
International Journal of Analysis and Applications
ISSN 2291-8639
Volume 5, Number 2 (2014), 136-146
http://www.etamaths.com

EIGENVALUES FOR ITERATIVE SYSTEMS OF (n, p)-TYPE

FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

K. R. PRASAD1, B. M. B. KRUSHNA2,∗ AND N. SREEDHAR3

Abstract. In this paper, we determine the eigenvalue intervals of λ1, λ2, · ·
·, λn for which the iterative system of (n, p)-type fractional order two-point

boundary value problem has a positive solution by an application of Guo-
Krasnosel’skii fixed point theorem on a cone.

1. Introduction

The study of fractional order differential equations has emerged as an impor-
tant area of mathematics. It has wide range of applications in various fields of
science and engineering such as physics, mechanics, control systems, flow in porous
media, electromagnetics and viscoelasticity. Recently, much interest has been cre-
ated in establishing positive solutions and multiple positive solutions for two-point,
multi-point boundary value problems (BVPs) associated with ordinary and frac-
tional order differential equations. To mention the related papers along these lines,
we refer to Erbe and Wang [4], Davis, Henderson, Prasad and Yin [3] for ordi-
nary differential equations, Henderson and Ntouyas [6, 7], Henderson, Ntouyas and
Purnaras [8, 9] for systems of ordinary differential equations, Bai and Lu [1], Zhang
[17], Kauffman and Mboumi [10], Benchohra, Henderson, Ntoyuas and Ouahab [2],
Su and Zhang [16], Khan, Rehman and Henderson[11], Prasad and Krushna [15]
for fractional order differential equations.

This paper concerned with determining the eigenvalues λi, 1 ≤ i ≤ n, for which
there exist positive solutions for the iterative system of (n, p)-type fractional order
boundary value problems

(1.1)
Dα

0+yi(t) + λiai(t)fi(yi+1(t)) = 0, 1 ≤ i ≤ n, 0 < t < 1,

yn+1(t) = y1(t), 0 < t < 1,

}

(1.2) y
(j)
i (0) = 0, 0 ≤ j ≤ n− 2, y

(p)
i (1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional order derivative, n − 1 <

α ≤ n and n ≥ 3, 1 ≤ p ≤ α− 1 is a fixed integer.
By a positive solution of the fractional order BVP (1.1)-(1.2), we mean (y1(t), y2(t), ··

·, yn(t)) ∈
(
C [α]+1[0, 1]

)n
satisfying (1.1)-(1.2) with yi(t) ≥ 0, i = 1, 2, 3, · · ·n, for
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EIGENVALUES FOR ITERATIVE SYSTEMS 137

all t ∈ [0, 1] and (y1(t), y2(t), · · ·, yn(t)) 6= (0, 0, · · ·, 0).

We assume the following conditions hold throughout the paper:

(A1) fi : R+ → R+
is continuous, for 1 ≤ i ≤ n,

(A2) ai : [0, 1] → R+
is continuous and ai does not vanish identically on any

closed subinterval of [0, 1], for 1 ≤ i ≤ n,
(A3) each of

fi0 = lim
x→0+

fi(x)

x
and fi∞ = lim

x→∞

fi(x)

x
,

for 1 ≤ i ≤ n, exists as positive real numbers.

The rest of the paper is organized as follows. In Section 2, we construct the
Green’s function for the homogeneous BVP and estimate the bounds for the Green’s
function. In Section 3, we establish criteria to determine the eigenvalues for which
the fractional order BVP (1.1)-(1.2) has at least one positive solution in a cone by
using Guo-Krasnosel’skii fixed point theorem. In Section 4, as an application, we
demonstrate our results with an example.

2. Green’s function and Bounds

In this section, we construct the Green’s function for the homogeneous BVP
and estimate the bounds for the Green’s function which are needed in establishing
the main results.

Lemma 2.1. If h(t) ∈ C[0, 1], then the fractional order BVP,

(2.1) Dα
0+y1(t) + h(t) = 0, t ∈ (0, 1),

(2.2) y
(j)
1 (0) = 0, 0 ≤ j ≤ n− 2, y

(p)
1 (1) = 0

has a unique solution,

y1(t) =

∫ 1

0

G(t, s)h(s)ds,

where

(2.3) G(t, s) =

{
tα−1(1−s)α−1−p

Γ(α) , 0 ≤ t ≤ s ≤ 1,
tα−1(1−s)α−1−p−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1.

Proof. Assume that y1(t) ∈ C [α]+1[0, 1] is a solution of fractional order BVP (2.1)-
(2.2) and is uniquely expressed as

Iα0+Dα
0+y1(t) = −Iα0+h(t)

y1(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1 + c2t

α−2 + c3t
α−3 + · · ·+ cnt

α−n.

From y
(j)
1 (0) = 0, 0 ≤ j ≤ n− 2, we have cn = cn−1 = cn−2 = · · · = c2 = 0. Then

y1(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1,

y
(p)
1 (t) = c1

p∏
i=1

(α− i)tα−1−p −
p∏
i=1

(α− i) 1

Γ(α)

∫ 1

0

(t− s)α−1−ph(s)ds.
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From y
(p)
1 (1) = 0, we have

c1

p∏
i=1

(α− i)−
p∏
i=1

(α− i) 1

Γ(α)

∫ 1

0

(1− s)α−1−ph(s)ds = 0.

Therefore, c1 = 1
Γ(α)

∫ 1

0
(1− s)α−1−ph(s)ds. Thus, the unique solution of (2.1)-(2.2)

is

y1(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+
tα−1

Γ(α)

∫ 1

0

(1− s)α−1−ph(s)ds

=

∫ 1

0

G(t, s)h(s)ds,

where G(t, s) is given in (2.3). �

Lemma 2.2. The Green’s function G(t, s) satisfies the following inequalities,

(i) G(t, s) ≥ 0, for all (t, s) ∈ [0, 1]× [0, 1],

(ii) G(t, s) ≤ G(1, s), for all (t, s) ∈ [0, 1]× [0, 1],

(iii) G(t, s) ≥ 1

4α−1
G(1, s), for all (t, s) ∈ I × [0, 1],

where I =
[

1
4 ,

3
4

]
.

Proof. The Green’s function G(t, s) is given in (2.3). For 0 ≤ t ≤ s ≤ 1.

G(t, s) =
1

Γ(α)
[tα−1(1− s)α−1−p] ≥ 0.

For 0 ≤ s ≤ t ≤ 1,

G(t, s) =
1

Γ(α)
[tα−1(1− s)α−1−p − (t− s)α−1]

≥ 1

Γ(α)
[tα−1(1− s)α−1−p − tα−1(1− s)α−1]

=
1

Γ(α)
[tα−1(1− s)α−1−p][1− (1− s)p] ≥ 0.

Hence the inequality (i) is proved. We prove the inequality (ii). For 0 ≤ t ≤ s ≤ 1,

∂

∂t
G(t, s) =

1

Γ(α)
[(α− 1)tα−2(1− s)α−1−p] ≥ 0.

For 0 ≤ s ≤ t ≤ 1,

∂

∂t
G(t, s) =

1

Γ(α)
[(α− 1)tα−2(1− s)α−1−p − (α− 1)(t− s)α−2]

=
(α− 1)

Γ(α)

[
tα−2(1− s)α−2(1− s)1−p − (t− s)α−2

]
≥ (α− 1)

Γ(α)

[
tα−2(1− s)α−2(1− s)1−p − (t− ts)α−2

]
=

(α− 1)

Γ(α)

[
(1− s)1−p − 1

]
(t− ts)α−2 ≥ 0.
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Therefore G(t, s) is increasing with respect to t ∈ [0, 1]. Hence the inequality (ii) is
proved. Now, we establish the inequality (iii). For 0 ≤ t ≤ s ≤ 1 and t ∈ I,

G(t, s)

G(1, s)
=
tα−1(1− s)α−1−p

(1− s)α−1−p = tα−1 ≥ 1

4α−1
.

For 0 ≤ s ≤ t ≤ 1 and t ∈ I,

G(t, s)

G(1, s)
=
tα−1(1− s)α−1−p − (t− s)α−1

(1− s)α−1−p − (1− s)α−1

≥ t
α−1(1− s)α−1−p − (t− ts)α−1

(1− s)α−1−p − (1− s)α−1

=tα−1 ≥ 1

4α−1
.

Hence the inequality (iii) is proved. �

An n-tuple (y1(t), y2(t), · · ·, yn(t)) is a solution of the BVP (1.1)-(1.2) if and only
if yi(t) ∈ C [α]+1[0, 1] satisfies the following equations

y1(t) =λ1

∫ 1

0

G(t, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · · ·

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1

and

yi(t) = λi

∫ 1

0

G(t, s)ai(s)fi(yi+1(s))ds, 0 ≤ t ≤ 1, 2 ≤ i ≤ n,

where

yn+1(t) = y1(t), 0 ≤ t ≤ 1.

In establishing our main result, we will employ the following fixed point theorem
due to Guo-Krasnosel’skii [5, 13].

Theorem 2.3. [5, 13] Let X be a Banach Space, P ⊆ X be a cone and suppose
that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that
T : P ∩ (Ω2\Ω1)→ P is completely continuous operator such that either

(i) ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω1 and ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω1 and ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω2 holds.

Then T has a fixed point in P ∩ (Ω2\Ω1).

3. Positive Solutions in a Cone

In this section, we establish criteria to determine the eigenvalues for which the
fractional order BVP (1.1)-(1.2) has at least one positive solution in a cone.

Let X = {x : x ∈ C[0, 1]} be the Banach space equipped with the norm

‖x‖ = max
0≤t≤1

|x(t)|.

Define a cone P ⊂ X by

P =
{
x ∈ X | x(t) ≥ 0 on [0, 1] and min

t∈I
x(t) ≥ 1

4α−1
‖x‖
}
.



140 PRASAD, KRUSHNA AND SREEDHAR

Now, we define an integral operator T : P → X, for y1 ∈ P , by

(3.1)

Ty1(t) = λ1

∫ 1

0

G(t, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · ··

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1.

Notice from (A1), (A2) and Lemma 2.2 that, for y1 ∈ P , Ty1(t) ≥ 0 on [0, 1]. And
also, we have

Ty1(t) ≤ λ1

∫ 1

0

G(1, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · ··

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1

so that

(3.2)

‖Ty1‖ ≤ λ1

∫ 1

0

G(1, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · ··

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1.

Next, if y1 ∈ P , we have from Lemma 2.2 and (3.2) that

min
t∈I

Ty1(t) = min
t∈I

λ1

∫ 1

0

G(t, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · ··

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1

≥ λ1
1

4α−1

∫ 1

0

G(1, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · · ·

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1

≥ 1

4α−1
‖Ty1‖.

Therefore,

min
t∈I

Ty1(t) ≥ 1

4α−1
‖Ty1‖.

Hence, Ty1 ∈ P and so T : P → P . Further, the operator T is a completely con-
tinuous operator by an application of the Arzela-Ascoli Theorem.

Now, we seek suitable fixed point of T belonging to the cone P . For our first
result, we define positive numbers N1 and N2, by

N1 = max
1≤i≤n

{[
1

4α−1

∫
s∈I

G(1, s)ai(s)dsfi∞

]−1
}

and

N2 = min
1≤i≤n

{[∫ 1

0

G(1, s)ai(s)dsfi0

]−1
}
.
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Theorem 3.1. Assume that the conditions (A1)-(A3) are satisfied. Then, for each
λ1, λ2, · · ·, λn satisfying

(3.3) N1 < λi < N2, 1 ≤ i ≤ n,

there exists an n-tuple (y1, y2, · · ·, yn) satisfying (1.1)-(1.2) such that yi(t) > 0,
1 ≤ i ≤ n on (0, 1).

Proof. Let λi, 1 ≤ i ≤ n be given as in (3.3). Now, let ε > 0 be chosen such that

max
1≤i≤n

{[
1

4α−1

∫
s∈I

G(1, s)ai(s)ds(fi∞ − ε)
]−1

}
≤ min

1≤i≤n
λi

and

max
1≤i≤n

λi ≤ min
1≤i≤n

{[∫ 1

0

G(1, s)ai(s)ds(fi0 + ε)

]−1
}
.

We seek fixed point of the completely continuous operator T : P → P defined by
(3.1). Now, from the definitions of fi0, 1 ≤ i ≤ n, there exists an H1 > 0 such that,
for each 1 ≤ i ≤ n,

fi(x) ≤ (fi0 + ε)x, 0 < x ≤ H1.

Let y1 ∈ P with ‖y1‖ = H1. We first have from Lemma 2.2 and the choice of ε,
for 0 ≤ sn−1 ≤ 1,

λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

≤ λn
∫ 1

0

G(1, sn)an(sn)(fn0 + ε)y1(sn)dsn

≤ λn
∫ 1

0

G(1, sn)an(sn)dsn(fn0 + ε)‖y1‖

≤ ‖y1‖ = H1.

It follows in a similar manner from Lemma 2.2 and the choice of ε that, for 0 ≤
sn−2 ≤ 1,

λn−1

∫ 1

0

G(sn−2, sn−1)an−1(sn−1)

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
dsn−1

≤ λn−1

∫ 1

0

G(sn−1, sn−1)an−1(sn−1)dsn−1(fn−1,0 + ε)‖y1‖

≤ ‖y1‖ = H1.

Continuing with this bootstrapping argument, we have, for 0 ≤ t ≤ 1,

λ1

∫ 1

0

G(t, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · · ·

fn(y1(sn))dsn

)
· · · ds2

)
ds1 ≤ H1,

so that, for 0 ≤ t ≤ 1,

Ty1(t) ≤ H1.
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Hence, ‖Ty1‖ ≤ H1 = ‖y1‖. If we set Ω1 = {x ∈ X | ‖x‖ < H1}, then

(3.4) ‖Ty1‖ ≤ ‖y1‖, for y1 ∈ P ∩ ∂Ω1.

Next, from the definitions of fi∞, 1 ≤ i ≤ n, there exists H2 > 0 such that, for
each 1 ≤ i ≤ n, fi(x) ≥ (fi∞ − ε)x, x ≥ H2. Choose H2 = max{2H1, 4

α−1H2}.
Let y1 ∈ P and ‖y1‖ = H2. Then,

min
t∈I

y1(t) ≥ 1

4α−1
‖y1‖ ≥ H2.

Then, from Lemma 2.2 and choice of ε, for 0 ≤ sn−1 ≤ 1, we have that

λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

≥ λn
∫
s∈I

G(1, sn)an(sn)fn(y1(sn))dsn

≥ 1

4α−1
λn

∫
s∈I

G(1, sn)an(sn)(fn∞ − ε)y1(sn)dsn

≥ 1

4α−1
λn

∫
s∈I

G(1, sn)an(sn)dsn(fn∞ − ε)‖y1‖

≥ ‖y1‖ = H2.

It follows in a similar manner from Lemma 2.2 and choice of ε, for 0 ≤ sn−2 ≤ 1,

λn−1

∫ 1

0

G(sn−2, sn−1)an−1(sn−1)

fn−1

(
λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

)
dsn−1

≥ 1

4α−1
λn−1

∫
s∈I

G(1, sn−1)an−1(sn−1)dsn−1(fn−1,∞ − ε)‖y1‖

≥ ‖y1‖ = H2.

Again, using a bootstrapping argument, we have

λ1

∫ 1

0

G(t, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · ··

fn(y1(sn))dsn

)
· · · ds2

)
ds1 ≥ H2,

so that

Ty1(t) ≥ H2 = ‖y1‖.
Hence, ‖Ty1‖ ≥ ‖y1‖. So if we set Ω2 = {x ∈ X | ‖x‖ < H2}, then

(3.5) ‖Ty1‖ ≥ ‖y1‖, for y1 ∈ P ∩ ∂Ω2.

Applying Theorem 2.3 to (3.4) and (3.5), we obtain that T has a fixed point
y1 ∈ P ∩ (Ω2\Ω1). Setting y1 = yn+1, we obtain a positive solution (y1, y2, · · ·, yn)
of (1.1)-(1.2) given iteratively by

yi(t) = λi

∫ 1

0

G(t, s)ai(s)fi(yi+1(s))ds, i = n, n− 1, · · ·, 1.

The proof is completed. �
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Prior to our next result, we define the positive numbers N3 and N4 by

N3 = max
1≤i≤n

{[
1

4α−1

∫
s∈I

G(1, s)ai(s)dsfi0

]−1
}

and

N4 = min
1≤i≤n

{[∫ 1

0

G(1, s)ai(s)dsfi∞

]−1
}
.

Theorem 3.2. Assume that the conditions (A1)-(A3) are satisfied. Then, for each
λ1, λ2, · · ·, λn satisfying

(3.6) N3 < λi < N4, 1 ≤ i ≤ n,

there exists an n-tuple (y1, y2, · · ·, yn) satisfying (1.1)-(1.2) such that yi(t) > 0,
1 ≤ i ≤ n on (0, 1).

Proof. Let λi, 1 ≤ i ≤ n be given as in (3.6). Now, let ε > 0 be chosen such that

max
1≤i≤n

{[
1

4α−1

∫
s∈I

G(1, s)ai(s)ds(fi0 − ε)
]−1

}
≤ min

1≤i≤n
λi

and

max
1≤i≤n

λi ≤ min
1≤i≤n

{[∫ 1

0

G(1, s)ai(s)ds(fi∞ + ε)

]−1
}
.

Let T be the cone preserving, completely continuous operator that was defined
by (3.1). From the definition of fi0, 1 ≤ i ≤ n there exists H3 > 0 such that, for
each 1 ≤ i ≤ n,

fi(x) ≥ (fi0 − ε)x, 0 < x ≤ H3.

Also, from the definitions of fi0, it follows that fi0(0) = 0, 1 ≤ i ≤ n, and so there
exist 0 < Kn < Kn−1 < · · · < K2 < H3 such that

λifi(t) ≤
Ki−1∫ 1

0
G(1, s)ai(s)ds

, t ∈ [0,Ki], 3 ≤ i ≤ n,

and

λ2f2(t) ≤ H3∫ 1

0
G(1, s)a2(s)ds

, t ∈ [0,K2].

Choose y1 ∈ P with ‖y1‖ = Kn. Then, we have

λn

∫ 1

0

G(sn−1, sn)an(sn)fn(y1(sn))dsn

≤ λn
∫ 1

0

G(1, sn)an(sn)fn(y1(sn))dsn

≤
∫ 1

0
G(1, sn)an(sn)Kn−1dsn∫ 1

0
G(1, sn)an(sn)dsn

≤ Kn−1.
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Continuing with this bootstrapping argument, it follows that

λ2

∫ 1

0

G(1, s2)a2(s2)f2

(
λ3

∫ 1

0

G(s2, s3)a3(s3) · ··

fn(y1(sn))dsn

)
· · · ds3

)
ds2 ≤ H3.

Then,

Ty1(t) = λ1

∫ 1

0

G(t, s1)a1(s1)f1

(
λ2

∫ 1

0

G(s1, s2)a2(s2) · ··

fn(y1(sn))dsn

)
· · · ds2

)
ds1

≥ 1

4α−1
λ1

∫
s∈I

G(1, s1)a1(s1)(f10 − ε)‖y1‖ds1 ≥ ‖y1‖.

So, ‖Ty1‖ ≥ ‖y1‖. If we set Ω1 = {x ∈ X | ‖x‖ < Kn}, then

(3.7) ‖Ty1‖ ≥ ‖y1‖, for y1 ∈ P ∩ ∂Ω1.

Since each fi∞ is assumed to be a positive real number, it follows that fi, 1 ≤
i ≤ n, is unbounded at ∞. For each 1 ≤ i ≤ n, set

f∗i (x) = sup
0≤s≤x

fi(s).

Then, it is straightforward that, for each 1 ≤ i ≤ n, f∗i is a nondecreasing real-
valued function, fi ≤ f∗i and

lim
x→∞

f∗i (x)

x
= fi∞.

Next, by definition of fi∞, 1 ≤ i ≤ n, there exists H4 such that, for each 1 ≤ i ≤ n,

f∗i (x) ≤ (fi∞ + ε)x, x ≥ H4.

It follows that there exists H4 = max{2H3, H4} such that, for each 1 ≤ i ≤ n,

f∗i (x) ≤ f∗i (H4), 0 < x ≤ H4.

Choose y1 ∈ P with ‖y1‖ = H4. Then, using the usual bootstrapping argument,
we have

Ty1(t) = λ1

∫ 1

0

G(t, s1)a1(s1)f1(λ2 · ··)ds1

≤ λ1

∫ 1

0

G(t, s1)a1(s1)f∗1 (λ2 · ··)ds1

≤ λ1

∫ 1

0

G(1, s1)a1(s1)f∗1 (H4)ds1

≤ λ1

∫ 1

0

G(1, s1)a1(s1)ds1(f1∞ + ε)H4

≤ H4 = ‖y1‖,
and so ‖Ty1‖ ≤ ‖y1‖. So, if we let Ω2 = {x ∈ X | ‖x‖ < H4}, then

(3.8) ‖Ty1‖ ≤ ‖y1‖, for y1 ∈ P ∩ ∂Ω2.

Applying Theorem 2.3 to (3.7)-(3.8), we obtain that T has a fixed point y1 ∈
P ∩ (Ω2\Ω1), which in turn with y1 = yn+1, yields an n-tuple (y1, y2, · · ·, yn)
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satisfying the BVP (1.1)-(1.2) for the chosen values of λi, 1 ≤ i ≤ n. The proof is
thus completed. �

4. Example

In this section, as an application, we demonstrate our results with an example.
Consider the fractional order boundary value problem

(4.1)

D2.5
0+ y1(t) +

λ1

1 + t
y2(46− 27.5e−2y2)(500− 487e−3y2) = 0, t ∈ (0, 1),

D2.5
0+ y2(t) +

λ2

1 + t
y3(37− 25.5e−5y3)(400− 368e−y3) = 0, t ∈ (0, 1),

D2.5
0+ y3(t) +

λ3

1 + t
y1(79− 75e−y1)(800− 749.5e−2y1) = 0, t ∈ (0, 1),


(4.2) yi(0) = 0, y′i(0) = 0 and y′i(1) = 0, i = 1, 2, 3.

The Green’s function G(t, s) of corresponding homogeneous BVP is given by

G(t, s) =

{
t1.5(1−s)0.5

Γ(2.5) , 0 ≤ t ≤ s ≤ 1,
t1.5(1−s)0.5−(t−s)1.5

Γ(2.5) , 0 ≤ s ≤ t ≤ 1.

By direct calculations, we found that

f10 = 299, f20 = 368, f30 = 202,

f1∞ = 23000, f2∞ = 14800, f3∞ = 63200,

N1 = max
{[

(0.25)1.5

∫ 0.75

0.25

G(1, s)a1(s)ds(23000)

]−1

,[
(0.25)1.5

∫ 0.75

0.25

G(1, s)a2(s)ds(14800)

]−1

,[
(0.25)1.5

∫ 0.75

0.25

G(1, s)a3(s)ds(63200)

]−1 }
,

= max{0.0009634, 0.0014972, 0.0003506} = 0.0014972.

Similarly, N2 = min{0.0307737, 0.0250037, 0.0455512} = 0.0250037. Applying The-
orem 3.1, we get an optimal eigenvalue interval 0.0014972355 < λi < 0.0250037, for
i = 1, 2, 3 in which the fractional order BVP (4.1)-(4.2) has at least one positive
solution.
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