International Journal of Analysis and Applications International Journat of Analy six Journal of t nalysis and Applications

A Congruent Property of Gibonacci Number Modulo Prime

Wipawee Tangjai*, Kodchaphon Wanichang, Montathip Srikao, Punyanuch Kheawkrai
Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150,
Thailand
* Corresponding author: xvii.noo@gmail.com

Abstract

Let $a, b \in \mathbb{Z}$ and p be a prime number such that a and b are not divisible by p. In this work, we give a congruent property modulo a prime number p of the gibonacci number defined by $G_{n}=G_{n-1}+G_{n-2}$ with initial condition $G_{1}=a, G_{2}=b$. We show that a the gibonacci sequence satisfying $G_{k p-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$ for all positive integer k and such odd prime $p \neq 5$ if and only if $a \equiv b(\bmod p)$. Moreover, for each odd prime number p, we give a necessary and sufficient condition yielding $G_{k p-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$. We also find a relation between the sequences in the same equivalent class in modulo 5 constructed by Aoki and Sakai [1] that leads to such congruent property.

1. Introduction

The Fibonacci sequence $\left\{F_{n}\right\}_{n \geq 0}$ satisfies the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$ with initial condition $F_{0}=0, F_{1}=1$ and the Lucas sequence $\left\{L_{n}\right\}_{n \geq 0}$ satisfies the recurrence relation $L_{n}=$ $L_{n-1}+L_{n-2}$ with initial condition $L_{0}=2, L_{1}=1$. The sequences can be extended to a negative index as follows: for $n \in \mathbb{N}$

$$
\begin{gather*}
F_{-n}=(-1)^{n+1} F_{n}, \tag{1.1}\\
L_{-n}=(-1)^{n} L_{n} . \tag{1.2}
\end{gather*}
$$

We see that both the Fibonacci and Lucas sequences satisfy the same recurrence relation with different initial conditions. To generalized the mentioned sequences, the generalized Fibonacci sequence or gibonacci sequence $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}([2]$, p.137) is defined to satisfy the recurrence relation $G_{n}=G_{n-1}+G_{n-2}$, for $n \geq 3$, with initial condition $G_{1}=a$ and $G_{2}=b$, where $a, b \in \mathbb{Z}$.

Received: Jan. 19, 2023.
2020 Mathematics Subject Classification. 11B37.
Key words and phrases. generalized Fibonacci number; gibonacci number; Lucas number; modulo prime number.

Theorem 1.1 ([2], p.137). For an integer $n \geq 3$, the n-th gibonacci number satisfies

$$
G_{n}=G_{1} F_{n-2}+G_{2} F_{n-1} .
$$

Theorem 1.2 ([2], p.137). For $n \in \mathbb{N}$, we have

$$
G_{-n}=(-1)^{n+1}\left(G_{1} F_{n+2}-G_{2} F_{n+1}\right) .
$$

The objective of this work is investigating the congruent property of the gibonacci sequence $\left\{G_{n}\right\}=$ $\{G(a, b)\}$ where $a, b \in \mathbb{Z}$ that $p \nmid a$ and $p \nmid b$ analogous to the result from Andrica et. al. [3] appearing in Theorem 1.3. Throughout this article, we let p be an odd prime number and $\left(\frac{p}{5}\right)$ be the Legendre's symbol.

Theorem 1.3. [3] For a positive integer k and an odd prime number $p \neq 5$, we have

$$
\begin{aligned}
& F_{k p-\left(\frac{p}{5}\right)} \equiv F_{k-1} \quad(\bmod p), \\
& L_{k p-\left(\frac{p}{5}\right)} \equiv L_{k-1} \quad(\bmod p) .
\end{aligned}
$$

We note that Theorem 1.3 is not true when $p=5$ as $F_{10} \not \equiv F_{1}(\bmod 5)$. As a result, we give a necessary and sufficient condition in terms of the initial condition of the gibonacci sequence and its index k that lead to

$$
\begin{equation*}
G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1} \quad(\bmod p) \tag{1.3}
\end{equation*}
$$

for each prime p characterized by the value of $\left(\frac{p}{5}\right)$. We also give a necessary and sufficient condition resulting in (1.3) when $\left(\frac{p}{5}\right)=-1$ in Theorem 3.1. In Theorem 3.2, we show that if $\left(\frac{p}{5}\right)=1$, then (1.3) holds for all positive integer k. By combining Theorems 3.1 and 3.2 , we show that for a gibonacci sequence $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}$, (1.3) holds for all $k \in \mathbb{N}$ and for all odd prime number $p \neq 5$ where $p \times a$ and $p \nmid b$ if and only if $a \equiv b(\bmod p)$ in Theorem 3.3.

For the case that $p=5$, we consider the equivalent class X_{5} introduced by Aoki and Sakai [1]. For a prime number p, Aoki and Sakai constructed an equivalent class of the gibonacci sequences

$$
X_{p}=\left\{\left\{G_{n}\right\} \mid\left\{G_{n}\right\} \text { is the gibonacci sequence, where } p X G_{1} \text { and } p X G_{2}\right\} / \sim
$$

where,

$$
\begin{equation*}
\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\} \text { if and only if } G_{2} G_{1}^{-1} \equiv G_{2}^{\prime} G_{1}^{\prime-1}(\bmod p), \tag{1.4}
\end{equation*}
$$

and G^{-1} is the inverse of G modulo p where $1 \leq G^{-1}<p$. They also showed that

$$
\begin{equation*}
X_{p}=\{\overline{\{G(1, k)\}} \mid 1 \leq k \leq p-1\} . \tag{1.5}
\end{equation*}
$$

In Theorem 3.4, we consider the representation $\{G(1, h)\}$ of each class in X_{5}, where $1 \leq h \leq 4$ and give a complete characterization of the initial conditions of a gibonacci sequences and the corresponding indices that (1.3) holds. Later in Theorems 3.5 and 3.6, we give a relation of the sequences in the same class in X_{5}.

p	$\pi(p)$	$\left(\frac{p}{5}\right)$
3	8	-1
5	20	0
7	16	-1
11	10	1
13	28	-1
17	36	-1
19	18	1
23	48	-1
29	14	1
37	76	-1
43	88	-1

Table 1. List of the Pisono period and the Legendre's symbol of a prime number.

2. Preliminaries

In this section, we give an overview of the related work that will be used to prove the main results.
For any positive integer m, the Pisano period [4] modulo m is the period of the Fibonacci number modulo m, denoted by $\pi(m)$. In 2012, Gupta et. al, [5] gave a method to find a period of the Fibonacci number modulo a prime number.

Theorem 2.1. [4] Let p be a prime number.

- If $p \equiv \pm 1(\bmod 5)$, then $\pi(p) \mid(p-1)$.
- If $p \equiv \pm 2(\bmod 5)$, then $\pi(p) \mid 2(p+1)$.

The values of $\pi(p)$ and $\left(\frac{p}{5}\right)$ listed in Table 1 appear in [7] and [8], respectively. In Lemma 3.1, we show that the period of the gibonacci number modulo p is at most $\pi(p)$ which leads to to computation appearing in Table 2.

Lemma 2.1. [1] Let p be an odd prime number. The following statements are true.
(1) If $\left(\frac{p}{5}\right)=1$, then $p \nless G_{n}$ for any $n \in \mathbb{N}$.
(2) If $\left(\frac{p}{5}\right)=-1$, then $p \mid G_{n}$ for some $n \in \mathbb{N}$.

The following results are some identities of the Fibonacci and the Lucas sequences that will be used in this work.

Theorem 2.2. ([2], p. 93) For each $n \in \mathbb{N}$,

$$
\begin{aligned}
L_{n} & =F_{n+1}+F_{n-1}, \\
5 F_{n} & =L_{n+1}+L_{n-1}
\end{aligned}
$$

Theorem 2.3. ([2], p. 462) Lucas number is not divisible by 5 .
Theorem 2.4. [3] For an odd prime number p, a positive integer k and an integer r, the following holds:

$$
\begin{align*}
2 F_{k p+r} & \equiv\left(\frac{p}{5}\right) F_{k} L_{r}+F_{r} L_{k} \quad(\bmod p) \tag{2.1}\\
2 L_{k p+r} & \equiv 5\left(\frac{p}{5}\right) F_{k} F_{r}+L_{k} L_{r} \quad(\bmod p) \tag{2.2}
\end{align*}
$$

The following corollary is a direct result of Theorem 2.4.
Corollary 2.1. For a positive integer k and r, we have

$$
\begin{align*}
F_{5 k-r} & \equiv 3 F_{-r} L_{k} \quad(\bmod 5), \tag{2.3}\\
L_{5 k} & \equiv L_{k} \quad(\bmod 5) \tag{2.4}
\end{align*}
$$

Theorem 2.5. [3] For an odd prime number p and a positive integer k, we have

$$
\begin{aligned}
& F_{k p} \equiv\left(\frac{p}{5}\right) F_{k} \quad(\bmod p) \\
& F_{p} \equiv\left(\frac{p}{5}\right) \quad(\bmod p) \\
& F_{p-\left(\frac{p}{5}\right)} \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Theorem 2.6. [6] Let $n, k \in \mathbb{Z}$. If k is an even number, then

$$
\begin{align*}
& F_{n+k}+F_{n-k}=F_{n} L_{k}, \tag{2.5}\\
& F_{n+k}-F_{n-k}=F_{k} L_{n} . \tag{2.6}
\end{align*}
$$

If k is an odd number, then

$$
\begin{align*}
& F_{n+k}+F_{n-k}=F_{k} L_{n}, \tag{2.7}\\
& F_{n+k}-F_{n-k}=F_{n} L_{k} . \tag{2.8}
\end{align*}
$$

3. Main Results

The following property of the gibonacci sequence can be obtained directly from Theorem 1.1; however, the authors do not find this result in the literature review.

Lemma 3.1. Let $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}$, where $a, b \in \mathbb{Z}$. For $k, r \in \mathbb{Z}$, we have

$$
G_{k \pi(p)+r} \equiv G_{r} \quad(\bmod p)
$$

Proof. By Theorem 1.1, we have that

$$
\begin{aligned}
G_{k \pi(p)+r} & \equiv G_{1} F_{k \pi(p)+r-2}+G_{2} F_{k \pi(p)+r-1} \quad(\bmod p) \\
& \equiv G_{1} F_{r-2}+G_{2} F_{r-1} \quad(\bmod p) \\
& \equiv G_{r} \quad(\bmod p)
\end{aligned}
$$

Next, we consider each case of an odd prime p characterized by the value of $\left(\frac{p}{5}\right)$ and give a necessary and sufficient condition resulting to $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$.

Theorem 3.1. Let p be an odd prime number that $\left(\frac{p}{5}\right)=-1$ and $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}$ be such that a and b are not divisible by p. For $k \in \mathbb{N}$, we have that $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$ if and only if one of the following holds:
(1) $G_{1} \equiv G_{2}(\bmod p)$,
(2) $L_{k-1} \equiv 0(\bmod p)$.

Proof. By Theorems 1.1, 1.3, 2.4, 2.5 and 2.6, we have

$$
\begin{align*}
G_{p k-\left(\frac{p}{5}\right)} & =G_{p k+1} \\
& =a F_{p k-1}+b F_{p k} \\
& \equiv 2^{-1} a\left(-F_{k} L_{-1}+F_{-1} L_{k}\right)-b F_{k} \quad(\bmod p) \\
& \equiv a F_{k+1}-b F_{k} \quad(\bmod p) \tag{3.1}
\end{align*}
$$

It follows from Theorem 2.2 that

$$
\begin{aligned}
G_{p k-\left(\frac{p}{5}\right)}-G_{k-1} & \equiv a\left(F_{k+1}-F_{k-3}\right)-b\left(F_{k}-F_{k-2}\right) \quad(\bmod p) \\
& \equiv(a-b) L_{k-1} \quad(\bmod p)
\end{aligned}
$$

Hence, $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$ if and only if $a \equiv b(\bmod p)$ or $L_{k-1} \equiv 0(\bmod p)$.
By Theorem 3.1, the listed p and k in Table 2 yield $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$.
Corollary 3.1. Let p be an odd prime number where $\left(\frac{p}{5}\right)=-1$ and $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}$ where a and b are integers that are not divisible by p. Then $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$ for all $k \in \mathbb{N}$ if and only if $a \equiv b(\bmod p)$.

We note that, by (3.1), if $\left\{G_{n}\right\}_{n>0}=\{G(1, h)\}$ where $1 \leq h \leq p-1$, then

$$
\begin{equation*}
G_{p k-\left(\frac{p}{5}\right)} \equiv\left(F_{k+1}+F_{k-1}\right)-\left(F_{k-1}+h F_{k}\right) \equiv L_{k}-G_{k+1} \quad(\bmod p) \tag{3.2}
\end{equation*}
$$

Hence, if $\left(\frac{p}{5}\right)=-1$, then

$$
\begin{equation*}
G_{p k-\left(\frac{p}{5}\right)}+G_{k-\left(\frac{p}{5}\right)} \equiv L_{k} \quad(\bmod p) \tag{3.3}
\end{equation*}
$$

Prime p	$k(\bmod \pi(p))$
3	$3(\bmod 8)$ $7(\bmod 8)$
7	$5(\bmod 16)$ $13(\bmod 16)$
13	-
17	-
23	$13(\bmod 48)$ $37(\bmod 48)$
37	-
43	$23(\bmod 88)$ $67(\bmod 88)$

Table 2. List of p and k where $\left(\frac{p}{5}\right)=-1$ and $p \mid L_{k-1}$.

Theorem 3.2. Let p be an odd prime number and $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}$ where a and b are integers that are not divisible by p. If $\left(\frac{p}{5}\right)=1$, then $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$, for all $k \in \mathbb{N}$.

Proof. By Theorem 1.1, 2.4 and 2.6, it follows that

$$
\begin{aligned}
G_{p k-\left(\frac{p}{5}\right)} & =G_{p k-1} \\
& =a F_{p k-3}+b F_{p k-2} \\
& \equiv 2^{-1} a\left(F_{k} L_{-3}+F_{-3} L_{k}\right)+2^{-1} b\left(F_{k} L_{-2}+F_{-2} L_{k}\right) \quad(\bmod p) \\
& \equiv a F_{k-3}+b F_{k-2} \quad(\bmod p) \\
& \equiv G_{k-1} \quad(\bmod p) .
\end{aligned}
$$

This completes the proof.
Corollary 3.2. If p is an odd prime number such that $\left(\frac{p}{5}\right)=1$, then $G_{p^{i} k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$, for all $i, k \in \mathbb{N}$.

The following theorem is a direct result of Theorems 3.1 and 3.2.
Theorem 3.3. Let $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}$ be such that $a, b \in \mathbb{Z}$. Then $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$ for all positive integers k and odd prime numbers $p \neq 5$ such that $p \nmid a, p \nmid b$ if and only if $a \equiv b \bmod p$.

Next, we consider the case that $p=5$. Firstly, in Theorem 3.4, we give a complete characterization of the initial condition of the gibonacci sequence $\left\{G_{n}\right\}_{n>0}=\{G(1, h)\}$ where $1 \leq h \leq 4$ and the values of k where (1.3) holds. Then, we give a relation of such congruent property of the sequences in the same equivalent class in X_{5}.

Theorem 3.4. Let $\left\{G_{n}\right\}_{n>0}=\{G(1, h)\}$ be such that $1 \leq h \leq 4$. If $p=5$ and $k \in \mathbb{N}$, then $G_{p k-\left(\frac{p}{5}\right)} \equiv G_{k-1}(\bmod p)$ if and only if one of the following holds:
(1) $\left\{G_{n}\right\}=\{G(1,4)\}$ and $k \equiv 0(\bmod 5)$
(2) $\left\{G_{n}\right\}=\{G(1,1)\}$ and $k \equiv 1(\bmod 5)$
(3) $\left\{G_{n}\right\}=\{G(1,2)\}$ and $k \equiv 3(\bmod 5)$.

Proof. Since $p=5$, we have $\left(\frac{p}{5}\right)=0$. By Theorem 1.1, we have

$$
\begin{equation*}
G_{p k-\left(\frac{p}{5}\right)}=G_{5 k}=F_{5 k-2}+h F_{5 k-1} . \tag{3.4}
\end{equation*}
$$

Let $q, r \in \mathbb{Z}$ be such that $k=5 q+r$, where $0 \leq r \leq 4$. By Corollary 2.1 and (3.4),

$$
\begin{array}{rlr}
G_{5 k} & \equiv F_{5 k-2}+h F_{5 k-1} \quad(\bmod 5) \\
& \equiv 3\left(F_{-2} L_{5 k}+h F_{-1} L_{5 k}\right) \quad(\bmod 5) \\
& \equiv 3\left(-L_{5 k}+h L_{5 k}\right) \quad(\bmod 5) & \\
& \equiv 3 L_{k}(-1+h) \quad(\bmod 5) & \\
& \equiv 3(-1+h) L_{5 q+r} \quad(\bmod 5) & \\
& \equiv 3(-1+h) 2^{-1} L_{q} L_{r} \quad(\bmod 5), & \text { by Theorem } 2.4, \\
& \equiv(1-h) L_{q} L_{r} \quad(\bmod 5) . &
\end{array}
$$

Similarly

$$
\begin{aligned}
G_{k-1} & \equiv F_{k-3}+h F_{k-2} \quad(\bmod 5) \\
& \equiv F_{5 q+r-3}+h F_{5 q+r-2} \quad(\bmod 5) \\
& \equiv 2^{-1}\left(F_{r-3} L_{5 q}+h F_{r-2} L_{5 q}\right) \quad(\bmod 5) \\
& \equiv 3 L_{q}\left(F_{r-3}+h F_{r-2}\right) \quad(\bmod 5) .
\end{aligned}
$$

Thus $G_{5 k} \equiv G_{k-1}(\bmod 5)$ if and only if

$$
(1-h) L_{q} L_{r} \equiv 3 L_{q}\left(F_{r-3}+h F_{r-2}\right) \quad(\bmod 5) .
$$

By Theorem 2.3, we have

$$
\begin{equation*}
(1-h) L_{r} \equiv 3\left(F_{r-3}+h F_{r-2}\right) \quad(\bmod 5) . \tag{3.5}
\end{equation*}
$$

If $r=4$, then (3.5) does not hold. By a direct computation $5 X\left(3 F_{r-2}+L_{r}\right)$ for all $r \in\{0,1,2,3\}$, we have

$$
\begin{equation*}
h \equiv\left(3 F_{r-2}+L_{r}\right)^{-1}\left(L_{r}-3 F_{r-3}\right) \quad(\bmod 5) \tag{3.6}
\end{equation*}
$$

If $r=2$, then $h \equiv 0(\bmod 5)$ contradiction. By a direct computation, the above equation holds if and only if $(r, h) \in\{(0,4),(1,1),(3,2)\}$. This completes the proof.

For $\left\{G_{n}\right\}_{n>0}=\{G(a, b)\}$ where $a, b \in \mathbb{Z}$ that a and b are not divisible by p, let

$$
\delta(a)= \begin{cases}0 & \text { if } a \equiv 1,4 \quad(\bmod 5) \\ -1 & \text { if } a \equiv 2 \quad(\bmod 5) \\ 1 & \text { if } a \equiv 3 \quad(\bmod 5)\end{cases}
$$

Theorem 3.5. Let $\left\{G_{n}\right\}_{n>0}=\{G(1, h)\}$ and $\left\{G_{n}^{\prime}\right\}_{n>0}=\{G(a, b)\}$, where $1 \leq h \leq 4$ and $a, b \in \mathbb{Z}$ be such that $\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\}$. Then $G_{k}^{\prime} \equiv a^{-1} G_{k}+\delta(a) F_{k-2}(\bmod 5)$ for all $k \in \mathbb{N}$.

Proof. Since $\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\}$, we have $b \equiv G_{2}^{\prime} G_{1}^{-1} \equiv G_{2}\left(G_{1}^{\prime}\right)^{-1} \equiv h a^{-1}(\bmod 5)$. For the case that $k=1,2$, we can compute the result directly. For $k>2$, we have

$$
\begin{aligned}
G_{k}^{\prime} & \equiv a F_{k-2}+b F_{k-1} \quad(\bmod 5) \\
& \equiv a F_{k-2}+h a^{-1} F_{k-1} \quad(\bmod 5)
\end{aligned}
$$

If $a \equiv 1(\bmod 5)$ or $a \equiv 4(\bmod 5)$, then $a \equiv a^{-1}(\bmod 5)$. Hence,

$$
\begin{equation*}
G_{k}^{\prime} \equiv a^{-1} G_{k} \quad(\bmod 5) \tag{3.7}
\end{equation*}
$$

Otherwise,

$$
G_{k}^{\prime} \equiv\left\{\begin{array}{ll}
a^{-1} G_{k}-F_{k-2} & \text { if } G_{1}^{\prime} \equiv 2 \\
a^{-1} G_{k}+F_{k-2} & \text { if } G_{1}^{\prime} \equiv 3
\end{array}(\bmod 5)\right.
$$

Therefore, we have $G_{k}^{\prime} \equiv a^{-1} G_{k}+\delta(a) F_{k-2}(\bmod 5)$ for all positive integer k.

Theorem 3.6. Let $\left\{G_{n}\right\}_{n>0}=\{G(1, h)\}$ where $1 \leq h \leq 4$ and k be a positive integer satisfying $G_{5 k} \equiv G_{k-1}(\bmod 5)$. Let $\left\{G_{n}^{\prime}\right\}_{n>0}=\{G(a, b)\}$ be such that a and b are integers that are not divisible by 5. If $\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\}$ in X_{5}, then $G_{5 k}^{\prime} \equiv G_{k-1}^{\prime}(\bmod 5)$ if and only if $a \equiv a^{-1}(\bmod 5)$.

Proof. Let $\delta=\delta(a)$. So

$$
\begin{aligned}
G_{5 k}^{\prime}-G_{k-1}^{\prime} & \equiv\left(a^{-1} G_{5 k}+\delta F_{5 k-2}\right)-\left(a^{-1} G_{k-1}+\delta F_{k-3}\right) \quad(\bmod 5) \\
& \equiv a^{-1}\left(G_{5 k}-G_{k-1}\right)+\delta\left(F_{5 k-2}-F_{k-3}\right) \quad(\bmod 5) \\
& \equiv a^{-1}\left(G_{5 k}-G_{k-1}\right)+\delta\left(3 F_{-2} L_{k}-F_{k-3}\right) \quad(\bmod 5) \\
& \equiv a^{-1}\left(G_{5 k}-G_{k-1}\right)+\delta\left(3\left(F_{k-2}-F_{k+2}\right)-F_{k-3}\right) \quad(\bmod 5) \\
& \equiv a^{-1}\left(G_{5 k}-G_{k-1}\right)+\delta\left(3\left(\left(F_{k}-F_{k-1}\right)-\left(F_{k+1}+F_{k}\right)\right)-F_{k-3}\right) \quad(\bmod 5) \\
& \equiv a^{-1}\left(G_{5 k}-G_{k-1}\right)+\delta\left(2\left(F_{k-1}+F_{k+1}\right)-\left(F_{k-1}-F_{k-2}\right)\right) \quad(\bmod 5) \\
& \equiv a^{-1}\left(G_{5 k}-G_{k-1}\right)+\delta F_{k+3} \quad(\bmod 5)
\end{aligned}
$$

Since $G_{5 k} \equiv G_{k-1}(\bmod 5)$, it follows that $G_{5 k}^{\prime} \equiv G_{k-1}^{\prime}(\bmod 5)$ if and only if $5 \mid \delta F_{k+3}$. So $\delta=0$ or $k \equiv 2(\bmod 5)$. By Theorem 3.4 , since $G_{5 k} \equiv G_{k-1}(\bmod 5)$, we have that $k \not \equiv 2(\bmod 5)$. Hence $\delta=0$ and it follows that $a \equiv a^{-1}(\bmod 5)$. So the equation holds if and only if $a \equiv a^{-1}(\bmod 5)$.

By Theorem 3.4 and 3.6, we have the following corollaries.
Corollary 3.3. Let $\left\{G_{n}\right\}=\{G(1, h)\}$ where $1 \leq h \leq 4$. Let $\left\{G_{n}^{\prime}\right\}=\{G(a, b)\}$ be such that $\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\}$, where $a, b \in \mathbb{Z}$ and $G_{1}^{\prime} \equiv 1,4(\bmod 5)$. If $(h, r) \in\{(4,0),(1,1),(2,3)\}$ where $k \equiv r$ $(\bmod 5)$ and $0 \leq r \leq 4$, then we have $G_{5 k}^{\prime} \equiv G_{k-1}^{\prime}(\bmod 5)$.

Corollary 3.4. Let $\left\{G_{n}\right\}=\{G(1, h)\}$ where $1 \leq h \leq 4$. Let $\left\{G_{n}^{\prime}\right\}=\{G(a, b)\}$ be such that $\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\}$, where where $a, b \in \mathbb{Z}$ and $G_{1}^{\prime} \equiv 2,3(\bmod 5)$. If $(h, r) \in\{(4,0),(1,1),(2,3)\}$ where $k \equiv r(\bmod 5)$ and $0 \leq r \leq 4$, then we have $G_{5 k}^{\prime} \not \equiv G_{k-1}^{\prime}(\bmod 5)$.

Acknowledgement: This project is financially supported by Faculty of Science, Mahasarakham University 2017.
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] M. Aoki, Y. Sakai, On Divisibility of Generalized Fibonacci Number, Integers, 15 (2015), A31.
[2] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley \& Sons, Ltd, New Jersey, (2017).
[3] D. Andrica, V. Crişan, F. Al-Thukair, On Fibonacci and Lucas Sequences Modulo a Prime and Primality Testing, Arab J. Math. Sci. 24 (2018), 9-15. https://doi.org/10.1016/j.ajmsc. 2017.06.002.
[4] J.D. Fulton, W.L. Morris, On Arithmetical Functions Related to the Fibonacci Numbers, Acta Arithmetica, 16 (1969), 105-110.
[5] S. Gupta, P. Rockstroh, F.E. Su, Splitting Fields and Periods of Fibonacci Sequences Modulo Primes, Math. Mag. 85 (2012), 130-135. https://doi.org/10.4169/math.mag. 85.2.130.
[6] H. London, Fibonacci and Lucas Numbers, by Verner E. Hoggatt Jr. Houghton Mifflin Company, Boston, 1969. Canadian Math. Bull. 12 (1969), 367-367. https://doi.org/10.1017/S0008439500030514.
[7] N.J.A. Sloan, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A001175.
[8] J. Sondow, The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A237437.

