebras, J. Algebraic Syst. In Press.
- [4] S. Celani, A Note on Homomorphisms of Hilbert Algebras, Int. J. Math. Math. Sci. 29 (2002), 55–61. https: //doi.org/10.1155/s0161171202011134.
- [5] I. Chajda, R. Halas, Y.B. Jun, Annihilators and Deductive Systems in Commutative Hilbert Algebras, Comment. Math. Univ. Carolin. 43 (2002), 407–417. http://dml.cz/dmlcz/119331.
- [6] A. Diego, Sur les Algèbres de Hilbert, Collection de Logique Mathématique, Edition Hermann, Série A, XXI, (1966).
- [7] S.M. Hong, Y.B. Jun, On Deductive Systems of Hilbert Algebras, Commun. Korean Math. Soc. 11 (1996), 595–600.
- [8] Y.B. Jun, K.H. Kim, H-Filters of Hilbert Algebras, Sci. Math. Japon. e-2005 (2005), 231-236.
- [9] H.S. Kim, Y.H. Kim, On BE-Algebras, Sci. Math. Japon. e-2006 (2006), 1299–1302.
- [10] M.A. Öztürk, J.G. Lee, R. Bandaru, Y.B. Jun, Strong GE-Filters and GE-Ideals of Bordered GE-Algebras, J. Math. 2021 (2021), 5520023. https://doi.org/10.1155/2021/5520023.
- P.M. Pu, Y.M. Liu, Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571–599. https://doi.org/10.1016/0022-247x(80)90048-7.
- [12] A. Rezaei, R. Bandaru, A.B. Saeid, Y.B. Jun, Prominent GE-Filters and GE-Morphisms in GE-Algebras, Afr. Mat. 32 (2021), 1121–1136. https://doi.org/10.1007/s13370-021-00886-6.
- [13] A. Rezaei, A. Borumand Saeid, R.A. Borzooei, Relation Between Hilbert Algebras and BE-Algebras, Appl. Appl. Math.: Int. J. 8 (2013), 573–584.
- [14] S.Z. Song, R. Bandaru, Y.B. Jun, Imploring GE-Filters of GE-Algebras, J. Math. 2021 (2021), 1–7. https: //doi.org/10.1155/2021/6651531.