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Abstract. In this paper, we consider homogeneous and non-homogeneous system of first order linear

fuzzy boundary value problems (SFOLBVPs) under granular differentiability. Using the concept of

horizontal membership function, we introduced the notion of first order granular differentiability for

n-dimensional fuzzy functions. We present granular integral and its properties. Theorems on the

existence and uniqueness of solutions for homogeneous and non-homogeneous SFOLFBVPs are proved.

We develop an algorithm for solution of non-homogeneous SFOLBVPs under granular differentiability.

We provide some examples to illustrate the validity of the proposed algorithm.

1. Introduction

Mathematical models to deal with uncertainty are frequently used in fuzzy differential equations.

The rich work on fuzzy differential equations (FDE) is applied to population, bioinformatics, growth and

decay, economics, quantum optics, and friction models. First-order linear fuzzy systems (FOLFS) are

modeled by behaviors of many dynamical systems (DS) with uncertainty. Buckley et al. [4] presented

two types of solutions using the extension principle and standard interval arithmetic (SIA) to the

first-order system of equations with fuzzy initial conditions. Gasilov et al. [6] proposed a geometric

approach to solve the fuzzy system of differential equations (FSDEs) with crisp real coefficients and

fuzzy initial conditions. Fard et al. [5] introduced an iterative technique to solve FSDEs with fuzzy

constant coefficients using the H-differentiability concept. Hashemi et al. [7] developed the series

solution to SFDEs under H-differentiability. Mondal et al [10] analyzed adaptive schemes to study

Received: Dec. 15, 2022.

2020 Mathematics Subject Classification. 34A07, 34B05.
Key words and phrases. n-dimensional Horizontal membership function; n-dimensional granular metric; n-dimensional

granular derivative; system of first order linear fuzzy boundary value problems.

https://doi.org/10.28924/2291-8639-21-2023-4
ISSN: 2291-8639

© 2023 the author(s).

https://doi.org/10.28924/2291-8639-21-2023-4


2 Int. J. Anal. Appl. (2023), 21:4

the FSDEs in two types, fuzzy and in the crip sense. Bara et al. [1] analyzed numerical solutions for

FSDEs using the variational iteration technique. Keshavarz et al [8] proposed to get an analytical

solution for FSDEs under gH-differentiability. Boukezzoula et al. [3] proposed a new technique to

solve the FSDEs with variables as fuzzy intervals. Suhhiem and Khwayyit [16] proposed to get a

semi-analytical solution for autonomous FDEs using the Adomian decomposition method. But, these

derivatives possess some drawbacks such as derivatives may not always exist, doubling property, a

multiplicity of solutions, unnatural behavior in modeling (UBM) phenomenon, and monotonicity of the

uncertainty.

Piegat et al. [14] presented a horizontal membership function (HMF) for fuzzy function (FF)

and solved distinct granular problems. Recently Piegat et al. [15], provide a detailed comparison

of HMFs and inverse HMFs, highlighting the key distinctions between the two kinds of functions.

Mazandarani et al. [9] established granular differentiability (gr-differentiability), a novel idea of FF

differentiability based on RDM-IA and horizontal membership functions (HMF). Najariyan et al. [12]

investigated the solution of singular FDEs with the concept of gr-differentiability. Under the concept

of gr-differentiability, Najariyan et al. [11] effectively tune the fuzzy granular PID controller using

a particle swarm optimization algorithm. These findings were made by studying FDEs under the

gr-differentiability to overcome all the shortcomings as discussed.

In this present work, we consider SFOLBVPs under gr-differentiability. Section 2, presents basic def-

initions and results related to HMFs, gr-metric, gr-differentiability, and gr-integration of n-dimensional

FF. The existence and uniqueness of theorems for SFOLFIVPs under gr-differentiability are established

in Section 3. Section 4 presents a working method to solve SFOFBVPs under gr-differentiability and

highlighted proposed results with suitable examples. Concluding remarks and future works are dis-

cussed in Section 5.

2. Preliminaries

This section presents some useful definitions, notations, and results that are useful to establish the

main results.

Definition 2.1. A non-empty fuzzy subset p of R, with membership function, p : R → [0, 1], is said
to be a fuzzy number, if it is semi continuous, fuzzy convex, normal and compactly supported on

R. Here p(y) is the membership degree of y , for every y ∈ R. Let RF denotes the space of fuzzy

numbers(FNs) in R. The β-level sets of p are defined by [p]β = {y ∈ R : p(y) ≥ β} = [pβl , p
β
r ], for

0 < β ≤ 1 and [p]0 = cl{y ∈ R : p(y) > 0}.

For notations, definitions and basic results related to HMF, gr-derivative and gr-integrations of

fuzzy numbers refer to [9].
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Definition 2.2. Let RnF = RF × RF × RF × · · · × RF︸ ︷︷ ︸
n times

, be the space of n-tuple fuzzy numbers. Then

the addition and scalar multiplication defined component wise as follows:

If u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn) ∈ RnF , then

(i) u + v = (u1 + v1, u2 + v2, · · · , un + vn),
(ii) ku = (ku1, ku2, · · · , kun),

where ui , vi ∈ RF , i = 1, 2, · · · n and k ∈ R.

Definition 2.3. If g : [b, c ] → RnF , is a FF, then it is called an n-dimensional vector of FN valued

function on [b, c ].

Definition 2.4. If g : [b, c ] → RnF is a n-dimensional FF, include mn ∈ N, distinct FNs such

that ui = (ui1, ui2, . . . , uin), i = 1, 2, · · ·m, then the HMF of g is indicated by H(g(x)) ≡
ggr (x, β, αg), and interpreted as ggr : [b, c ] × [0, 1] × [0, 1]× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸

mn times

→ Rn, in which

αg ≡ (αi1, αi2, . . . , αin), i = 1, 2, · · ·m, where αi1, αi2, . . . , αin, are the RDM variables related to

ui1, ui2, . . ., uin.

Definition 2.5. Let p and q be two n-dimensional FNs. Then H(p) = H(q), for all αp = αq ∈ [0, 1]
if and only if p and q are said to be equal.

Definition 2.6. Let p, q ∈ RnF . The function Dngr : RnF × RnF → R+ ∪ {0}, defined by

Dngr (p, q) = sup
β
max
αp,αq

‖pgr (β,αp)− qgr (β,αq)‖,

which is called a n-dimensional granular distance between two n-dimentional FNs p and q, where ‖.‖
represents Euclidean norm in Rn.

Definition 2.7. If g,h : [b, c ]→ RnF are n-dimensional FFs, then the granular distance is

Dgr (g(y),h(y)) = sup
β
max
αg ,αh

‖ggr (y , β, αg)− hgr (y , β, αh)‖,

where y ∈ [b, c ] ⊂ R and β,αg, αh ∈ [0, 1].

Now, we define first order gr-differentiability for n-dimensional FF.

Definition 2.8. Let g : [b, c ]→ RnF , be the n-dimensional FF. If there exists dgrg(y0)
dy ∈ RnF , such that

lim
h→0

g(y0 + h)− g(y0)
h

=
dgrg(y0)

dy
= g′gr (y0),

this limit is taken in the metric space (RnF ,Dngr ). Then g is said to be first order gr- differentiable at

a point y0 ∈ [b, c ].
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Theorem 2.1. Let g : [b, c ]→ RF be a n-dimensional FF, then g is gr-differentiable if and only if its

HMF is differentiable with respect to y ∈ [b, c ]. Moreover,

H

(
dgrg(y)

dy

)
=
∂ggr (y , β, αf )

∂y
.

Proof. Suppose g is gr-differentiable and y ∈ (b, c). Based on the Definition 2.8, for all ε1 > 0, there

exits δ1 > 0 such that |h| < δ1 =⇒ Dngr (g(y+h)−g(y)h ,
dgrg(y)
dy ) < ε1

=⇒ sup
β
max
αg
‖
ggr (y + h, β, αg)− ggr (y , β, αg)

h
−
dgrggr (y , β, αg)

dy
‖ < ε1

=⇒ ‖
ggr (y + h, β, αg)− ggr (y , β, αg)

h
−
dgrggr (y , β, αg)

dy
‖ < ε1

=⇒ lim
h→0

ggr (y + h, β, αg)− ggr (y , β, αg)
h

=
dgrggr (y , β, αg)

dy

=⇒
∂ggr (y , β, αg)

∂y
= H

(
dgrg(y)

dy

)
.

�

Definition 2.9. Suppose that g : [b, c ] → RnF , is continuous and the HMF H(g(y)) = ggr (y , β, αg)

is integrable on [b, c ]. If there exists a m such that H(m) =
∫ c
b H(g(y))dy , then m is called the

gr-integral of g on [b, c ] and m =
∫ c
b g(y)dy .

Proposition 2.1. Assume that F : [b, c ] → RnF is gr-differentiable and g(y) = dgrF (y)
dy is continuous

on [b, c ]. Then,
∫ c
b g(y)dy = F (c)− F (b).

Theorem 2.2. Assume that g,h : [b, c ] → RnF are gr-integrable n-dimensional FFs and l , m ∈ R.
Then the following properties hold:

(i)
∫ c
b [lg(y) +mh(y)]dy = l

∫ c
b g(y)dy +m

∫ c
b h(y)dy ;

(ii) Dngr (g,h) is integrable;
(iii) Dngr

(∫ c
b g(y)dy ,

∫ c
b h(y)dy

)
≤
∫ c
b D

n
gr (g(y),h(y))dy ;

(iv)
∫ c
b g(y)dy =

∫ a
b g(y)dy +

∫ c
a g(y)dy , for each a ∈ (b, c).

Proof. (i) Consider

H

(∫ c

b

[lg(y) +mh(y)] dy

)
=

∫ c

b

H (lg(y) +mh(y)) dy

= H(l)

∫ c

b

H (g(y)) dy +H(m)

∫ c

b

H (h(y)) dy

= H(l)H

(∫ c

b

g(y)dy

)
+H(m)H

(∫ c

b

h(y)dy

)
= H

(
l

∫ c

b

g(y)dy

)
+H

(
m

∫ c

b

h(y)dy

)
= H

(
l

∫ c

b

g(y)dy +m

∫ c

b

h(y)dy

)
.
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By the Definition 2.5 ∫ c

b

[lg(y) +mh(y)] dy = l

∫ c

b

g(y)dy +m

∫ c

b

h(y)dy .

(ii) Consider

Dngr ([g(y)]β, [h(y)]β) = maxαg ,αh
‖ggr (y , β, αg)− hgr (y , β, αh)‖, β ∈ [0, 1].

Since f,g are integrable n-dimensional FFs on [b, c ], so that ggr (y , β, αg), hgr (y , β, αh) are also inte-

grable on [b, c ] or all β,αg, αh ∈ [0, 1]. Let β ∈ [0, 1] be fixed. Then, Dngr ([g(y)]β, [h(y)]β) is measur-

able on [b, c ]. By the definition of gr-distance, we have Dngr (f (y), g(y)) = sup
β
Dngr ([g(y)]β, [h(y)]β),

β ∈ [0, 1]. Further more, we have

Dngr (g(y), h(y)) ≤ Dngr (g(y), 0) +Dngr (0, h(y))

≤ g1(y) + h1(y),

where g1, h1 are integrable bounded functions for g, h respectively.

Thus Dngr (g(y), h(y)) is integrable.
(iii) Consider,

Dngr
(∫ c

b

g(y)dy ,

∫ c

b

h(y)dy

)
= sup

β
max
αg ,αh

‖
∫ c

b

ggr (y , β, αg)dy −
∫ c

b

hgr (y , β, αh)dy‖,

for all β,αg, αh ∈ [0, 1]. Since the fact that

‖
∫ c

b

ggr (y , β, αg)dy −
∫ c

b

hgr (y , β, αh)dy‖

= ‖
∫ c

b

[ggr (y , β, αg)− hgr (y , β, αh)] dy‖

≤
∫ c

b

‖ [ggr (y , β, αg)− hgr (y , β, αh)] ‖dy .

It follows that

max
αg ,αh

‖
∫ c

b

[ggr (y , β, αg)− hgr (y , β, αh)] dy‖ ≤ max
αg ,αh

∫ c

b

‖ [ggr (y , β, αg)− hgr (y , β, αh)] ‖dy .

Thus

sup
β
max
αg ,αh

‖
∫ c

b

[ggr (y , β, αg)− hgr (y , β, αh)] dy‖ ≤ sup
β
max
αg ,αh

∫ c

b

‖ [ggr (y , β, αg)− hgr (y , β, αh)] ‖dy ,

we get inequality (iii).

The proof of (iv) is deduced directly by the Definition 2.6 �

Definition 2.10. [13] Let A be a square matrix of order n with real numbers. The exponential of A

is represented by the notation exp(Ay) and defined as exp(Ay) = I + Ay + A2y2

2! +
A3y3

3! + · · · , for all
y ∈ R and the following results hold:
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(i) exp(Ay)|y=0 = I.
(ii) dgr

dy (exp(Ay)) = A(exp(Ay)) = (exp(Ay))A.

(iii) (exp(Ay))−1 = (exp(−Ay)).

3. Main Results

3.1. The fundamental theorem for SFOLFBVPs.

Theorem 3.1. Let A be a square matrix of order n with real numbers. Then for a given Z(x0), Z(x1) ∈
RnF , the FBVP Z

′
gr (x) = AZ(x), with MZ(x0)+NZ(x1) = 0, has a unique trivial solution if [MeAx0+

NeAx1 ] is non-singular.

Proof. Consider the FBVP

Z′gr (x) = AZ(x), (3.1)

with, MZ(x0) + NZ(x1) = 0. (3.2)

e−AxZ′gr (x)− e−AxAZ(x) = 0

=⇒
dgr
dx
(e−AxZ(x)) = 0

=⇒ e−AxZ(x) = K, K ∈ RnF

=⇒ Z(x) = eAxK.

Now

MZ(x0) + NZ(x1) = 0

=⇒ MeAx0K + NeAx1K = 0

=⇒ [MeAx0 + NeAx1 ]K = 0.

Thus (3.1) and (3.2), has a unique trivial solution if [MeAx0k + NeAx1 ] is non-singular. �

3.2. Non-homogeneous SFOLFBVPs. Consider the following SFOLFBVP

Z′gr (x) = AZ(x) + F (x), (3.3)

with, MZ(x0) + NZ(x1) = R. (3.4)

Theorem 3.2. The non-homogeneous SFOLFBVPs (3.3) and (3.4), has a unique solution if the

corresponding homogeneous system (3.1) and (3.2) has only the trivial solution. If this condition

holds then the solution of system (3.3) and (3.4) given by Z(x) = Z0(x) +
x1∫
x0

G(x, s)F (s)ds, where

Z0(x) is a solution of the homogeneous system (3.1) and (3.4) and G is the Green’s matrix of non

homogeneous system (3.3) and (3.4).
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Proof. Let eAx be the fundamental matrix of the system (3.1) and (3.2). Then the general solution

of non homogeneous system (3.3) is,

Z(x) = eAxK + eAx
x∫

x0

e−AsF (s)ds. (3.5)

Using boundary condition (3.4), we have

MeAx0K + N[eAx1K + eAx1

x1∫
x0

e−AsF (s)ds] = R

=⇒ [MeAx0 + NeAx1 ]K = R − NeAx1
x1∫
x0

e−AsF (s)ds

=⇒ K = D−1R −D−1NeAx1
x1∫
x0

e−AsF (s)ds, where D = [MeAx0 + NeAx1 ].

Z(x) = eAx [D−1R −D−1NeAx1
x1∫
x0

e−AsF (s)ds] + eAx
x∫

x0

e−AsF (s)ds

= eAxD−1R +

x1∫
x0

G(x, s)F (s)ds,

where

G(x, s) =

eAxD−1MeAx0e−As if x0 ≤ s ≤ x ≤ x1

−eAxD−1NeAx1e−As if x0 ≤ x ≤ s ≤ x1,

which is the Greens matrix of SFOLFBVP (3.1) and (3.2). �

4. An Algorithm for solving system of first-order linear fuzzy boundary value problems under

gr-differentiability

Consider a SFOLFBVP,

Z′gr (x) = AZ(x) + F (x), w ithMZ(x0) + NZ(x1) = R. (4.1)

The matrix form of (4.1) is, [
y ′gr (x)

z ′gr (x)

]
=

[
a b

c d

][
y(x)

z(x)

]
+

[
f(x)

g(x)

]
, (4.2)

subject to,

[
e 0

0 f

][
y(x0)

z(x0)

]
+

[
g 0

0 h

][
y(x1)

z(x1)

]
=

[
r1

r2

]
. (4.3)



8 Int. J. Anal. Appl. (2023), 21:4

The following algorithm describes the procedure to compute β-cut solution of SFOLFBVP (4.1) if it

exists.

Step 1 : Applying HMF on both sides of (4.2) and (4.3), we get[
∂ygr (x,β,αy )

∂x
∂zgr (x,β,αz )

∂x

]
=

[
a b

c d

][
ygr (x, β, αy )

zgr (x, β, αz)

]
+

[
fgr (x, β, αf )

ggr (x, β, αg)

]
, (4.4)

[
e 0

0 f

][
ygr (x0, β, αy0)

zgr (x0, β, αz0)

]
+

[
g 0

0 h

][
ygr (x1, β, αy1)

zgr (x1, β, αz1)

]

=

[
r1(β,αr1)

r2(β,αr2)

]
, (4.5)

where β,αy , αz ,αf , αg, αr1 , αr2 ,αy0 , αz0 , αy1 , αz1 ∈ [0, 1]. Here, (4.4) is a system of partial

differential equations with single independent variable x . Therefore, (4.4) and (4.5) taken as

a ordinary second order system of differential equations.

Step 2 : Solving (4.4) and (4.5), we get

H(y(x)) = ygr (x, β, αy ), and (4.6)

H(z(x)) = zgr (x, β, αz). (4.7)

Step 3 : Applying inverse HMF on both sides of (4.6) and (4.7), we get

[y(x)]β = [ inf
β≤α≤1

min
αy
ygr (x, α, αy ), sup

β≤α≤1
max
αy

zgr (x, α, αy )], (4.8)

[z(x)]β = [ inf
β≤α≤1

min
αz
zgr (x, α, αz), sup

β≤α≤1
max
αz

zgr (x, α, αz)], (4.9)

which is the required β-cut solution of SFOLFBVP (4.1).

Example 4.1. Consider a homogeneous SFOLFBVP with fuzzy boundary conditions,

y ′gr (x) = 3y(x) + 2z(x),

z ′gr (x) = y(x) + 4z(x),

with fuzzy boundary values, y(0) + 2y(1) = r1, z(0) + 3z(1) = r2.

Suppose that the β-level sets of fuzzy boundary values are [r1]β = [1+β, 3−β], [r2]β = [2+β, 4−β].
Then the matrix equation is, [

y ′gr (x)

z ′gr (x)

]
=

[
3 2

1 4

][
y(x)

z(x)

]
, (4.10)

subject to,

[
1 0

0 1

][
y(x0)

z(x0)

]
+

[
2 0

0 3

][
y(x1)

z(x1)

]
=

[
r1

r2

]
. (4.11)
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Taking HMF on both sides of (4.10) and (4.11), we have[
∂ygr (x,β,αy )

∂x
∂zgr (x,β,αz )

∂x

]
=

[
3 2

1 4

][
ygr (x, β, αy )

zgr (x, β, αz)

]
, (4.12)

subject to,

[
1 0

0 1

][
ygr (x0)

zgr (x0)

]
+

[
2 0

0 3

][
ygr (x1)

zgr (x1)

]
=

[
r1(β,α1)

r2(β,α2)

]
, (4.13)

where the granule of boundary values are r1gr (β,α1) = [1 + β + 2(1− β)α1], r2gr (β,α2) = [2 + β +
2(1− β)α2], where β, α1, α2 ∈ [0, 1].
The solution for system of equations (4.12) and (4.13) is

ygr (x, β, α1, α2) and zgr (x, β, α1, α2). (4.14)

Applying inverse HMF on (4.14), we get

[y(x)]β = [ inf
β≤α≤1

min
α1,α2

ygr (x, α, α1, α2), sup
β≤α≤1

max
α1,α2

ygr (x, α, α1, α2)],

[z(x)]β = [ inf
β≤α≤1

min
α1,α2

zgr (x, α, α1, α2), sup
β≤α≤1

max
α1,α2

zgr (x, α, α1, α2)].

The β-cut solution is computed using MATLAB and is depicted in Fig. 1.

(a) The black curve represents y(x) at β =

1.

(b) The black curve represents z(x) at β =

1.

Figure 1. The span of the information granule (β-level sets) of y(x) and z(x).

Example 4.2. Consider a non-homogeneous SFOLFBVP with fuzzy force functions,

y ′gr (x) = 3y(x) + 2z(x) + f (x),

z ′gr (x) = y(x) + 4z(x) + g(x),

with boundary values, y(0)− 2y(1) = r1 = 2, z(0)− 3z(1) = r2 = 3.
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Suppose that the β-level sets of fuzzy boundary values are [f ]β = [1+β, 3−β], [g]β = [2+β, 4−β].
Then the matrix equation is, [

y ′gr (x)

z ′gr (x)

]
=

[
3 2

1 4

][
y(x)

z(x)

]
+

[
f (x)

g(x)

]
, (4.15)

subject to,

[
1 0

0 1

][
y(x0)

z(x0)

]
−

[
2 0

0 3

][
y(x1)

z(x1)

]
=

[
r1

r2

]
. (4.16)

Taking HMF on both sides of (4.15) and (4.16), we have[
∂ygr (x,β,αy )

∂x
∂zgr (x,β,αz )

∂x

]
=

[
3 2

1 4

][
ygr (x, β, αy )

zgr (x, β, αz)

]
+

[
fgr (x, β, αf )

ggr (x, β, αg)

]
(4.17)

subject to

[
1 0

0 1

][
ygr (x0)

zgr (x0)

]
−

[
2 0

0 3

][
ygr (x1)

zgr (x1)

]
=

[
2

3

]
, (4.18)

where the granule of fuzzy force functions are fgr (β,α1) = [1 + β + 2(1 − β)α1], ggr (β,α2) =
[2 + β + 2(1− β)α2], where β, α1, α2 ∈ [0, 1].
The solution for system of equations (4.17) and (4.18) is

ygr (x, β, α1, α2) and zgr (x, β, α1, α2). (4.19)

Applying inverse HMF on (4.19), we get

[y(x)]β = [ inf
β≤α≤1

min
α1,α2

ygr (x, α, α1, α2), sup
β≤α≤1

max
α1,α2

ygr (x, α, α1, α2)],

[z(x)]β = [ inf
β≤α≤1

min
α1,α2

zgr (x, α, α1, α2), sup
β≤α≤1

max
α1,α2

zgr (x, α, α1, α2)].

The β-cut solution is computed using MATLAB and is depicted in Fig. 2.

(a) The black curve represents y(x) at β =

1.

(b) The black curve represents z(x) at β =

1.

Figure 2. The span of the information granule (β-level sets) of y(x) and z(x).
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Example 4.3. Consider a non-homogeneous SFOLFBVP with fuzzy boundary conditions and fuzzy

force functions are,

y ′gr (x) = 3y(x) + 2z(x) + f (x),

z ′gr (x) = y(x) + 4z(x) + g(x),

with fuzzy boundary values, y(0) + 2y(1) = r1, z(0) + 3z(1) = r2.

Suppose that the β-level sets of fuzzy force functions are [f ]β = [1 + β, 3− β], [g]β = [2 + β, 4− β],
[r1]

β = [β, 2− β], [r2]β = [1 + β, 3− β]. Then the matrix equation is,[
y ′gr (x)

z ′gr (x)

]
=

[
3 2

1 4

][
y(x)

z(x)

]
+

[
f (x)

g(x)

]
, (4.20)

subject to,

[
1 0

0 1

][
y(x0)

z(x0)

]
+

[
2 0

0 3

][
y(x1)

z(x1)

]
=

[
r1

r2

]
. (4.21)

Taking HMF on both sides of (4.20) and (4.21), we have[
∂ygr (x,β,αy )

∂x
∂zgr (x,β,αz )

∂x

]
=

[
3 2

1 4

][
ygr (x, β, αy )

zgr (x, β, αz)

]
+

[
fgr (x, β, α1)

ggr (x, β, α2)

]
, (4.22)

subject to,

[
1 0

0 1

][
ygr (x0)

zgr (x0)

]
+

[
2 0

0 3

][
ygr (x1)

zgr (x1)

]
=

[
r1(β,α3)

r2(β,α1)

]
, (4.23)

where the granule of fuzzy boundary values and force functions are fgr (β,α1) = [1+β+2(1−β)α1],
ggr (β,α2) = [2+β+2(1−β)α2] r1gr (β,α3) = [β+2(1−β)α3], r2gr (β,α1) = [1+β+2(1−β)α1],
where β, α1, α2, α3 ∈ [0, 1].
The solution for system of equations (4.17) and (4.18) is

ygr (x, β, α1, α2, α3) and zgr (x, β, α1, α2, α3). (4.24)

Applying inverse HMF on (4.24), we get

[y(x)]β = [ inf
β≤α≤1

min
α1,α2,α3

ygr (x, α, α1, α2, α3), sup
β≤α≤1

max
α1,α2,α3

ygr (x, α, α1, α2, α3)],

[z(x)]β = [ inf
β≤α≤1

min
α1,α2,α3

zgr (x, α, α1, α2, α3), sup
β≤α≤1

max
α1,α2,α3

zgr (x, α, α1, α2, α3)].

The β-cut solution is computed using MATLAB and is depicted in Fig. 3.
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(a) The black curve represents y(x) at β =

1.

(b) The black curve represents z(x) at β =

1.

Figure 3. The span of the information granule (β-level sets) of y(x) and z(x).

5. Conclusions

The results proposed in this paper are useful for examining and determining solutions for SFOLFB-

VPs. The granular differentiability and integrability are extended to an n-dimensional fuzzy function.

The SFOLFBVPs with fuzzy boundary conditions are researched under granular differentiability. We

have established the existence and uniqueness of solutions for homogeneous and non-homogeneous

SFOLFBVPs. The proposed algorithm is useful to determine the solution of the first-order FSDEs

with fuzzy boundary conditions. We provide various examples to demonstrate the effectiveness and

applicability of our method. In the future, this work will be extended for higher-order FSDEs with

fuzzy boundary conditions and investigating applications in real-life.
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cation of this paper.

References

[1] Y. Barazandeh, B. Ghazanfari, Approximate Solution for Systems of Fuzzy Differential Equations by Variational

Iteration Method, Punjab Univ. J. Math. 51 (2019), 13-33.

[2] B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, Berlin, Heidelberg, 2013. https://doi.org/10.

1007/978-3-642-35221-8.

[3] R. Boukezzoula, L. Jaulin, D. Coquin, A New Methodology for Solving Fuzzy Systems of Equations: Thick Fuzzy

Sets Based Approach, Fuzzy Sets Syst. 435 (2022), 107–128. https://doi.org/10.1016/j.fss.2021.06.003.

[4] J.J. Buckley, T. Feuring, Y. Hayashi, Linear Systems of First Order Ordinary Differential Equations: Fuzzy Initial

Conditions, Soft Comput. 6 (2002), 415–421. https://doi.org/10.1007/s005000100155.

[5] O.S. Fard, N. Ghal-Eh, Numerical Solutions for Linear System of First-Order Fuzzy Differential Equations With

Fuzzy Constant Coefficients, Inform. Sci. 181 (2011), 4765–4779. https://doi.org/10.1016/j.ins.2011.06.

007.

[6] N. Gasilov, S.E. Amrahov, A.G. Fatullayev, A Geometric Approach to Solve Fuzzy Linear Systems of Differential

Equations, Appl. Math. Inform. Sci. 5 (2011), 484-499. https://doi.org/10.48550/arXiv.0910.4307.

https://doi.org/10.1007/978-3-642-35221-8
https://doi.org/10.1007/978-3-642-35221-8
https://doi.org/10.1016/j.fss.2021.06.003
https://doi.org/10.1007/s005000100155
https://doi.org/10.1016/j.ins.2011.06.007
https://doi.org/10.1016/j.ins.2011.06.007
https://doi.org/10.48550/arXiv.0910.4307


Int. J. Anal. Appl. (2023), 21:4 13

[7] M.S. Hashemi, J. Malekinagad, H.R. Marasi, Series Solution of the System of Fuzzy Differential Equations, Adv.

Fuzzy Syst. 2012 (2012), 407647. https://doi.org/10.1155/2012/407647.

[8] M. Keshavarz, T. Allahviranloo, S. Abbasbandy, M.H. Modarressi, A Study of Fuzzy Methods for Solving Sys-

tem of Fuzzy Differential Equations, New Math. Nat. Comput. 17 (2021), 1–27. https://doi.org/10.1142/

s1793005721500010.

[9] M. Mazandarani, N. Pariz, A.V. Kamyad, Granular Differentiability of Fuzzy-Number-Valued Functions, IEEE Trans.

Fuzzy Syst. 26 (2018), 310–323. https://doi.org/10.1109/tfuzz.2017.2659731.

[10] S. Prasad Mondal, N. Alam Khan, O. Abdul Razzaq, T. Kumar Roy, Adaptive Strategies for System of Fuzzy

Differential Equation: Application of Arms Race Model, J. Math. Computer Sci. 18 (2018), 192–205. https:

//doi.org/10.22436/jmcs.018.02.07.

[11] M. Najariyan, Y. Zhao, Granular Fuzzy PID Controller, Expert Syst. Appl. 167 (2021), 114182. https://doi.org/

10.1016/j.eswa.2020.114182.

[12] M. Najariyan, N. Pariz, H. Vu, Fuzzy Linear Singular Differential Equations Under Granular Differentiability Concept,

Fuzzy Sets Syst. 429 (2022), 169–187. https://doi.org/10.1016/j.fss.2021.01.003.

[13] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2013.

[14] A. Piegat, M. Landowski, Solving Different Practical Granular Problems Under the Same System of Equations,

Granul. Comput. 3 (2017), 39–48. https://doi.org/10.1007/s41066-017-0054-5.

[15] A. Piegat, M. Pluciński, The Differences Between the Horizontal Membership Function Used in Multidimensional

Fuzzy Arithmetic and the Inverse Membership Function Used in Gradual Arithmetic, Granul. Comput. 7 (2021),

751–760. https://doi.org/10.1007/s41066-021-00293-z.

[16] M.H. Suhhiem, R.I. Khwayyit, Semi Analytical Solution for Fuzzy Autonomous Differential Equations, Int. J. Anal.

Appl. 20 (2022), 61. https://doi.org/10.28924/2291-8639-20-2022-61.

https://doi.org/10.1155/2012/407647
https://doi.org/10.1142/s1793005721500010
https://doi.org/10.1142/s1793005721500010
https://doi.org/10.1109/tfuzz.2017.2659731
https://doi.org/10.22436/jmcs.018.02.07
https://doi.org/10.22436/jmcs.018.02.07
https://doi.org/10.1016/j.eswa.2020.114182
https://doi.org/10.1016/j.eswa.2020.114182
https://doi.org/10.1016/j.fss.2021.01.003
https://doi.org/10.1007/s41066-017-0054-5
https://doi.org/10.1007/s41066-021-00293-z
https://doi.org/10.28924/2291-8639-20-2022-61

	1. Introduction
	2. Preliminaries
	3. Main Results
	3.1. The fundamental theorem for SFOLFBVPs
	3.2. Non-homogeneous SFOLFBVPs

	4. An Algorithm for solving system of first-order linear fuzzy boundary value problems under gr-differentiability
	5. Conclusions
	References

