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Abstract. In the present paper we study the existence or non-existence of warped product semi-slant

submanifolds in quasi-para-Sasakian manifolds and prove that there are no proper warped product semi-

slant submanifolds in a quasi-para-Sasakian manifold such that totally geodesic and totally umbilical

submanifolds of warped product are proper semi-slant and invariant (or anti-invariant), respectively.

1. Introduction

The concept of warped product manifolds was introduced by Bishop and O’Neill for constructing

manifolds of non-positive curvature, as one of the most effective generalization of Riemannian product

manifold [15]. About two decades ago, Chen extended the work of Bishop and O’Neill and studied

the warped product CR-submanifold of Kaehler manifolds [3,4], this study was also extended by many

geometers in different settings [2,13,14]. The existence or non-existence of warped product manifolds

plays an important role in differential geometry as well as in physics. In [6], Blair introduced the

notion of quasi-Sasakian manifolds that unifies Sasakian and cosymplectic manifolds. Tanno [19] also

contributed some remarkable results on quasi-Sasakian structure. Recently, quasi-Sasakian structure

have been studied in [1, 17, 18]). The geometry of almost paracontact manifold was studied by
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Kaneyuki and Williams in [16] as a natural generalization of natural odd-dimensional analogue to

almost para-Hermitian structures. The study of almost paracontact metric manifolds was carried out

in one of Zamkovoy’s papers [20]. In [21], Olszak studied normal almost contact metric manifolds

of dimension 3. In 2009, Welyczko [10] investigated curvature and torsion of Frenet-Legendre curves

in 3-dimensional normal almost paracontact metric manifolds. Recently, 3-dimensional normal almost

paracontact metric manifolds were studied in [5, 7, 8].

2. Preliminaries

Let M̄ be a (2n+ 1)-dimensional almost paracontact manifold with structure tensor (f , ξ, υ,<,>),

where f , ξ and υ be a tensor field of type (1, 1), a vector field, and a 1-form, respectively on M̄
satisfying

f ξ = 0, f 2 = I − υ ⊗ ξ, υ ◦ f = 0, (2.1)

υ(ξ) = 1, υ(X ) =< X , ξ >,

< f ·, f · >= − <,> +υ ⊗ υ, (2.2)

where I is the identity on the tangent bundle TM̄ of M̄. We say that M̄ is a paracontact metric

manifold if there exists a one-form υ such that

< X , f Y >= dυ(X ,Y) =
1

2
(Xυ(Y)− Yυ(X )− υ([X ,Y]),

for all X ,Y ∈ X(M̄), where X(M̄) denotes the Lie algebra of vector fields on M̄, and

< f X ,Y > + < X , f Y >= 0 (2.3)

for all vector fields X and Y on M̄.

Further, an almost paracontact metric manifold is called a quasi-para-Sasakian manifold if

(∇̄X f )Y = υ(Y)FX− < FX ,Y > ξ, (2.4)

and

∇̄X ξ = −f FX , f FX = F f X , < FX ,Y >= − < X ,FY >, (2.5)

where ∇̄ denotes the Levi-Civita connection with respect to the metric tensor <,> and F is a tensor

field of type (1, 1).

By applying f to (2.5) and using (2.1), we obtain

FX = υ(FX )ξ − f (∇̄X ξ). (2.6)

Also by replacing X by ξ in (2.5) it follows that

∇̄ξξ = 0. (2.7)

Using (2.4), (2.6) and (2.7) we infer

Fξ = υ(Fξ)ξ, (2.8)
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and

(∇̄ξf )X = 0 (2.9)

for any X ∈ Γ(TM̄).

IfM is a contact CR-submanifold of M̄ and the projections on D and D⊥ are denoted by P and Q,
respectively; then for all vector field X tangent toM, we infer

X = PX +QX + υ(X )ξ. (2.10)

Now we put

Bλ+ Cλ = f λ, (2.11)

where Bλ and Cλ are tangential and normal part of f λ onM.

Next we define the tensor field of type (1, 1) onM by

f X = f PX , (2.12)

and the Γ(TM⊥)-valued 2-form ω by

ωX = f QX . (2.13)

Since D is invariant by f , then it follows from (2.11) and (2.12) that B is Γ(D⊥)-valued and t is

Γ(D)-valued, respectively.

By using (2.1), (2.10), (2.12) and (2.13), we obtain

ωX + tX = f X , (2.14)

and

t3 + t = 0;C3 + C = 0. (2.15)

Then by (2.15) we conclude that t and C are f -structure in sense of Yano [11] on TM and TM⊥,
respectively.

Now suppose <,> be the induced metric and ξ be tangent toM. Further, we suppose ∇ and ∇⊥ be

the induced connections on the tangent bundle TM and the normal bundle T⊥M ofM, respectively.

Then the Gauss and Weingarten formulas are given respectively by

∇̄XY = σ(X ,Y) +∇XY, (2.16)

∇̄Xλ = −ΛλX +∇⊥Xλ (2.17)

for all vector fields X ,Y tangent to M and any vector field λ normal to M, where σ and Λλ are

the second fundamental form and the shape operator for the immersion of M into M̄. The second

fundamental form σ and shape operator Λλ are related by

< σ(X ,Y), λ >=< ΛλX ,Y > (2.18)

for all vector fields X ,Y tangent toM and vector field λ normal toM.
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Furthermore, for any Z ∈ Γ(TM̄), we put

FZ = αZ + βZ, (2.19)

where αZ and βZ are the tangent part and the normal part of FZ, respectively.
From (2.3) we have

< tX ,Y > + < X , tY >= 0. (2.20)

In account of (2.6), (2.11), (2.12) and (2.16) we obtain

αX = υ(X )υ(FX )ξ − t(∇X ξ)− Bσ(X , ξ), (2.21)

and

βX = −ω(∇X ξ)− Cσ(X , ξ). (2.22)

Proposition 2.1. If M is a contact CR-submanifold of a quasi-para-Sasakian manifold M̄, then

Γ(TM) is invariant with respect to the action of f if and only if we have

ω(∇X ξ) = 0, (2.23)

and

Cσ(X , ξ) = 0. (2.24)

Proof. From (2.22) it follows that F is a tensor field of type (1, 1) onM if and only if

ω(∇X ξ) + Cσ(X , ξ) = 0. (2.25)

Then (2.23) and (2.24) follows from (2.25) (since < ωY, Cλ >= 0 for any Y ∈ Γ(TM)).

Corollary 2.1. If M is a contact CR-submanifold of a quasi-para-Sasakian manifold M̄ such that

Γ(TM) is invariant with respect to the action of F , then both the distributions D and D⊥ are

invariant with respect to the action of F .

Proof. Let X ∈ Γ(D), then by using the third relation of (2.5) and (2.8) we obtain

< FX , ξ >= − < X ,Fξ >= υ(Fξ) < X , ξ >= 0.

On the other hand, by using (2.2), the second relation of (2.5) and the invariace of D with respect

to the action of f we infer

< FX ,Z >=< F f X ′,Z >= − < FX ′, f Z >= 0,

where X ′ ∈ Γ(D) and Z ∈ Γ(D⊥). Hence D is invariant by F . In a similar way it follows that D⊥ is

invariant by the action of F .
The Riemannian connections ∇ and ∇⊥ allow us to define the usual covariant derivatives as

(∇X t)Y = ∇X tY − t∇XY, (2.26)
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and

(∇Xω)Y = ∇⊥XωY − ω∇XY. (2.27)

Now, the canonical structures t and ω on a submanifold M are said to be parallel if ∇t = 0 and

∇ω = 0, respectively. On a CR-submanifold of a quasi-para-Sasakian manifold, it follows from (2.5)

and (2.16) that

∇X ξ = −f FX , (2.28)

and

σ(X , ξ) = 0 (2.29)

for each X ∈ TM . Furthermore, from (2.29) we obtain

Λωξ = 0; υ(Λω)X = 0. (2.30)

Lemma 2.1. For a contact CR-submanifoldM of a quasi-para-Sasakian manifold M̄, we infer

(∇X t)Y = ΛωYX + Bσ(X ,Y) + υ(Y)αX− < FX ,Y > ξ, (2.31)

(∇Xω)Y = Cσ(X ,Y)− σ(X , tY) + υ(Y)βX . (2.32)

Proof. By using (2.4), (2.16)-(2.19), (2.26) and (2.27), we obtain

(αX + βX )υ(Y)− < FX ,Y > ξ = (∇X t)Y + (∇Xω)Y − ΛωYX

−Bσ(X ,Y)− Cσ(X ,Y) + σ(X , tY)

for any X ,Y ∈ Γ(TM). By equating the tangential and the normal parts in above relation, (2.31)

and (2.32), respectively follows.

The covariant derivatives of B and C are given respectively by

(∇XB)λ = ∇XBλ− B(∇⊥Xλ), (2.33)

and

(∇⊥XC)λ = ∇⊥XCλ− C(∇⊥Xλ) (2.34)

for any X ∈ Γ(TM) and ≥ ∈ Γ(TM⊥).

Lemma 2.2. For a contact CR-submanifoldM of a quasi-para-Sasakian manifold M̄, we infer

(∇XB)λ = ΛCλX − t(ΛλX )− < FX , λ > ξ, (2.35)

and

(∇⊥XC)λ = −σ(X , Bλ)− ω(ΛλX ) (2.36)

for any X ∈ Γ(TM) and λ ∈ Γ(TM⊥).
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Lemma 2.3. For a contact CR-submanifoldM of a quasi-para-Sasakian manifold M̄, we infer

ΛfXY = Λf YX , (2.37)

and

< σ(U ,V), f Z >=< ∇UZ, f V > (2.38)

for all U ∈ Γ(TM),V ∈ Γ(D) and X ,Y,Z ∈ Γ(D⊥).

Proof. By using (2.2), (2.4) and (2.16)-(2.18), we have

< ΛfXY,U >=< σ(Y,U), f X >=< ∇̄UY, f X > − < ∇UY, f X >

=< ∇UY, f X >= − < f (∇UY),X >= − < −(∇̄U f )Y + ∇̄U f Y,X >

+ < υ(Y)FU− < FU ,Y > ξ,X > − < ∇̄U f Y,X >

− < −Λf YU +∇⊥U f Y,X >=< Λf YU ,X >=< Λf YX ,U > .

Since υ(Y) = υ(X ) = 0, therefore we find (2.37).

Next, by using (2.2), (2.4) and (2.16), we obtain

< σ(U ,V), f Z >=< ∇̄UV, f Z > − < V, ∇̄U f Z >

− < V, (∇̄U f )Z + f (∇̄UZ) > − < V, υ(Z)FU− < FU ,Z > ξ >

− < V, f (∇̄UZ) >=< f V, ∇̄UZ >=< f V,∇UZ >

which leads to (2.38).

A submanifold M of an almost para contact metric manifold M̄ is said to be invariant if F is

identically zero, that is, f X ∈ TM and anti-invariant if t is identically zero, that is, f X ∈ T⊥M, for

any X ∈ TM.

For each non-zero vector X tangent to M at any point x such that X is not proportional to ξ, we

denote by θ(X ), the angle between f X and TxM for all x ∈M.

Definition 2.1. A submanifold N is said to be slant if the angle θ(X ) is constant for all X ∈ TXN−{ξ}
and x ∈ N. The angle θ is called a slant angle or Wirtinger angle. Obviously, if θ = 0, then N is

invariant; and if θ = π/2, thenM is an anti-invariant submanifold. If the slant angle of N is different

from 0 and π/2 then it is called proper slant.

A characterization of slant submanifolds is given by the following theorem:

Theorem 2.1. [9] Let N be slant submanifold of a quasi-para-Sasakian manifold M̄ such that ξ is

tangent to N. Then N is slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that

t2X = µ(X − υ(X ))ξ. (2.39)

Furthermore, if θ is the slant angle of N, then µ = cos2 θ.
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Corollary 2.2. Let N be a slant submanifold with slant angle θ of a quasi-para-Sasakian manifold M̄
such that ξ is tangent to N. Then we have

< tZ, tW >= cos2 θ{− < Z,W > +υ(Z)υ(W)}, (2.40)

< ωZ, ωW >= sin2 θ{− < Z,W > +υ(Z)υ(W)} (2.41)

for any Z,W tangent to N.

3. Warped product semi-slant submanifolds a quasi-para-Sasakian manifold

For two Riemannian manifolds (N1, <,>1) and (N2, <,>2) and a positive differentiable function

δ on N1, the warped product of N1 and N2 is the Riemannian manifold N1×δN2 = (N1×N2, <,>),

where

<,>=<,>1 +δ2 <,>2 . (3.1)

More explicitly, if the vector fields X and Y are tangent to N1×δN2 at (x, y), then

< X ,Y >=<,>1 (π1 ∗ X , π1 ∗ Y) + δ2(x) <,>2 (π2 ∗ X , π2 ∗ Y), (3.2)

where πi(i = 1, 2) are the canonical projections of N1×δN2 onto N1 and N2, respectively, and ∗ stands
for derivative map.

If M̃ = N1×δN2 is a warped product manifold, this means that N1 and N2 are totally geodesic and

totally umbilical submanifolds of M̃, respectively.

For warped product manifolds, we have the following proposition [12,15]:

Proposition 3.1. On a warped product manifold M̃ = N1×δN2, we have

(1) ∇XY ∈ Γ(TN1) is the lift of ∇XY on N1,

(2) ∇UX = ∇XU = X (lnδ)U ,
(3) ∇UV = ∇′UV− < U ,V > ∇lnδ

for any X, Y ∈ Γ(TN1) and U, V ∈ Γ(TN2), where ∇ and ∇′ denote the Levi-Civita connections on

M and N2, respectively.

Let us suppose that M̄ be a quasi-para-Sasakian manifold and N1×δN2 be a warped product semi-

slant submanifold of a quasi-para-Sasakian manifold M̄. Such submanifolds are always tangent to the

structure vector field ξ. If the manifolds Nθ and NT (resp., N⊥) are slant and invariant (resp., anti-

invariant) submanifolds of a quasi-para-Sasakian manifold M̄, then their warped product semi-slant

submanifolds may be given by one of the following forms:

(i) Nθ×δNT , (i i) Nθ×δN⊥, (i i i) NT×δNθ, (iv) N⊥×δNθ.
Here, we are concerned with cases (i) and (i i).

Theorem 3.1. If M̄ is a quasi-para-Sasakian manifold, then there do not exist proper warped product

semi-slant submanifolds Nθ×δNT such that Nθ is a proper slant submanifold, NT is an invariant

submanifold of M̄ and ξ is tangent to N .
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Proof. Let Nθ×δNT be a proper warped product semi-slant submanifold of a quasi-para-Sasakian

manifold M̄. For any X ,Y ∈ Γ(TNθ) and U ,V ∈ Γ(TNT ), we have

(∇̄X f )U = ∇̄X f U − f (∇̄XU). (3.3)

Thus, from (2.4), (2.11), (2.14) and (2.16) we obtain

υ(U)FX− < FX ,U > ξ = σ(X , tU)− Bσ(X ,U)− Cσ(X ,U).

This means that

Bσ(X ,U) = 0, (3.4)

and

Cσ(X ,U)− σ(X , tU) = 0. (3.5)

On the other hand, by interchanging roles of U and X in (3.3), we conclude

tX log(δ)U = ΛωXU + X log(δ)tU + Bσ(U ,X ), (3.6)

and

∇⊥UωX + σ(U , tX )− Cσ(U ,X ) = 0. (3.7)

From (3.6), we arrive at

tX log(δ) < U ,U > = < ΛωXU ,U > + < Bσ(U ,X ),U > (3.8)

= < σ(U ,U), ωX > + < Bσ(U ,X ),U >

= < σ(U ,U), ωX > − < σ(X ,U), f U >

= < σ(U ,U), ωX > .

On the other hand, since the ambient space M̄ is a quasi-para-Sasakian manifold, then by using (3.5)

and (3.7) we get

Ch(Z, ξ) = 0 (3.9)

for any Z ∈ Γ(TN).

By using (3.5) and (3.7), we get ωX = Cσ(X , ξ) = 0. Thus we have tX log(δ) < U ,U >= 0, this

implies that tX log(δ) = 0, that is, the warping function δ is constant on Nθ. �

Theorem 3.2. If M̄ is a quasi-para-Sasakian manifold, then there do not exist proper warped product

semi-slant submanifolds Nθ×δN⊥ such that Nθ is a proper slant submanifold, N⊥ is an invariant

submanifold of M̄ and ξ is tangent to N .

Proof. Let Nθ×δN⊥ be a proper warped product semi-slant submanifold of a quasi-para-Sasakian

manifold M̄ such that ξ is tangent to N. For any X ,Y ∈ Γ(TNθ) and U ,V ∈ Γ(TN⊥), we have

(∇̄X f )U = ∇̄X f U − f (∇̄XU).
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Using (2.4), (2.14), (2.16), (2.17) and Proposition 3.1, the above equation takes the form

υ(U)FX − g(FX ,U)ξ = −ΛωUX +∇⊥XωU − X (logδ)ωU (3.10)

−f σ(X ,U).

This means that

ΛωUX + Bσ(X ,U) = 0, (3.11)

and

∇⊥XωU − X (logδ)ωU − Cσ(X ,U) = 0. (3.12)

By interchanging roles of X and U in (3.10), we arrive at

υ(U)FX− < FX ,U > ξ = tX log(δ)U + σ(U , tX )− ΛωXU (3.13)

+∇⊥UωX − X log(δ)ωU − Bσ(U ,X )

−Cσ(U ,X ).

Equating the tangential and normal components in (3.13), we find

tX log(δ)U = ΛωXU + Bσ(U ,X ), (3.14)

and

σ(U , tX ) +∇⊥UωX − X log(δ)ωU − Cσ(U ,X ) = 0, (3.15)

respectively.

From (3.14), we find

< ΛωXU , tY > + < Bσ(U ,X ), tY >= 0. (3.16)

Since the ambient space M̄ is a quasi-para-Sasakian manifold, ξ is tangent to N and using (2.2), we

obtain

< Bσ(X ,U), tY > = < f σ(X ,U), f Y >

= − < σ(X ,U),Y > +υ(Y)υ(σ(X ,U))

= 0.

This implies that

< Bσ(X ,U), tY >=< σ(U , tY), ωX >= 0. (3.17)

Thus we have

< σ(U , tY), f X >= 0 (3.18)

for any X ,Y ∈ Γ(TNθ).

Moreover, making use of (3.11) and (3.18), we get

< σ(X , tY), f U >= 0. (3.19)
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By using the Gauss-Weingarten formulas and considering that Nθ is totally geodesic in N, we arrive at

< σ(X , tY), f U > = < ∇̄tYX , f U) = − < f (∇̄tYX ),U > (3.20)

= − < ∇̄tY f X − (∇̄tY f )X ,U >

= − < ∇̄tYtX ,U > − < ∇̄tYωX ,U >

+ < υ(X )FtY,U > − < FtY,X >< ξ,U >

= < ΛωX tY,U > −υ(U) < FtY,X >

= < σ(tY,U), ωX > −υ(U) < FtY,X >

= υ(U) < tY,FX > .

Thus from (3.19) and (3.20), we conclude

υ(U) < tY,FX >=< σ(X , tY, f U >= 0. (3.21)

Here, if υ(U) = 0, then by using (2.32) and (3.12), we leads to

X log(δ)ωU = υ(∇XU) = − < −f FX ,U >= 0.

This is impossible. Because U is a non-zero vector field and N⊥ 6= 0. Thus < tX , tY >= cos2θ{− <
X ,Y > +υ(X )υ(Y)} = 0, this implies that the slant angle θ is either identically π/2 or the warping

function δ is constant on Nθ . This completes the proof. �
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