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Abstract. The Pantograph is a device of practical application in electric trains, by which the current is

collected. The mathematical problem of this device is generally given by the delay differential equation

φ′(t) = αy(t) + βφ (γt), where α and β are real constants and γ is a proportional delay parameter.

In the literature, a special attention has been given to the particular case γ = −1. The objective

of this paper is to extend the application of the Laplace transform (LT) combined with the Adomian

decomposition method (ADM) to analyze the above model at such particular case of γ. The solution

will be determined in exact form which agrees with the corresponding results in the literature. Various

properties of the obtained exact solution are discussed in detail. Moreover, it will be declared that

for sufficiently small values of α compared to β there exists an accurate approximate solution. The

accuracy of the approximate solution is numerically validated. In addition, some numerical results are

conducted for the behavior of the present solution at selected values of α and β.

1. Introduction

In electric trains, the current is collected through a certain device, called the Pantograph [1]. The

process of such device is a mathematical problem which is governed by the delay differential equation

φ′(t) = αy(t) +βφ (γt), where α and β are real constants and γ is a delay parameter. The standard

Pantograph model has been analyzed by several authors utilizing various techniques [2-8]. A special

case of the Pantograph model is known as Ambartsumian equation which is of practical applications
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in Astronomy [9-19]. However, an interest is recently given to another special case of such model

when γ = −1, given by [20]

φ′(t) = αφ(t) + βφ (−t) , (1)

subject to

φ(0) = λ, (2)

where α, β and λ are real constants. In Ref. [20], the standard series method (SSM) has been

employed to solve the model given by Eqs. (1-2). Although other approaches can be implemented

to solve the current model such as the Adomian decomposition method (ADM) [21-34], the regular

perturbation method (if one of the constants α or β is small enough) [35,36] and the homotopy

perturbation method [37-39] but the solution by these methods is regularly given in terms of infinite

series. However, the author believe that the Laplace transform (LT) is capable of obtaining the exact

solution in a direct manner. The LT was widely used to solve several scientific models with various

applications [40-52].

In this paper, a hybrid approach will be developed to deal with the current problem. The hybrid

approach is based on combining the LT and the ADM. At first, the LT will be applied to transform the

model (1-2) to a difference equation. Then, the ADM will be used to solve the transformed difference

equation and finally the exact solution is given by the inverse LT. The paper is structured as follows. In

section 2, the LT is employed to transform the present problem to a difference equation. In addition,

the ADM is used to establish the corresponding recurrence scheme. Section 3 focuses on determining

a compact form for the Adomian-components of the transformed difference equation. Moreover, the

solution is provided in exact form via applying the inverse LT on the such compact form. Furthermore,

the properties of the obtained solution is analyzed in section 4 at several cases of the constants α and

β. The paper is finally concluded in section 5.

2. The LT-decomposition method

Applying the LT on Eq. (1) gives

sΦ(s)− λ = αΦ(s)− βΦ(−s), (3)
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where Φ(s) and Φ(−s) are the LTs of φ(t) and φ(−t), respectively. The ADM [21] requires to put

Eq. (3) in the canonical form:

Φ(s) =
λ

s − α +
Φ(−s)

s − α . (4)

Eq. (4) is now a difference equation which has no a known solution. However, the ADM can be used

to accomplish this target. The ADM assumes that Φ(s) can be decomposed as

Φ(s) =

∞∑
i=0

Φi(s). (5)

Substituting (5) into (4), it then follows

∞∑
i=0

Φi(s) =
λ

s − α +
1

s − α

∞∑
i=0

Φi(−s). (6)

According to Eq. (6) we have the recurrence scheme:

Φ0(s) =
λ

s − α,

Φi(s) = −
βΦi−1(−s)

s − α , i ≥ 1.

(7)

3. The exact solution

The algorithm (7) is used here to obtain a compacted form for the ADM-components. Regarding,

Eq. (7) at i = 1 gives

Φ1(s) = −
βΦ0(−s)

s − α ,

=
βλ

(s − α)(s + α)
,

=
λβ

(s2 − α2) . (8)

At i = 2, we have

Φ2(s) = −
βΦ1(−s)

s − α ,

= −
λβ2

(s2 − α2)(s − α)
. (9)
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Proceeding as above, other higher-order components are found as

Φ3(s) = −
λβ3

(s2 − α2)2 , (10)

Φ4(s) =
λβ4

(s2 − α2)2(s − α)
, (11)

Φ5(s) =
λβ5

(s2 − α2)3 , (12)

Φ6(s) = −
λβ6

(s2 − α2)3(s − α)
, (13)

Φ7(s) = −
λβ7

(s2 − α2)4 . (14)

In view of the above calculations, it can be observed that the even-order components follow the

formula:

Φ2i(s) =
λ(−1)iβ2i

(s2 − α2)i(s − α)
, i ≥ 0, (15)

while the even-order components follow the formula:

Φ2i+1(s) =
λ(−1)iβ2i+1

(s2 − α2)i+1 , i ≥ 0, (16)

Therefore, the solution of the difference equation (5) becomes

Φ(s) =

∞∑
i=0

(Φ2i(s) + Φ2i+1(s)) , (17)

i.e.,

Φ(s) =
λ

(s − α)

∞∑
i=0

(−1)iβ2i

(s2 − α2)i +
λβ

(s2 − α2)

∞∑
i=0

(−1)iβ2i

(s2 − α2)i , (18)

which can be rewritten as

Φ(s) =
λ

(s − α)

∞∑
i=0

(
−β2

s2 − α2

)i
+

λβ

(s2 − α2)

∞∑
i=0

(
−β2

s2 − α2

)i
. (19)

Under the assumption
∣∣∣ β2

s2−α2

∣∣∣ < 1, i.e., |s| >
√
α2 + β2, the series in the right hand side of Eq. (19)

can be summed. In this case, we obtain

∞∑
i=0

(
−β2

s2 − α2

)i
=

1

1 + β2

s2−α2
=

s2 − α2

s2 + β2 − α2 . (20)

Inserting (20) into (19) and simplifying, then

Φ(s) =
λ(s + α)

s2 + β2 − α2 +
λβ

s2 + β2 − α2 , (21)
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or

Φ(s) = λ

(
s

s2 + β2 − α2 +
α+ β

s2 + β2 − α2

)
. (22)

Applying the inverse LT on Eq. (22) (see Ref. [52]), we directly get

φ(t) = λ

[
L−1

{
s

s2 + β2 − α2

}
+ L−1

{
α+ β

s2 + β2 − α2

}]
,

= λ

[
cos
(√

β2 − α2t
)

+
α+ β√
β2 − α2

sin
(√

β2 − α2t
)]
, (23)

or

φ(t) = λ

[
cos
(√

β2 − α2t
)

+

√
β + α

β − α sin
(√

β2 − α2t
)]
, |α| < |β| , (24)

which is the same obtained expression in Ref. [20] using a direct SSM.

4. Properties of solution

In this section, we introduce some properties of the obtained exact solution (24). Some of these

properties were addressed in Ref. [20] but represented here just for adding some materials and

observations as follows.

4.1. Symmetry&behaviour of the solution. The solution (24) is symmetrical with respect to the

signs of α and β. This property can be shown by re-expressing the solution as a function in α and β

in addition to the independent variable t, as

φ(a, b, t) = λ

[
cos
(√

β2 − α2t
)

+

√
β + α

β − α sin
(√

β2 − α2t
)]
, |α| < |β| . (25)

It can be easily verified from (25) that

φ(α, β, t) = φ(−α,−β, t). (26)

In figure 1, the coincidence of the curves φ(1, 2, t) = φ(−1,−2, t) and φ(1,−2, t) = φ(−1, 2, t) is

shown. Moreover, the influences of β and α on the behaviour of the exact solution (24) are depicted

in figure 2 and figure 3, respectively.
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Figure 1. Symmetry property of the exact solution Eq. (24) where φ(1, 2, t) =

φ(−1,−2, t) and φ(1,−2, t) = φ(−1, 2, t).
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Figure 2. Variation of the exact solution in Eq. (24) against t at different values of

β when λ = 1 and α = −1/2.
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Figure 3. Variation of the exact solution in Eq. (24) against t at different values of

α when λ = 1 and β = 1.



Int. J. Anal. Appl. (2022), 20:71 7

4.2. Periodicity. The trigonometric functions involved in (24) are periodic and hence the present

exact solution is of periodic nature with periodicity P , given by

P =
2π√
β2 − α2

, |α| < |β| , (27)

which has been also mentioned in Ref. [20]. However, after taking a deep insight at the periodicity

(27) for sufficiently small values of α compared to β one can detect that P ≈ 2π
β . The solution in

such case is given by the following theorem

Theorem 1. For sufficiently small values of α compared to β, i.e., |α| << |β|, the approximate

solution of Eqs. (1-2) takes the form:

φ(t) ≈ λ
[

cos (βt) +

(
1 +

α

β

)
sin (βt)

]
, (28)

wit periodicity P ≈ 2π
β .

Proof. To start the proof, we rewrite the solution (24) in the form

φ(t) = λ

cos

β
√

1−
(
α

β

)2
t

+

√
α/β + 1

1− α/β sin

β
√

1−
(
α

β

)2
t

 , (29)

or

φ(t) = λ

[
cos
(
β
√

1− ε2t
)

+

√
1 + ε

1− ε sin
(
β
√

1− ε2t
)]
, (30)

where ε = α
β << 1. Expanding the expressions

√
1− ε2 and 1+ε

1−ε as power series and neglecting

higher-order terms of ε , we have

√
1− ε2 = 1−

ε2

2
−
ε4

8
−
ε6

16
− · · · ≈ 1, (31)

1 + ε

1− ε = 1 + ε+
ε2

2
+
ε3

2
+

3ε4

8
+ · · · ≈ 1 + ε. (32)

Substituting Eqs. (31) and (32) into Eq. (30), we obtain the approximate solution:

φ(t) ≈ λ
[

cos (βt) +

(
1 +

α

β

)
sin (βt)

]
. (33)
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Figure 4. Plots of the absolute residual error in Eq. (37) at different values of β

when λ = 1 and α = 1/100.

The periodicity P in Eq. (27) can be also written in terms of ε as

P =
2π√
β2 − α2

,

=
2π

β
×

1√
1− ε2

,

=
2π

β

(
1 +

ε2

2
+

3ε4

8
+ . . .

)
, (34)

≈
2π

β
, (35)

which completes the proof. �

4.2.1. Behaviour of the approximate solution. In order to check the accuracy of the approximate

solution (28), some numerical results are conducted in this section. Simulation of the approximate

solution is accomplished here through calculating the absolute residual error for solution (24), given

by

RE(t) =
∣∣φ′(t)− αφ(t)− βφ(−t)

∣∣ . (36)

Substituting Eq. (24) into Eq. (36) gives

RE(t) =

∣∣∣∣2λα2β sin(βt)

∣∣∣∣ . (37)

The accuracy of the approximate solution is clearly verified in figures 4, 5, and 6 through plotting the

residual (37) and comparing the approximate solution (28) with the exact one.
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Figure 5. Comparisons between the approximate solution in Eq. (28) and the exact

solution in Eq. (24) at λ = 1, α = 1/100, and β = 1.
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Figure 6. Plots of the absolute residual error in Eq. (37) at different values of α

when λ = 1 and β = 1.

4.3. Polynomial solution at β = α. It is noted from the expression in Eq. (24) that the exact

solution is not valid when β = α. However, the solution of such case can be obtained through

calculating the limit of Eq. (24) as β → α. To do so, we suppose that β −α = σ and thus σ → 0 as

α→ β. Accordingly, the solution (24) becomes

φ(t) = λ lim
α→β

[
cos
(√

β2 − α2t
)

+

√
α+ β

β − α sin
(√

β2 − α2t
)]
, (38)

or equivalently

φ(t) = λ lim
σ→0

[
cos
(√

2ασ t
)

+

√
2α

σ
sin
(√

2ασ t
)]
,
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= λ

[
1 +
√

2α lim
σ→0

(
sin
(√

2ασ t
)

√
σ

)]
,

= λ
[

1 +
√

2α.
√

2α t
]
,

= λ (1 + 2αt) . (39)

It may be important to mention that Eq. (39) is the exact solution of the differential-difference

equation:

φ′(t) = α (φ(t) + φ(−t)) , φ(0) = λ. (40)

4.4. Hyperbolic solution at α > β. In order to obtain the solution in terms of the hyperbolic

functions, Eq. (24) can be rewritten as

φ(t) = λ

[
cos
(
j
√
α2 − β2t

)
− j

√
α+ β

α− β sin
(
j
√
α2 − β2t

)]
, (41)

where j =
√
−1 is the imaginary number. Therefore, Eq. (41) is transformed into the form:

φ(t) = λ

[
cosh

(√
α2 − β2t

)
+

√
α+ β

α− β sinh
(√

α2 − β2t
)]
, α > β. (42)

This is also the corresponding obtained solution in Ref. [20] utilizing the SSM.

4.5. Constant solution at β = −α. The solution of this case can be obtained by direct substitutions

into Eq. (24). So, we observe from Eq. (24), at β = −α, that

cos
(√

β2 − α2t
)

= cos(0) = 1,√
α+ β

β − α sin
(√

β2 − α2t
)

= 0,

(43)

and consequently the solution (24) reduces to

φ(t) = λ. (44)

which is the constant solution of the following differential-difference equation:

φ′(t) = α (φ(t)− φ(−t)) , φ(0) = λ. (45)
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4.6. Periodic solution at a special case: α = 0. In this case, the present model (1-2) reduces to

the differential-difference equation:

φ′(t) = βφ(−t), φ(0) = λ. (46)

Although it is simpler, the exact solution may be not available in the literature However, the current

study gives the solution directly from Eq. (24) by setting α = 0, hence

φ(t) = λ (cosβt + sinβt) . (47)

5. Conclusions

In this paper, a hybrid approach based on the LT and the ADM is applied to solve a special kind

of the Pantograph delay functional-differential equation. The exact solution was obtained in a direct

manner if compared with the series method in the literature. At a specific constrain of the constants

involved in the present model, an accurate analytic approximation was determined. It was also shown

that the obtained exact solution enjoyed several interesting properties such symmetry, periodicity, and

others. In addition, several types of exact solutions were proved at special cases and expressed as

hyperbolic, linear, and constant functions. The present method may deserve further extensions to

analyze more complex delay models.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publi-

cation of this paper.
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