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Abstract. In this paper, we aim to study the solutions of superlinear hyperbolic problems with boundary

condition of Dirichlet type where we show the existence and the uniqueness of the strong solutions for

the superlinear problems by the method of energy inequality.

1. Introduction and position of the problem

The partial differential equations were probably formulated for the first time during the birth of

rational mechanics in the 17th century [1–3]. Then the catalog of Partial Differential Equations

(PDEs) have been enriched as the science developed and in particular physics [4–7]. If we only have to

remember a few names, we must cite that of Euler, then those of Navier and Stokes, for the equations

of fluid mechanics, those of Fourier in the heat equation, Maxwell for those of electromagnetism,

Schrodinger and Heisenberg for the equations of quantum mechanics, and of course that of Einstein

for the PDEs of the theory of relativity. A giant leap was made by L. Schwartz when he gave birth

to the theory of distributions (around the 1950s), and at least comparable progress is due to L.

Hormander for the development of pseudo differential calculus (in the early 1970s). The complexity

of nonlinearity and challenges in their theoretical study in have attracted a lot of interest from many

mathematicians and scientists see [8–11].

Many natural phenomena and modern problems of physics, mechanics, biology, and technology

can be modeled by nonlinear hyperbolic equations. The method used here is one of the most efficient
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functional analysis methods in solving partial differential equations, it is called a priori estimate method

or the energy-integral method, see [10]. In this work, we study the solutions to hyperbolic problems

with boundary conditions of Dirichlet type where we show the existence and uniqueness of the strong

solutions for semilinear problems by the method of energy inequality, where we found a difficulty

in the choice of the multiplier, and the uniqueness which is emanating from a priori estimate. Let

T > 0,Ω ⊂ Rn and

Q = Ω× (0, T ) =
{

(x, t) ∈ Rn+1 : x ∈ Ω, 0 < t < T
}
.

We consider the nonlinear parabolic problem
utt − a∆u + b(x, t)ut + uq = f (x, t)

u(x, 0) = ϕ(x),

ut(x, 0) = ψ(x),

u(x, t) |Γ= 0

, (P1)

in which the nonlinear parabolic equation is given as follows

Lu = utt − a∆u + b(x, t)ut + uq = f (x, t), (1.1)

with the initial condition

lu = u(x, 0) = ϕ(x), (1.2)

and the Dirichlet boundary conditions

u(x, t) |Γ= 0, ∀t ∈ (0, T ), (1.3)

where a, q are positive odd integers, p ≥ 1, and where f (x, t), ϕ(x) and ψ(x) are given functions and

b(x, t) satisfies the following assumption:

A1. b1 ≤ b(x, t) ≤ b0, (x, t) ∈ Q̄.
We establish a priori bound and prove the existence of a solution of problem (1.1)-(1.3). To this

aim, let Lu = F , where L = (LF, l1, l2), and F = (f , ϕ, ψ) be the operator equation corresponding

to problem (1.1)-(1.3). The operator L acts from E to F , and the Banach space E consists of all

functions u(x, t) with the finite norm

‖u‖2
E = max

0≤τ≤T
‖uτ (x, τ)‖2

L2(Ω) + max
0≤τ≤T

‖∇u‖2
L2(Ω) + ‖ut‖2

L2(Q) + max
0≤τ≤T

‖u(x, τ)‖q+1
Lq+1(Ω)

. (1.4)

The Hilbert space F consists of the vector valued functions F = (f , u0) with the norm

‖F‖2
F = ‖f ‖2

L2(Q) + ‖ψ‖2
L2(Ω) + ‖ϕx‖2

L2(Ω) + ‖ϕ‖q+1
Lq+1(Ω)

. (1.5)

The associated inner product is given as

(F , G)F = (f , g)L2(Q) +
(
ϕx , (g0 )x

)
L2(Ω)

+ (ψ, g1)L2(Ω) . (1.6)
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We assume that the data functions ϕ and ψ satisfy the conditions of the form (1.3), i.e.,

ϕ |Γ= ψ |Γ= 0.

At the upcoming section, we intend to establish a priori estimate for the solution of problem (1.1)-

(1.3).

2. A priori bound

In the theory of PDEs, an a priori estimate (also called an apriori estimate or a priori bound) is

an estimate for the size of a solution or its derivatives of a PDE. A priori is Latin for "from before"

and refers to the fact that the estimate for the solution is derived before the solution is known to

exist. One reason for their importance is that if one can prove an a priori estimate for solutions of a

differential equation, then it is often possible to prove that solutions exist using the continuity method

or a fixed point theorem. Some important definitions and theorems will be next listed in this section.

Theorem 2.1. If assumption A1 is satisfied, then for any function u ∈ D(L), there exists a positive

constant c independent of u such that

max
0≤τ≤T

‖uτ (x, τ)‖2
L2(Ω) + max

0≤τ≤T
‖∇u‖2

L2(Ω) + ‖ut‖2
L2(Q) + max

0≤τ≤T
‖u(x, τ)‖q+1

Lq+1(Ω)

≤ c
(
‖f ‖2

L2(Q) + ‖ψ‖2
L2(Ω) + ‖ϕx‖2

L2(Ω) + ‖ϕ‖q+1
Lq+1(Ω)

)
,

(2.1)

and D(L) is the domain of definition of the operator L defined by

D(L) = {u : u ∈ L∞
(

0, T, Lq+1(Ω)
)
, ut ∈ L∞

(
0, T, L2 (Ω)

)
}

satisfying condition (1.3).

Proof. Taking the scalar product in L2(Q) of Eq. (1.1) and the operator Mu = ut , where Qτ =

Ω× (0, T ), yields

(Lu,Mu)L2(Qτ ) = (utt , ut)L2(Qτ ) − a (∆u, ut)L2(Qτ ) + (but , ut)L2(Qτ ) + (uq, ut)L2(Qτ )

= (f , ut)L2(Qτ ) .
(2.2)

The successive integration by parts of integrals on the right-hand side of (2.2) gives

(utt , ut)L2(Qτ ) =

∫
Qτ
utt · utdxdt

=
1

2

∫
Ω

u2
t dx −

1

2

∫
Ω

ψ2dx

=
1

2
‖ut(x, τ)‖2

L2(Ω) −
1

2
‖ψ‖2

L2(Ω) , (2.3)
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besides we have

−a (∆u, u)L2(Qτ ) = −a
∫
Qτ

∆u · utdxdt

= a

∫
Ω

∇u2dx −
1

2

∫
Ω

ϕ2
xdx

= a ‖∇u‖2
L2(Ω) −

1

2
‖ϕx‖2

L2(Ω) , (2.4)

and

(bu, u)L2(Qτ ) =

∫
Qτ
b(x, t)u2

t dxdt. (2.5)

In this regard, we have

(cuq, ut)L2(Qτ ) =
1

q + 1

∫
Ω

uq+1dx −
1

q + 1

∫
Ω

ϕq+1dx

=
1

q + 1
‖ut(x, τ)‖q+1

Lq+1(Ω)
−

1

q + 1
‖ϕ‖q+1

Lq+1(Ω)
.

(2.6)

By substituting (2.3)-(2.6) into (2.2), we obtain

1

2
‖ut(x, τ)‖2

L2(Ω) −
1

2
‖ψ‖2

L2(Ω) + a ‖∇u‖2
L2(Ω) −

1

2
‖ϕx‖2

L2(Ω)

+

∫
Qτ
b(x, t)u2

t dxdt +
1

q + 1
‖u(x, τ)‖q+1

Lq+1(Ω)
−

1

q + 1
‖ϕ‖q+1

Lq+1(Ω)
= (f , ut) .

(2.7)

By applying Cauchy inequality with ε,
(
i.e., |ab| ≤

a2

2ε
+
εb2

2

)
, we can estimate the last term on the

right-hand side of (2.7) and get

1

2
‖ut(x, τ)‖2

L2(Ω) + a ‖∇u‖2
L2(Ω) +

∫
Qτ
b(x, t)u2

t dxdt +
1

q + 1
‖u(x, τ)‖q+1

Lq+1(Ω)

≤
1

2ε
‖f ‖2

L2(Qτ ) +
ε

2
‖u‖2

L2(Qτ ) +
1

2
‖ψ‖2

L2(Ω) +
1

2
‖ϕx‖2

L2(Ω) +
1

q + 1
‖ϕ‖q+1

Lq+1(Ω)
.

By using assumptions A1 and using the Gronwall’s Lemma, the estimate (2.8) becomes

‖ut(x, τ)‖2
L2(Ω) + ‖∇u‖2

L2(Ω) +

∫
Qτ
u2
t dxdt + ‖u(x, τ)‖q+1

Lq+1(Ω)

≤
max

{
1

2
,

1

2ε
, b0,

1

q + 1

}
min

{
1

2
, a, b1,

1

q + 1

} exp
(ε

2
T
)

×
[
‖f ‖2

L2(Q) + ‖ψ‖2
L2(Ω) + ‖ϕx‖2

L2(Ω) + ‖ϕ‖q+1
Lq+1(Ω)

]
.

Then, by passing to the maximum, we get

max
0≤τ≤T

‖uτ (x, τ)‖2
L2(Ω) + max

0≤τ≤T
‖∇u‖2

L2(Ω) + ‖ut‖2
L2(Q) + max

0≤τ≤T
‖u(x, τ)‖q+1

Lq+1(Ω)

≤ c
[
‖f ‖2

L2(Q) + ‖ψ‖2
L2(Ω) + ‖ϕx‖2

L2(Ω) + ‖ϕ‖q+1
Lq+1(Ω)

]
,
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where

c =

max

{
1

2
,

1

2ε
, b0,

1

q + 1

}
min

{
1

2
, a, b1,

1

q + 1

} exp
(ε

2
T
)
.

So, we have

‖u‖E ≤
√
c ‖Lu‖F . (2.8)

�

Now, we let R(L) be the range of the operator L. Since we do not have any information about

R(L), except that R(L) ⊂ F , we must extend L so that estimate (1.6) holds for this extension and

its range represents the whole space F . For this purpose, we present the next proposition.

Proposition 2.1. The operator L : E −→ F has a closure.

Proof. Let (un)n∈N ⊂ D (L) be a sequence where

un −→ 0 in E,

and

Lun −→ (f ;ϕx , ψ) in F. (2.9)

Now, we must prove that

f ≡ 0 and (ϕ,ψ) ≡ (0, 0) .

The convergence of un to 0 in E drives:

un −→ 0 in D′ (Q) . (2.10)

According to the continuity of the derivation of D′ (Q) in D′ (Q) and the continuity the distribution

of the function uq, the relation (2.10) involve

Lun −→ 0 in D′ (Q) . (2.11)

Moreover, the convergence of Lun to f in L2 (Q) gives:

Lun −→ f in D′ (Q) . (2.12)

As we have the uniqueness of the limit in D′ (Q), we conclude from (2.11) and (2.12) that f = 0.

Then it is generated from (2.9) that

l1un −→ ϕx and l2un −→ ψ in L2 (Ω) .
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On the other hand, we have

‖u‖2
E

= max
0≤τ≤T

‖uτ (x, τ)‖2
L2(Ω) + max

0≤τ≤T
‖∇u‖2

L2(Ω) + ‖ut‖2
L2(Q) + max

0≤τ≤T
‖u(x, τ)‖q+1

Lq+1(Ω)

≥ ‖ux(x, 0)‖2
L2(Ω) + ‖ut(x, 0)‖2

L2(Ω)

≥ ‖ϕx‖2
L2(Ω) + ‖ψ‖2

L2(Ω) .

Now, due to un −→ 0 in E, then ‖u‖2
E −→ 0 in R. Consequently, we get

0 ≥ ‖ϕx‖2
L2(Ω) + ‖ψ‖2

L2(Ω) .

Then, we obtain

ϕx = 0 and ψ = 0.

Let L be the closure of this operator with the domain of definitionD(L), and hence the result holds. �

Definition 2.1. A solution of the operator equation L̄u = F is called a strong solution to problem

(1.1)-(1.3).

The priori estimate (2.1) can be then extended to strong solution, i.e., we have the estimate

max
0≤τ≤T

‖uτ (x, τ)‖2
L2(Ω) + max

0≤τ≤T
‖∇u‖2

L2(Ω) + ‖ut‖2
L2(Q) + max

0≤τ≤T
‖u(x, τ)‖q+1

Lq+1(Ω)

≤ c
(
‖f ‖2

L2(Q) + ‖ψ‖2
L2(Ω) + ‖ϕx‖2

L2(Ω) + ‖ϕ‖q+1
Lq+1(Ω)

)
, ∀u ∈ D(L̄).

(2.13)

In light of the estimate given in (2.13), we can infer the next theoretical results.

Corollary 2.1. The range R(L̄) of the operator L̄ is closed in F and is equal to the closure R(L) of

R(L), i.e. R(L̄) = R(L).

Proof. Let z ∈ R(L) such that there is a Cauchy sequence (zn)n∈N in F constituted of the elements

of the set R(L) such as

lim
n−→+∞

zn = z.

There is then a corresponding sequence un ∈ D(L) such as zn = Lun. Immediately, the estimate (2.8)

becomes:

‖up − uq‖E ≤ C ‖Lup − Luq‖F → 0,

where p and q tend towards infinity. We can consequently deduce that (un)n∈N is a Cauchy sequence

in E. So like E is a Banach space, it exists u ∈ E such as

lim
n−→+∞

un = u in E.

By virtue of the definition of L̄ ( lim
n−→+∞

un = u in E, if lim
n−→+∞

Lun = lim
n−→+∞

zn = z , and then

lim
n−→+∞

L̄un = z as L̄ is closed, and so L̄u = z), the function u satisfies:

u ∈ D
(
L̄
)
, L̄u = z.
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Then z ∈ R(L̄), and so R(L) ⊂ R(L̄). Also, we conclude here that R(L̄) is closed because it is

Banach (any complete subspace of a metric space, not necessarily complete, is closed). Thus, it

remains to show the reverse inclusion either z ∈ R(L̄), and then it exists a Cauchy sequence (zn)n∈N

in F constituted of the elements of the set R(L̄) such that lim
n−→+∞

zn = z , or z ∈ R(L̄) because R(L̄)

is closed subset. So R(L̄) is complete. There is then a corresponding sequence un ∈ D(L̄) such that

L̄un = zn. Consequently from (2.8), we get

‖up − uq‖E ≤ C
∥∥L̄up − L̄uq∥∥F → 0,

where p and q tend towards infinity. We can immediately deduce that (un)n∈N is a Cauchy sequence

in E, and so like E is a Banach space, it exists u ∈ E such as

lim
n−→+∞

un = u in E.

Once again, there is a corresponding sequel (Lun)n∈N ⊂ R(L) such as

L̄un = Lun on R (L) ,∀n ∈ N.

So we have lim
n−→+∞

Lun = z and consequently z ∈ R (L), which implies R
(
L̄
)
⊂ R (L). �

3. Existence and uniqueness of solution

In this section, additional results are listed below, which are related to the existence and uniqueness

of strong solution for the main Problem (P1).

Theorem 3.1. Let assumption A1 be satisfied. Then for all F = (f , ϕ) ∈ F , there exists a unique

strong solution u = L̄−1F = L−1F of problem (1.1)-(1.3).

Proof. To prove this result, we should note that we first have

(Lu,W )F =

∫
Q

Lu.wdxdt +

∫
Ω

l1u.w0dx +

∫
Ω

l2u.w1dx, (3.1)

where W = (w,w0, w1). So for w ∈ L2 (Q) and for all

u ∈ D0(L) = {u, u ∈ D (L) : l1u = 0, l2u = 0} ,

we have ∫
Q

Lu.wdxdt = 0.

By putting w = ut , we obtain∫
Qτ
uttut +

∫
Qτ
b(x, t)u2

t dxdt +

∫
Qτ
uq+1dxdt = a

∫
Qτ

∆u.ut

1

2
‖ut(x, t)‖2

L2(Ω) +

∫
Qτ
b(x, t)u2

t dxdt +
1

q + 1
‖u(x, τ)‖q+1

Lq+1(Ω)
= −a ‖∇u‖2

L2(Ω) .
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This gives

1

2
‖ut(x, t)‖2

L2(Ω) +

∫
Qτ
b(x, t)u2

t dxdt +
1

q + 1
‖u(x, τ)‖q+1

Lq+1(Ω)
≤ 0,

max
0≤τ≤T

‖uτ (x, τ)‖2
L2(Ω) + b1

∫
Qτ
u2
t dxdt +

1

q + 1
‖u(x, τ)‖q+1

Lq+1(Ω)
≤ 0.

Therefore, we have ut = w = 0. Since the range of the trace operators is everywhere dense in the

Hilbert space F with the associate norms ‖ϕx‖L2(Ω) and ‖ψ‖L2(Ω) , then the equality (3.1) implies

that ω0 = 0 and ω1 = 0. Hence W = 0 implies R(L) = F . �

Corollary 3.1. If for any function u ∈ D(L), we have the following estimate:

‖u‖E ≤
√
c ‖F‖F ,

Then the solution of the problem (P1), if it exists, is unique.

Proof. Let u1 and u2 be two solutions of problem (P1), i.e.,{
Lu1 = F
Lu2 = F

=⇒ Lu1 − Lu2 = 0.

As L is linear, we then obtain

L (u1 − u2) = 0.

According to (2.8), we obtain

‖u1 − u2‖2
E ≤ c ‖0‖

2
F = 0,

which gives u1 = u2. �

4. Conclusion

We have used the method of energy inequality for the super liner problems to show the existence

and the uniqueness of the solution. In addition, we have studied the solution of superlinear hyperbolic

problems with boundary condition of Dirichlet type.
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