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ABSTRACT. Finite cloud method (FCM) employs the fixed kernel reproducing technique to construct the 

interpolation function and point collocation approach is adopted for the discretization. In this study, an 

improved FCM is proposed such that a node of interest is approximated with its nearest cloud. This feature 

enables a set of uniformly distributed clouds of various densities such that all the information in the problem 

domain is captured and stored in the clouds. Additionally, the instability of FCM near the boundaries is 

treated by having the boundary nodes also satisfy the governing differential equation. Besides, a splitting 

mechanism is suggested for the node refinement to improve the accuracy of solution. Parameters are 

introduced to control the density of clouds and the singularity of the moment matrices associated with the 

clouds. Thus, a more controllable numerical simulation is developed. Numerical examples are presented and 

the results have shown that the improved FCM produces a stable and better accuracy of solution. 

 

1. Introduction 

Meshfree methods have been studied intensively by researchers in the field of engineering. 

Meshfree methods ([1], [2], [3]) become one of the hottest topics in researchers’ eyes, owing to the 

fact that meshfree methods possess an attractive advantage over conventional mesh-based methods, 

which is that the mesh generation is not required in the formulation procedure. Hence, handling 
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problems such as fracture, large deformation and moving boundaries is easier for meshfree methods 

since adding nodes to the affected area is much simpler, compared to mesh-based methods.  

There are numerous meshfree methods available in the literature. The Element-free Galerkin 

method (EFG) ([4], [5]) employs the moving least square (MLS) approximation to construct the 

interpolation function based on nodes in a local domain. For meshless local petrov-Galerkin method 

(MLPG) ([6], [7], [8]), a method that solves local weak form of PDEs, the weighted residual method 

is implemented in integral form. The integration is confined to a small local subdomain of a particular 

node. The random differential quadrature method (RDQ) ([9]) is a meshfree method that combined 

fixed reproducing kernel particle method (fixed RKPM) and differential quadrature method (DQM) 

([10], [11], [12]) motivated by having DQM applied to irregular domain with randomly distributed 

field nodes.   

Recently, the improved interpolating element-free Galerkin (IIEFG) method has emerged to 

be another outstanding meshfree method that has made improvements to the interpolation accuracy. 

IIEFG employs the improved interpolating moving least-square technique to construct the 

interpolation functions which possess the Kronecker delta property and the related studies ([13], 

[14]) have shown that this method can achieve better accuracy of solution compared to EFG method. 

On the other hand, researchers and scientists also find ways to improve the existing mesh-

based methods in meshfree directions. The hybrid finite element-meshfree method ([15], [16]), the 

meshfree finite volume method (FVM) ([17]) and the meshfree finite difference method ([18]). There 

is also an innovative approach being suggested to solve the mesh nodes and the meshfree points 

which are arbitrarily mixed in the computational domain using FVM ([19], [20]). 

Meshfree methods allow a more flexible way of adding new nodes while keeping the existing 

field nodes because the connection information among the field nodes is not needed. Hence, this 

would be an added advantage for node refinement since new field nodes can be added to the critical 

region where the detailed analysis is required. Therefore, some researchers have devoted their effort 

to coupling a meshfree method with a mesh-based method ([21]) such that node refinement is carried 

out in the critical region by using the meshfree method whereas the mesh-based method is adopted 

in the smooth region ([22]).  

FCM is a meshfree method that employs fixed RKPM for the construction of interpolation 

functions and then adopts the point collocation approach to discretize the governing differential 

equation. FCM has been applied in various fields, like computer-aided design ([23], [24], [25]) and 



3 Int. J. Anal. Appl. (2023), 21:12 
 

the simulation of the behavior of hydrogel ([26]). Several papers related to some improvements to 

FCM are found in the literature ([27], [28], [29], [30]). However, the moment matrix associated with 

a cloud may become singular if the cloud size is not large enough to have a sufficient number of field 

nodes or the cloud center is too near the boundary such that it becomes incomplete and consequently 

have fewer field nodes for its interpolation. In order to have a more controllable numerical simulation, 

parameters are introduced to cater for the cloud distribution. More importantly, the cloud density 

can be adjusted when necessary or even during the node refinement phase to obtain the desired 

accuracy of solutions. 

In this paper, parameters are introduced to control the density of clouds as well as the 

distance of the clouds, which are adjacent to the boundaries, from the boundaries. A study is carried 

out to investigate the effect of the distance of the cloud centers from the boundaries to the singularity 

of the moment matrices associated with these clouds. Apart from that, the relationship between the 

density of clouds and the accuracy of solution is also examined. 

 

2. Finite Cloud Method (FCM) 

FCM is a meshfree method that employs fixed reproducing kernel technique to construct the 

interpolation functions using a set of overlapping clouds defined over the problem domain. Each cloud 

consists of a set of field nodes. As clouds are overlapping, a field node may belong to more than one 

cloud. With the appropriate order of polynomial basis, a moment matrix is created for each cloud 

defined in the domain. When the moment matrices are ready, the interpolation functions will then 

be constructed for the clouds.  

For the discretization of the governing partial differential equations, the diffuse derivative 

approach is adopted to approximate the terms of the derivatives. Since the moment matrices in fixed 

RPKM are constants, the derivatives of the interpolation functions are straightforward, that is the 

differentiations involve only the polynomial basis of the interpolation functions. 

2.1.   Fixed Reproducing Kernel Particle Method 

RKPM is inherited from smoothed particle hydrodynamics (SPH) method where an extra 

term, the correction function, is added to the interpolation function ([31]) to achieve a higher order 

of reproducibility of the field variables. The RKPM is given as  
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𝑢𝑎(𝑥, 𝑦) =  ∫ 𝐶(𝑥, 𝑦, 𝑠, 𝑡) 𝜓(𝑥 − 𝑠, 𝑦 − 𝑡) 𝑢(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡
Ω

. (2.1) 

Ω ∈  ℝ2. 𝐶(𝑥, 𝑦, 𝑠, 𝑡) is the correction function whereas 𝜓(𝑥, 𝑦, 𝑠, 𝑡)  is the kernel function or window 

function which acts as the low pass filter that reduces noise in the solution. The discrete form of 

RKPM is given as 

𝑢𝑎  (𝑥, 𝑦) =  ∑𝑁𝐼(𝑥, 𝑦) 𝑢𝐼

𝑁𝑃

𝐼=1

, (2.2) 

where 𝑁𝐼(𝑥, 𝑦) =  𝐶(𝑥, 𝑦, 𝑥𝐼 , 𝑦𝐼) 𝜓(𝑥 − 𝑥𝐼 , 𝑦 − 𝑦𝐼) 𝑑𝑉I,  𝑢𝐼 is the nodal unknown for field node I and 

NP is the total number of field nodes in the domain Ω. 

Fixed RKPM is a special case of RKPM where the kernel is fixed at the central node (𝑥𝑘 , 𝑦𝑘) 

and hence produces a constant moment matrix, unlike classical RPKM, moving RPKM and multiple 

RPKM which generate moment matrices with entries comprised of functions of x and y.  

The approximate solution for the fixed RKPM is as follows: 

𝑢𝑎(𝑥, 𝑦) =  ∫ 𝐶(𝑥, 𝑦, 𝑠, 𝑡) 𝜓(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑢(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡
Ω

. (2.3) 

(𝑥𝑘 , 𝑦𝑘) is the centre of the kernel 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) where the local interpolation takes place. 

2.2.   Polynomial Basis Function 

Several types of basis functions are available in the literature, like polynomial basis, Fourier 

bases and B-spline basis function. For FCM, the relatively simpler basis functions, i.e. polynomial 

basis function, is employed (as shown in Equation 2.4).  

𝑃𝑇(𝑠, 𝑡) = {𝑝1, 𝑝2, … , 𝑝𝑚} (2.4) 

𝑃𝑇(𝑠, 𝑡) is the basis function of basis degree D. The two-dimension basis function of order m 

can be computed by Equation 2.5.  

𝑚 =
(𝐷 + 1) ∗ (𝐷 + 2)

2
(2.5) 

If D = 1, then m = 3 and the corresponding linear basis is 

𝑃𝑇(𝑠, 𝑡) = [1, 𝑠, 𝑡]. (2.6) 

If D = 2, then m = 6. This leads to a quadratic basis given by 
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𝑃𝑇(𝑠, 𝑡) = [1, 𝑠, 𝑡, 𝑠2, 𝑠𝑡, 𝑡2]. (2.7) 

 
3. Formulation of FCM 

In FCM, the interpolation functions are constructed by fixed RKPM where its derivatives are 

easy to derive due to the constant moment matrix associated with each cloud ([32]). Then, Jin et 

al. ([28]) have investigated the FCM and proposed the use of shifted polynomial basis in the 

construction of interpolation function and have proven that the improved FCM produces superior 

convergence of solutions.  

The approximate equation derived by the FCM is presented in this section. The fixed RKPM 

interpolation function is first constructed followed by the discretization accomplished by point 

collocation approach. 

3.1.   Formulation of Fixed RKPM Interpolation Functions With Shifted Polynomial Basis 

The approximate solution for the fixed RKPM is defined as  

𝑢𝑎(𝑥, 𝑦) =  ∫ 𝐶(𝑥, 𝑦, 𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) ψ(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑢(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡
Ω

. (3.1) 

𝐶(𝑥, 𝑦, 𝑥𝐾 − 𝑠, 𝑦𝐾 − 𝑡) is the correction function as follow: 

𝐶(𝑥, 𝑦, 𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) = 𝑃
𝑇(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑐(𝑥, 𝑦), (3.2) 

where 𝑃𝑇(𝑠, 𝑡) is the basis function as shown in Equation 2.4 and 𝑐(𝑥, 𝑦) is the unknown correction 

function coefficients. From Equation 3.2, Equation 2.3 becomes 

𝑢𝑎(𝑥, 𝑦) =  ∫ 𝑃𝑇(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑐(𝑥, 𝑦)𝜓(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑢(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡
Ω

. (3.3) 

Since every monomial of the polynomial defined in Equation 2.4 has to satisfy the consistency 

condition of the approximate function, the following equation is obtained: 

𝑝𝑖(𝑥, 𝑦) =  ∫ 𝑃𝑇(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑐(𝑥, 𝑦) 𝜓(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑝𝑖(𝑠, 𝑡)𝑑𝑠 𝑑𝑡,    𝑖 = 1, 2, . . , 𝑚
Ω

 

(3.4) 

and the relevant discretized form is rewritten as  
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𝑝𝑖(𝑥, 𝑦) =  ∑ 𝑃𝑇  (𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) 𝑐(𝑥, 𝑦) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) 𝑝𝑖 (𝑥𝐼 , 𝑦𝐼) 𝑑𝑉𝐼
𝑁𝑃
𝐼=1  (3.5) 

where   𝑖 = 1,2, . . , 𝑚. NP denotes the total field nodes in the cloud and 𝑑𝑉𝐼 is the nodal volume at 

the 𝐼𝑡ℎfield node. 

 Let M be the m x m moment matrix given as 

𝑀𝑖𝑗 = ∑ 𝑝𝑗(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) 𝑝𝑖(𝑥𝐼 , 𝑦𝐼) 𝑑𝑉𝐼
𝑁𝑃
𝐼=1 ,   𝑖, 𝑗 = 1, 2,… ,𝑚.     (3.6) 

Then, the Equation 3.6 can be written in a matrix form as  

𝑀𝑐(𝑥, 𝑦) = 𝑃(𝑥, 𝑦). (3.7) 

Note that the moment matrix M is not function of x and y. In another words, M is a constant 

matrix. From Equation 3.7, the unknown correction function coefficients can be determined as  

𝑐(𝑐, 𝑦) = 𝑀−1 𝑃(𝑥, 𝑦). (3.8) 

Substituting Equation 3.8 into Equation 2.3 gives 

𝑢𝑎(𝑥, 𝑦) =  ∫ 𝑃𝑇(𝑥, 𝑦) 𝑀−𝑇 𝑃(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡)𝜓(𝑥𝑘 − 𝑠, 𝑦𝑘 − 𝑡) 𝑢(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡
Ω

 

(3.9) 

and the corresponding discrete form is  

𝑢𝑎(𝑥, 𝑦) =  ∑𝑁𝐼(𝑥, 𝑦)𝑢𝐼

𝑁𝑃

𝐼=1

, (3.10) 

where the interpolation function for node I  is 

𝑁𝐼(𝑥, 𝑦) = 𝑃
𝑇(𝑥, 𝑦) 𝑀−𝑇 𝑃(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) ∆𝑉𝐼 . (3.11) 

3.2.   Derivatives of Interpolation Functions 

Due to the fact that the moment matrix (as in Equation 3.6) is constant, the derivatives of 

the interpolation functions involve only the differentiations of the polynomial basis. 

For quadratic polynomial basis in two dimensions, m = 6, 𝑃𝑇(𝑥, 𝑦) = [1   𝑥   𝑦   𝑥2   𝑥𝑦   𝑦2], 

then the derivatives of the interpolation functions (Equation 3.11) are  

𝑁𝐼,   𝑥 (𝑥, 𝑦)   = [0     1     0     2𝑥     𝑦     0] 𝑀−1𝑃(𝑥𝐼 , 𝑦𝐼) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) ∆𝑉𝐼 (3.12) 
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𝑁𝐼,   𝑥𝑥 (𝑥, 𝑦) = [0     0     0     2        0     0] 𝑀−1𝑃(𝑥𝐼 , 𝑦𝐼) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) ∆𝑉𝐼 (3.13) 

𝑁𝐼,   𝑦 (𝑥, 𝑦)   = [0     0     1     0       𝑥   2𝑦] 𝑀
−1𝑃(𝑥𝐼 , 𝑦𝐼) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) ∆𝑉𝐼       (3.14) 

𝑁𝐼,   𝑦𝑦 (𝑥, 𝑦) = [0     0     0     0       0      2] 𝑀
−1𝑃(𝑥𝐼 , 𝑦𝐼) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) ∆𝑉𝐼       (3.15) 

𝑁𝐼,   𝑥𝑦 (𝑥, 𝑦) = [0    0     0      0       1      0] 𝑀
−1𝑃(𝑥𝐼 , 𝑦𝐼) 𝜓(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) ∆𝑉𝐼 .      (3.16) 

3.3.   Formulation of Point Collocation Method (Pcm) 

In FCM, the point collocation approach is adopted to discretize the governing equation with 

a set of collocation nodes, then the approximate solution is determined from the conditions that the 

governing equation is satisfied at the collocation nodes. In addition, the point collocation technique 

is capable of enforcing the boundary conditions exactly. 

 
4.   The Development of the Improved FCM 

The development of the improved FCM starts with the discretization of the problem domain 

with a set of field nodes. Then, clouds with their associated center node are also defined for the 

problem domain. When the two sets of nodes are ready, a moment matrix is constructed for each 

cloud with the field nodes located in the vicinity of the cloud. With the moment matrices, the 

interpolation functions for all field nodes are ready for the next stage, which is the discretization of 

the governing equation. In this study, the set of nodes that are used to generate the set of linear 

system of equations, namely collocation nodes, includes the internal nodes and the boundary nodes. 

By point collocation scheme with boundary conditions, a set of linear system of equations is 

established and the nodal parameters are computed by solving the system of equations, and thus the 

approximate solutions are obtained.  

4.1.   Discretisation of Problem Domain 

Consider a simple problem model of size 𝐿𝑥 × 𝐿𝑦. The problem domain is divided into 𝑁𝑖𝑛𝑡 

cells where 𝑁𝑖𝑛𝑡 = 𝐼𝑛𝑡𝑋 × 𝐼𝑛𝑡𝑌. 𝐼𝑛𝑡𝑋 is the number of intervals along the x-axis whereas 𝐼𝑛𝑡𝑌 is the 

number of intervals along the y-axis. A field node is placed at the center of each cell (Figure 1(a)). 

Alternatively, field nodes can be placed randomly in the domain as depicted in Figure 1(b). Note that 

the field nodes in this study do not include boundary nodes. 
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4.2.   Cloud Definition and Cloud Distribution 

In this work, the cloud centers are independent of collocation nodes and distributed uniformly 

over the problem domain as shown in Figure 1(c). These clouds are overlapping and can be of a 

degree of density. However, the denser the cloud distribution, the computation time required will be 

increased as the total number of clouds will increase too. Since a collocation node (𝑥𝐶 , 𝑦𝐶) ≠ (𝑥𝑘 , 𝑦𝑘) 

where (𝑥𝑘 , 𝑦𝑘) is a cloud center, the computation work to determine the nearest cloud center for 

each collocation node has to be carried out ahead of time. Under this circumstance, a moment matrix 

associated with a cloud may be used more than once for the approximation of solutions. Thus, the 

computation time required can be optimized by adjusting the number of clouds defined in the problem 

domain. 

In Figure 1(d), the cloud, 𝐶𝑙𝑑1, is centred at (𝑥𝑘 , 𝑦𝑘) and the field nodes covered by the 𝐶𝑙𝑑1 

are 𝐷𝑃1, 𝐷𝑃2, 𝐷𝑃3, 𝐷𝑃4, 𝐷𝑃5, 𝐷𝑃6 and 𝐷𝑃7. Note that 𝐷𝑃1is the field node that is shared among 𝐶𝑙𝑑1, 

𝐶𝑙𝑑2 and 𝐶𝑙𝑑3.  

  
          (a)                                (b) 

            
     (c)                                              (d)  

 
Figure 1. (a) & (b) Discretization of problem domain (c) Cloud distribution (d) Definition of cloud 
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Having overlapping clouds is one of the features or advantages of FCM, due to their 

localized interpolation domain as well as the independence of the moment matrix of one 

cloud from the others. Note that a moment matrix is generated for one cloud. Besides, the 

interpolation functions constructed by fixed reproducing kernel technique are satisfying the 

sum to unity property. Considering the consistency condition again. When ℓ = 1, 𝑝1(𝑥, 𝑦) =

1.0, then substituting them into Equation 3.5 gives 

∑𝑃𝑇(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼)∁(𝑥, 𝑦) 𝜙(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) Δ𝑉𝐼 = 1.0

𝑁𝑃

I=1

. (4.1) 

 

Compare with the interpolation function defined in Equation 3.11 and we conclude that  

∑𝑁𝐼(𝑥, 𝑦)

𝑁𝑃

𝐼=1

= 1.0 (4.2) 

 

Theoretically, since the node of interest (𝑥, 𝑦) can be at any point in the domain, the 

clouds can be centered at any location, as long as the node of interest is in the vicinity of 

the cloud. However, this may lead to two minor problems: 

• multivalued interpolation functions 

• singularity of moment matrices for the clouds which are near the boundaries 

4.3.   Multivalued Interpolation Functions 

According to Aluru and Li ([32]), the multivalued interpolation functions can be avoided by 

centering the kernel at the node of interest. In another word, the node of interest (𝑥, 𝑦) is also the 

cloud center node (𝑥𝑘 , 𝑦𝑘). This means that a list of nodes of interest or collocation nodes should 

be defined ahead of time before constructing the interpolation functions. 

The more flexible way of defining cloud centers is by employing the improved FCM ([22]) so 

that with the adjustments to the interpolation functions, the cloud center nodes can be predefined 

and distributed uniformly over the problem domain. The approximate solution of any node of interest 

is computed with the adjusted interpolation functions of its nearest cloud. As a result, after the 

approximate solution is obtained, any new node of interest does not involve the generation of the 
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moment matrix and the construction of the interpolation functions for the new cloud, one only needs 

to find the nearest cloud to the node of interest for the construction of the corresponding 

interpolation functions to compute the approximate solution. 

4.4.   Singularity of Moment Matrices 

A moment matrix may become singular if its associated cloud does not have a sufficient 

number of local support nodes. There are two reasons why a cloud might become singular. One of 

them is the size of the cloud is not large enough to enclose a sufficient number of field nodes. Another 

reason is the cloud is located near the boundaries where the cloud becomes incomplete. Hence, 

parameters are introduced to control the density of the clouds as well as the distance of clouds away 

from the boundaries. 

For a better illustration, clouds of circle shape are used (as shown in Figure 2(a)). 𝛽𝑅𝑥 and 

𝛽𝑅𝑦 are the distance between the boundaries of two adjacent overlapping clouds in 𝑥-direction and 

𝑦-direction respectively, where 𝛽 is the coefficient of overlapping of clouds and 𝑅𝑥 and 𝑅𝑦 are the 

radius of clouds in 𝑥 and 𝑦 directions. 𝜆𝑥 and 𝜆𝑦 are the distances between a boundary and the 

center node of the cloud which are near the boundary in 𝑥 and 𝑦 direction. 𝜇𝑥 and 𝜇𝑦 represent the 

distances between two adjacent clouds in 𝑥 and 𝑦 direction and are given by 

𝜇𝑥 = 2𝑅𝑥 − 𝛽𝑅𝑥 

𝜇𝑦 = 2𝑅𝑦 − 𝛽𝑅𝑦. 

(4.3) 

Let 𝑁𝐶𝑙𝑑𝑥 and 𝑁𝐶𝑙𝑑𝑦 be the unknown number of clouds defined in both directions. With the 

given 𝜆𝑥, 𝜆𝑦, 𝛽𝑥, 𝛽𝑦, 𝑁𝐶𝑙𝑑𝑥 and 𝑁𝐶𝑙𝑑𝑦 can be computed as follow:  

𝑁𝐶𝑙𝑑𝑥 = 
𝐿𝑥 − 2𝜆𝑥
𝑅𝑥(2 − 𝛽𝑥)

+ 1 

𝑁𝐶𝑙𝑑𝑦 = 
𝐿𝑦 − 2𝜆𝑦

𝑅𝑦(2 − 𝛽𝑦)
+ 1. 

(4.4) 

𝑁𝐶𝑙𝑑𝑥 and 𝑁𝐶𝑙𝑑𝑦 are the smallest integers of the RHS of Equation 4.4. Thus, the total 

number of clouds defined in the domain is  

𝑁𝑐𝑙𝑑 = 𝑁𝐶𝑙𝑑𝑥 ∗ 𝑁𝐶𝑙𝑑𝑦 

(4.5) 



11 Int. J. Anal. Appl. (2023), 21:12 
 

and the clouds are distributed as depicted in Figure 2(b). 

 
                        (a)                                                         (b) 

Figure 2.  (a) Cloud density by parameters     (b) Cloud distribution 

Note that clouds, generally called local domains in other meshfree methods, are independent 

of nodes of interest or solution points. Since each cloud has its own set of interpolation functions, 

thus any node of interest, which is in the vicinity of a cloud, can utilize the corresponding interpolation 

functions to compute its approximate solution. However, in this study, the nearest cloud will be 

chosen for its interpolation for the reason of only the neighbouring field nodes are included for a 

better approximation of solution. Additionally, by having uniformly distributed clouds, the information 

carried by all field nodes is captured and stored in the clouds and these clouds are then be used to 

establish the set of system of equations  

4.5.   Discretization With Point Collocation Approach and Enhancement at the Boundary 

In this study, a two-dimensional model problem is considered. The model consists of the 

governing differential equation that acts on the problem domain Ω surrounded by the boundary Γ𝐷 

and Γ𝑁 which satisfy the Dirichlet boundary condition and the Neumann boundary condition 

respectively (as in Equation 4.6-4.8): 

 ℒ𝑢𝑎(𝑥𝐼 , 𝑦𝐼) = 𝑓(𝑥𝐼 , 𝑦𝐼), 𝐼 = 1, 2, … ,𝑁𝑖𝑛𝑡    in 𝛺 (4.6) 

 𝑢𝑎(𝑥𝐼 , 𝑦𝐼) = 𝑔(𝑥𝐼 , 𝑦𝐼), 𝐼 = 1, 2,… ,𝑁𝐷          on 𝛤𝐷 (4.7) 

 
𝜕𝑢𝑎

𝜕𝑛
(𝑥𝐼 , 𝑦𝐼) = ℎ(𝑥𝐼 , 𝑦𝐼), 𝐼 = 1, 2, … ,𝑁𝑁       on 𝛤𝑁 . (4.8) 

ℒ is the differential operator and 𝑢𝑎 is the approximate solution. 
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In point collocation method, the collocation nodes are comprised of 𝑁𝑖𝑛𝑡 internal field nodes, 

𝑁𝐷 Dirichlet boundary nodes and 𝑁𝑁 Neumann boundary nodes. Note that only the 𝑁𝑖𝑛𝑡 internal field 

nodes are satisfying the governing equation. The 𝑁𝐷 and 𝑁𝑁 boundary nodes are satisfying their 

relevant boundary condition only. Hence, an approach to strengthen the ties between the governing 

equation and the 𝑁𝐷 +𝑁𝑁 boundary nodes is suggested, that is to have additional equations for 

boundary nodes to ensure that the boundary nodes are also satisfying the governing differential 

equation (Equation 4.6). 

ℒ𝑢𝑎(𝑥𝐼 , 𝑦𝐼) = 𝑓(𝑥𝐼 , 𝑦𝐼), 𝐼 = 1, 2, … ,𝑁𝐷 +𝑁𝑁 . (4.9) 

As a result, the modified system of equations established by Equation 4.6-4.9 in matrix form 

may consist of 𝑁𝑖𝑛𝑡 + 2(𝑁𝐷 +𝑁𝑁) rows and 𝑁𝑖𝑛𝑡 columns, which is an over-determined system of 

linear equations as shown below: 

𝑅𝑀×𝑁
′  𝑢𝑁×1

′ = 𝑏𝑀×1
′ , (4.10) 

where M is the total number of rows and N is the total number of columns of the final stiffness 

matrix. 

By applying the least square approach to the system of linear equations as shown in Equation 

4.10, the following is obtained: 

(𝑅′)𝑁×𝑀
𝑇  𝑅𝑀×𝑁

′  𝑢𝑁×1
′ = (𝑅′)𝑁×𝑀

𝑇  𝑏𝑀×1
′  (4.11) 

After solving the final stiffness matrix, the unknown 𝑢′ is determined. At this point, the 

approximate solution 𝑢𝑎 for any node (𝑥, 𝑦) in the problem domain can be computed with Equation 

3.10 by using the moment matrix of the nearest cloud in the problem domain. 

 
4.6.   Node Refinement 

The accuracy of solution for FCM can be improved further with node refinement. The node 

refinement mechanism adopted in this work is by splitting a field node as presented in Figure 4.  



13 Int. J. Anal. Appl. (2023), 21:12 
 

 

Figure 4. The splitting of a field node. (a) Before the split. (b) After the split. 

 

The relative error for each collocation node is computed after the first approximate solution 

is obtained. If the relative error exceeds the given threshold, then the corresponding field nodes are 

marked. Each of the marked field nodes is then split into 4 field nodes. The newly added field nodes 

are used for the numerical analysis of FCM at the node refinement stage. By generating the affected 

moment matrices with the new sets of field nodes and deriving the new final stiffness matrix, the 

new approximate solution is obtained. 

5.   Numerical Examples 

The FCM with proposed improvements is applied to a problem domain Ω =

{(𝑥, 𝑦)|  0 < 𝑥 < 1, 0 < 𝑦 < 1}  with the Poisson equation as the governing differential equation and 

the given boundary conditions (as expressed in Equation 5.1-5.2). 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 4 − 2𝜔𝛼2 𝑒 [– 𝛼

2(𝑦−𝑐)2] + 4𝜔𝛼4(𝑦 − 𝑐)2 𝑒−𝛼
2(𝑦−𝑐)2 (5.1) 

 

{
 
 

 
 𝑢|𝑥=0 = 𝑦

2 +𝜔𝑒 [−𝛼
2(𝑦−𝑐)2]

𝑢|𝑥=1.0 = 1.0 + 𝑦
2 + 𝜔𝑒 [−𝛼

2(𝑦−𝑐)2]

𝑢𝑦|𝑦=0 = 2𝜔𝛼
2𝑐𝑒−𝛼

2𝑐2

𝑢𝑦|𝑦=1.0 = 2.0 − 2𝜔𝛼
2(1.0 − 𝑐)𝑒−𝛼

2(1.0−𝑐)2

. (5.2) 

Then, the cubic spline kernel function is defined as  

𝜙(𝑥𝑘 − 𝑥𝐼 , 𝑦𝑘 − 𝑦𝐼) =  
1

𝑑𝑥
𝜔 (

𝑥𝑘 − 𝑥𝐼
𝑑𝑥

) 
1

𝑑𝑦
𝜔(

𝑦𝑘 − 𝑦𝐼
𝑑𝑦

) , (5.3) 



14 Int. J. Anal. Appl. (2023), 21:12 
 

where   

𝜔(𝓏) =

{
 
 
 
 

 
 
 
 
0, 𝓏 < −2
1

6
(𝓏 + 2)3, −2 ≤ 𝓏 ≤ −1,

2

3
− 𝓏2 (1 +

𝓏

2
) , −1 ≤ 𝓏 ≤ 0,

2

3
− 𝓏2 (1 −

𝓏

2
) , 0 ≤ 𝓏 ≤ 1,

−
1

6
(𝓏 − 2)3, 1 ≤ 𝓏 ≤ 2,

0, 𝓏 > 2

(5.4) 

and 𝑧𝐼 =
𝑥𝑘−𝑥𝐼

𝑑𝑥
 or 

𝑦𝑘−𝑦𝐼

𝑑𝑦
 and 𝑑𝑥 and 𝑑𝑦 is the cloud size in x and y direction respectively. 

The exact solution for the Poisson equation is given by 

𝑢(𝑥, 𝑦) = 𝑥2 + 𝑦2 +  𝜔𝑒 [−𝛼
2(𝑦−𝑐)2] (5.5) 

and the global error ([32]) are computed as 

𝜀 =  
1

|𝑢𝑒|𝑚𝑎𝑥
 √

1

𝑁𝐶
∑ [𝑢𝐼

𝑒 − 𝑢𝐼
𝑎]2𝑁𝐶

𝐼=1 , (5.6) 

where 𝑁𝐶 is the total number of collocation nodes, 𝑢𝑒 is the exact solution and 𝑢𝑎 is the approximate 

solution. 

In this work, we have two models. Model A is of  𝛼 = 10, 𝜔 = 10 and 𝑐 = 0.5 and Model B 

is having 𝛼 = 5, 𝜔 = 2 and 𝑐 = 0.5 . The cloud size is 2.4 ∆𝑥 and 2.4 ∆𝑦. The two models use four 

sets of field nodes for their analysis, i.e. 𝑁𝑃 = 144, 196, 256 and 324. In addition, the clouds are 

defined with various 𝜆 and 𝛽 and the results obtained are observed.  

The distance of a cloud center adjacent to a boundary from the boundary in 𝑥 and 𝑦 

directions, 𝜆𝑥 and 𝜆𝑦, are used to observe the singularity of moment matrices and the results are 

presented in Table 1. 

Table 1. The relationship between 𝜆𝑥 or 𝜆𝑦 and the number of singular matrices observed with 

𝛽𝑥 = 𝛽𝑦 = 1.5 and the cloud size = 2.4 Δ𝑥. 

Distance, λ 

(in ∆𝑥 𝑜𝑟 Δ𝑦) 
0.025 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

No. of 

Singular 

moment 

matrix/total 

clouds 

31/ 

256 

31/ 

256 

31/ 

256 

21/ 

256 

24/ 

256 

19/ 

256 

25/ 

256 

15/ 

225 

15/ 

225 

8/ 

225 

5/ 

225 

6/ 

225 

4/ 

225 

1/ 

196 

0/ 

196 
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And the relationship of clouds versus the singularity of their moment matrices are depicted 

in Figure 5(a) and (b) as shown below: 

 
(a)                                                              (b) 

Figure 5. Clouds versus the Singularity of moment matrices. (a) 𝜆𝑥 = 0.1Δ𝑥 and 𝜆𝑦 = 0.1Δ𝑦.  

(b) 𝜆𝑥 = 1.0Δ𝑥 and 𝜆𝑦 = 1.0Δ𝑦. 

 
From Figure 5, it is clearly shown that the larger the distance the cloud center, which is 

adjacent to the boundary, away from the boundary, its associated moment matrix is less likely to be 

singular.  

From Table 1, we can conclude that when the value of 𝜆 increases, the number of singular 

matrices will be reduced due to the fact that the cloud adjacent to the boundary could include more 

field nodes causing its associated moment matrix becomes less likely to be singular. However, if a 

cloud center which is adjacent to a boundary is too far away from a boundary could cause the 

information of field nodes which are near the boundaries are not captured into the system of 

equations and hence lead to less accurate solution. Therefore, it is important to choose a suitable 𝜆 

for our numerical model. In this work, we have 𝜆𝑥 = 0.1Δ𝑥 and 𝜆𝑦 = 0.1Δ𝑦.   

For cloud distribution, we adopted several 𝛽 values and make comparison of the computed 

solutions. The cloud distribution of 𝛽 = 1.19, 1.51 and 1.80 and the number of clouds defined are 

100, 256 and 1444 (as shown in Figure 6). 

Numerical results are computed for several 𝛽s and global errors, 𝜖, are obtained using 

Equation 5.6. Graphs are plotted to describe the relationships between the global errors and the 

cloud density, 𝛽 (as shown in Figure 7(a) for Model A and Figure 7(b) and 7(c) are for Model B).   
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(a)                                                                             (b) 

 
(c) 

Figure 6. Cloud distribution.  (a) 𝛽 = 1.19   (b) 𝛽 = 1.51  (c) 𝛽 = 1.80 

   

 
(a)    

   

(b)                              (c) 

Figure 7. The global error for FCM with various β.  (a) Model A (b) & (c) Model B  



17 Int. J. Anal. Appl. (2023), 21:12 
 

Figure 7(c) is the enlarged version of Figure 7(b) for model B. From the numerical results, 

it is obvious that the computed solutions are more stable and converge slowly when 𝛽 increases with 

more clouds being defined in the domain. For Model A which exhibits high gradient solution, the 

global error tends to become stable as the number of field nodes increases and the density of cloud 

may not play a significant role in the performance of the model. In this case, we may consider 

increasing the number of field nodes. Then, we may have larger size of clouds than 2.4∆𝑥 or 2.4∆𝑦 

or denser clouds to capture more details from the high gradient region. On the contrary, Modal B 

has a smoother gradient of solution and the numerical results have shown less oscillation and 

converged slowly when 𝛽 approaches 1.9.  The numerical results prove that the more clouds are 

defined, the better the accuracy of solutions. This is because a collocation node could find the nearest 

cloud which contains the information of its nearest field nodes while retaining the reusability of 

moment matrices.  Note that a cloud can be used more than once for approximating solutions. This 

feature provides the flexibility of allocating available resources while obtaining the desired accuracy 

of solution. In addition, the results also have shown that the shorter the distance between the cloud 

center and the node of interest or collocation node, the better the accuracy of solution as the longest 

distance between a node of interest and its associated nearest cloud center for a 𝛽  cloud distribution, 

will decrease as 𝛽 increases. 

Additionally, the numerical model is modified to adopt the enhancement at the boundaries. 

For Model B with 𝛽 = 1.8, the numerical results obtained are analyzed and presented in Figure 8. 

Figure 8 has shown that the numerical model with enhancement at the boundaries produces a 

smoother approximate solution compared with the solution computed without enhancement at the 

boundary. The numerical results have proven that the enhancement at the boundaries can lead to a 

less oscillated solution.  
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Figure 8. The global errors for FCM with and without the enhancement at the boundary 

(NP=144, 196, 256, 324 and 400) 

 

Besides the enhancement at the boundaries, the approximate solution can be improved 

further with node refinement process. By employing the node refinement mechanism suggested in 

Section 4.6, after going through the splitting process at the threshold = 
|𝑢𝑎−𝑢𝑒|

𝑢𝑒
, where 𝑢𝑎 is the 

approximate solution and 𝑢𝑒 is the exact solution, the initial set of field nodes and the new set of 

field nodes during the node refinement stage are depicted in Figure 9(a) and 9(b) respectively.  

    
(a)           (b)  

Figure 9. (a)  Field nodes at initial stage (𝑁𝑃 = 256).    (b) Field nodes at node refinement stage 

(𝑁𝑃 = 604) 

 
The numerical model with enhancement to the boundaries proceeds to node refinement stage 

and the results obtained are analyzed and presented in Table 2.  
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Table 2. The global errors for the boundary enhancement Model B (with 𝛼 = 8.0, 𝜔 = 2.0) before 

and after the node refinement process. 

Global Error after the enhancement at the 
boundaries but before the node refinement 

Global Error after the enhancement at the 
boundaries and node refinement 

𝑁𝑃 = 144 ,  𝜀 = 0.3731  𝑁𝑃 = 321 ,  𝜀 = 0.3570 

𝑁𝑃 = 196 ,  𝜀 = 0.3197 𝑁𝑃 = 370 ,  𝜀 = 0.3429 

𝑁𝑃 = 256 ,  𝜀 = 0.3494 𝑁𝑃 = 604 ,  𝜀 = 0.2320 

𝑁𝑃 = 324 ,  𝜀 = 0.2971 𝑁𝑃 = 609 ,  𝜀 = 0.2946 

𝑁𝑃 = 400 ,  𝜀 = 0.2819 𝑁𝑃 = 763 ,  𝜀 = 0.2499 

 

The numerical results have shown improvement in the accuracy of the approximate solution 

obtained after the node refinement stage (except for 𝑁𝑃 = 196). Hence, the improvements for FCM 

suggested in this research are effective in producing a better accuracy of solution. 

 
6.   Conclusion 

In this paper, we have introduced a way of defining uniformly distributed cloud using 

parameters 𝜆 and 𝛽. Each collocation node is assigned to its nearest cloud for the computation of 

its approximate solution. We have studied the role of 𝜆 and 𝛽 in detail by using a numerical example. 

The numerical results reveal the relationships of 𝜆 and 𝛽 and the accuracy of solution. In addition, 

the suggested enhancement at the boundaries and the node refinement mechanism are also proven 

can produce a more stable and accurate of approximate solution. 
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