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Abstract. The aim of this paper is to apply the concept of L-fuzzy sets (LFSs) to UP (BCC)-algebras

and introduce five types of LFSs in UP (BCC)-algebras: L-fuzzy UP (BCC)-subalgebras, L-fuzzy
near UP (BCC)-filters, L-fuzzy UP (BCC)-filters, L-fuzzy UP (BCC)-ideals, and L-fuzzy strong UP

(BCC)-ideals. Also, we study the characteristic LFSs, t-level subsets, and the Cartesian product of

LFSs in UP (BCC)-algebras.

1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples

of these are BCK-algebras [16], BCI-algebras [17], β-algebras [27], BG-algebras [24], BP-algebras

[1], UP-algebras [11], fully UP-semigroups [12], topological UP-algebras [32], UP-hyperalgebras [14],

extension of KU/UP-algebras [31] and others. They are strongly connected with logic. In 2022, Jun

et al. [19] have shown that the concept of UP-algebras (see [11]) and the concept of BCC-algebras
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(see [25]) are the same concept. Therefore, in this article and future research, our research team will

use the name BCC instead of UP in honor of Komori, who first defined it in 1984.

The concept of fuzzy sets was first considered by Zadeh [39] in 1965. The fuzzy set theories

developed by Zadeh and others have found many applications in the domain of mathematics and

elsewhere. After the introduction of the concept of fuzzy sets by Zadeh, Atanassov [4] defined new

concept called intuitionistic fuzzy set which is a generalization of fuzzy set, Goguen [8] generalized the

notion of fuzzy sets into the notion of LFSs. Lee [26], introduced an extension of fuzzy sets named

bipolar-valued fuzzy sets.

The concept of LFSs was applied to many logical algebras such as: in 2010, Chandramouleeswaran

[5] introduced the notions of intuitionistic L-fuzzy subalgebras of a BG-algebras and some of their

basic properties. In 2012, Subramanian et al. [38] introduced the notions of interval-valued bipolar

fuzzy lattices, Cartesian products, fuzzy fully invariant lattices, characteristic and homomorphic image

of bipolar fuzzy lattices, and then they investigated several properties. In 2014, Rajam and Chan-

dramouleeswaran [30] introduced the notion of L-fuzzy β-subalgebras on β-algebras and investigate

some of their properties. In 2017, Christopher Jefferson and Chandramouleeswaran [18] studied the

notions of fuzzy structures, fuzzy subalgebras, fuzzy ideals, and L-fuzzy subalgebras and T-ideals of

BP-algebras.

In this paper, we apply the concept of L-fuzzy sets (LFSs) to BCC-algebras and introduce five types

of LFSs in BCC-algebras: L-fuzzy BCC-subalgebras, L-fuzzy near BCC-filters, L-fuzzy BCC-filters,

L-fuzzy BCC-ideals, and L-fuzzy strong BCC-ideals. Also, we study the characteristic LFSs, t-level

subsets, and the Cartesian product of LFSs in BCC-algebras.

The concept of BCC-algebras (see [25]) can be redefined without the condition (1.1) as follows:

Definition 1.1. [10] A BCC-algebra is one that has the algebra U = (U , ?, 0) of type (2, 0), where U
is a nonempty set, ? is a binary operation on U , and 0 is a fixed element of U if it meets the following

axioms:

(∀a, b, c ∈ U)((b ? c) ? ((a ? b) ? (a ? c)) = 0), (BCC-1)

(∀a ∈ U)(0 ? a = a), (BCC-2)

(∀a ∈ U)(a ? 0 = 0), (BCC-3)

(∀a, b ∈ U)((a ? b = 0, b ? a = 0)⇒ a = b). (BCC-4)

For more examples of BCC-algebras, see [2, 3, 7, 12, 15, 33–36]. According to [11], we know that

the concept of BCC-algebras is a generalization of KU-algebras (see [29]).

From now on, unless otherwise stated, U = (U , ?, 0) is a BCC-algebra.
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In U , the following assertions are valid (see [11,12]).

(∀a ∈ U)(a ? a = 0), (1.1)

(∀a, b, c ∈ U)((a ? b = 0, b ? c = 0)⇒ a ? c = 0), (1.2)

(∀a, b, c ∈ U)(a ? b = 0⇒ (c ? a) ? (c ? b) = 0), (1.3)

(∀a, b, c ∈ U)(a ? b = 0⇒ (b ? c) ? (a ? c) = 0), (1.4)

(∀a, b ∈ U)(a ? (b ? a) = 0), (1.5)

(∀a, b ∈ U)((b ? a) ? a = 0⇔ a = b ? a), (1.6)

(∀a, b ∈ U)(a ? (b ? b) = 0), (1.7)

(∀u, a, b, c ∈ U)((a ? (b ? c)) ? (a ? ((u ? b) ? (u ? c))) = 0), (1.8)

(∀u, a, b, c ∈ U)((((u ? a) ? (u ? b)) ? c) ? ((a ? b) ? c) = 0), (1.9)

(∀a, b, c ∈ U)(((a ? b) ? c) ? (b ? c) = 0), (1.10)

(∀a, b, c ∈ U)(a ? b = 0⇒ a ? (c ? b) = 0), (1.11)

(∀a, b, c ∈ U)(((a ? b) ? c) ? (a ? (b ? c)) = 0), (1.12)

(∀u, a, b, c ∈ U)(((a ? b) ? c) ? (b ? (u ? c)) = 0). (1.13)

According to [11], the binary relation ≤ on U is defined as follows:

(∀a, b ∈ U)(a ≤ b ⇔ a ? b = 0).

Definition 1.2. [9, 11,13,20–22,37] A nonempty subset S of U is called

(1) a BCC-subalgebra of U if it satisfies the following condition:

(∀a, b ∈ S)(a ? b ∈ S), (1.14)

(2) a near BCC-filter of U if it satisfies the following condition:

(∀a, b ∈ U)(b ∈ S ⇒ a ? b ∈ S), (1.15)

(3) a BCC-filter of U if it satisfies the following conditions:

the constant 0 of U is in S, (1.16)

(∀a, b ∈ U)((a ? b ∈ S, a ∈ S)⇒ b ∈ S), (1.17)

(4) a BCC-ideal of U if it satisfies the condition (1.16) and the following condition:

(∀a, b, c ∈ U)((a ? (b ? c) ∈ S, b ∈ S)⇒ a ? c ∈ S), (1.18)

(5) a strong BCC-ideal of U if it satisfies the condition (1.16) and the following condition:

(∀a, b, c ∈ U)(((c ? b) ? (c ? a) ∈ S, b ∈ S)⇒ a ∈ S). (1.19)
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We proved that the concept of BCC-subalgebras is a generalization of near BCC-filters, near BCC-

filters is a generalization of BCC-filters, BCC-filters is a generalization of BCC-ideals, BCC-ideals is a

generalization of strong BCC-ideals. They also proved that U is the only strong BCC-ideal.

Definition 1.3. [39] A fuzzy set (FS) L in a nonempty set U is described by its membership function

¯F. To every point a ∈ U , this function associates a real number ¯F(a) in the closed interval [0, 1].

The real number ¯F(a) is interpreted for the point as a degree of membership of an object a ∈ U to

the FS L, that is, L := {(a, ¯F(a)) | a ∈ U}. We say that a FS L in U is constant fuzzy set if its

membership function ¯F is constant. If A ⊆ U and t ∈ (0, 1], the t-characteristic function [23] χtA of

U is a function of U into {0, t} defined as follows:

χtA(a) =

{
t if a ∈ A,
0 otherwise.

By the definition of t-characteristic function, χtA is a function of U into {0, t} ⊂ [0, 1]. We denote

the fuzzy set LtA in U is described by its membership function χtA, is called the t-characteristic fuzzy

set of A in U .

Definition 1.4. [6] An ordered set (or partially ordered set) L = (L,≤) equipped with a nonempty

set L and a binary relation ≤ on L if it meet the following axioms:

(∀u ∈ L)(u ≤ u), (reflexivity)

(∀u, v ∈ L)(u ≤ v , v ≤ u ⇒ u = v)), (anti-symmetry)

(∀u, v , w ∈ L)(u ≤ v , v ≤ w ⇒ u ≤ w). (transitivity)

Definition 1.5. [6] An ordered set L = (L,≤) is called a linearly ordered set if it satisfies the following

condition:

(∀u, v ∈ L)(either u ≤ v or v ≤ u).

We call a relation ≤ on L that a linear order.

In this paper, for each elements u, v of an ordered set L, we shall write u ∨ v (read as u join v)

in place of sup{u, v} and u ∧ v (read as u meet v) in place of inf{u, v} if them exist. Similarly, for

subset S of L, we write
∨
S (read as join of S) in place of supS and

∧
S (read as meet of S) in

place of inf S if them exist.

Definition 1.6. [6] Let L = (L,≤) be a nonempty ordered set. Then an ordered set L with sup

operation ∨ and inf operation ∧ on L is called

(1) a lattice if

(∀u, v ∈ L)(u ∨ v and u ∧ v exist),

(2) a complete lattice if

(∀S ⊆ L)(
∨
S and

∧
S exist).
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We write L = (L,≤,∨,∧) to denote a lattice.

For a complete lattice L is easy to verify that it has the least element 0L and the greatest element

1L. So we denote a complete lattice by L = (L,≤,∨,∧, 0L, 1L).

Definition 1.7. [6] Let L be a lattice with the least element 0L and the greatest element 1L. For

u ∈ L, we say v ∈ L is a complement of u if

u ∧ v = 0L, u ∨ v = 1L.

If u has the unique complement, we denote this complement by u
′
.

Definition 1.8. [6] A lattice L = (L,≤,∨,∧) is called a Boolean lattice if it satisfies the following

conditions:

(1) L is distributive,

(2) L has the least element 0L and the greatest element 1L.

For a Boolean lattice L is easy to verify that for each u ∈ L, u ′ ∈ L exists. So we denote a Boolean

lattice by L = (L,≤,∨,∧,′ , 0L, 1L).

Lemma 1.1. [6] Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Then the following statements

hold:

(1) (∀u, v ∈ L)((u ∨ v)
′

= u
′ ∧ v ′),

(2) (∀u, v ∈ L)((u ∧ v)
′

= u
′ ∨ v ′),

(3) (∀u, v ∈ L)(u ≤ v ⇔ u
′ ≥ v ′),

(4) (∀u, v ∈ L)(u = v ⇔ u
′

= v
′
),

(5) (∀u, v ∈ L)(u < v ⇔ u
′
> v

′
).

Definition 1.9. [8] Let L = (L,≤,∨,∧) be a lattice. An L-fuzzy set (LFS) L in a nonempty set U
is described by its membership function ¯L. To every point a ∈ U , this function associates an element

¯L(a) in L. The element ¯L(a) is interpreted for the point as a degree of membership of an object

a ∈ U to the LFS L, that is, L := {(a, ¯L(a)) | a ∈ U}. We say that an LFS L in U is a constant LFS

if its membership function ¯L is constant.

2. LFSs in BCC-algebras

In this section, we introduce the new concepts of LFSs in BCC-algebras: L-fuzzy BCC-subalgebras,
L-fuzzy near BCC-filters, L-fuzzy BCC-filters, L-fuzzy BCC-ideals, and L-fuzzy strong BCC-ideals,

and provide their properties and relationships.

Definition 2.1. Let L = (L,≤,∨,∧) be a lattice. Then an LFS L in U is called
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(1) an L-fuzzy BCC-subalgebra of U if it satisfies the following condition:

(∀a, b ∈ U)(¯L(a ? b) ≥ ¯L(a) ∧ ¯L(b)), (2.1)

(2) an L-fuzzy near BCC-filter of U if it satisfies the following condition:

(∀a, b ∈ U)(¯L(a ? b) ≥ ¯L(b)), (2.2)

(3) an L-fuzzy BCC-filter of U if it satisfies the following conditions:

(∀a ∈ U)(¯L(0) ≥ ¯L(a)), (2.3)

(∀a, b ∈ U)(¯L(b) ≥ ¯L(a ? b) ∧ ¯L(a)), (2.4)

(4) an L-fuzzy BCC-ideal of U if it satisfies the condition (2.3) and the following condition:

(∀a, b, c ∈ U)(¯L(a ? c) ≥ ¯L(a ? (b ? c)) ∧ ¯L(b)), (2.5)

(5) an L-fuzzy strong BCC-ideal of U if it satisfies the condition (2.3) and the following condition:

(∀a, b, c ∈ U)(¯L(a) ≥ ¯L((c ? b) ? (c ? a)) ∧ ¯L(b)). (2.6)

Theorem 2.1. An LFS in U is an L-fuzzy strong BCC-ideal if and only if it is constant.

Proof. Assume that L is an L-fuzzy strong BCC-ideal of U . Then it satisfies (2.3). Thus for all a ∈ U ,

¯L(a) ≥ ¯L((a ? 0) ? (a ? a)) ∧ ¯L(0)} ((2.6))

= ¯L(0 ? (a ? a)) ∧ ¯L(0)} (BCC-3)

= ¯L(a ? a) ∧ ¯L(0)} (BCC-2)

= ¯L(0) ∧ ¯L(0)} ((1.1))

= ¯L(0).

Since ¯L(0) ≥ ¯L(a), we have ¯L(x) = ¯L(0) for all a ∈ U . Hence, ¯L is constant, that is, L is

constant.

The converse is obvious because L is constant. �

Theorem 2.2. Every L-fuzzy near BCC-filter of U is an L-fuzzy BCC-subalgebra.

Proof. Let L be an L-fuzzy near BCC-filter of U . Then for all a, b ∈ U ,

¯L(a ? b) ≥ ¯L(b) ((2.2))

≥ ¯L(a) ∧ ¯L(b).

Therefore, L is an L-fuzzy BCC-subalgebra of U . �

The converse of Theorem 2.2 does not hold in general. This is shown by the following example.
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Example 2.1. Consider a BCC-algebra U = (U , ?, 0), where U = {0, 1, 2, 3} is defined in the Cayley

table below.
? 0 1 2 3

0 0 1 2 3

1 0 0 1 3

2 0 0 0 3

3 0 1 1 0

Consider a lattice L = (L,≤,∨,∧), where L = {a, b, c, d, e} is drawn in Figure 1.

Figure 1. Lattice

We define an LFS L in U as follows:

µL =

(
0

e

1

a

2

c

3

a

)
.

Then L is an L-fuzzy BCC-subalgebra of U . Since µL(1 ? 2) = µL(1) = a � c = µL(2), we have L is

not an L-fuzzy near BCC-filter of U .

Theorem 2.3. Every L-fuzzy BCC-filter of U is an L-fuzzy near BCC-filter.

Proof. Let L be an L-fuzzy BCC-filter of U . Then for all a, b ∈ U ,

¯L(a ? b) ≥ ¯L(b ? (a ? b)) ∧ ¯L(b) ((2.4))

= ¯L(0) ∧ ¯L(b) ((1.5))

= ¯L(b). ((2.3))

Therefore, L is an L-fuzzy near BCC-filter of U . �

The converse of Theorem 2.3 does not hold in general. This is shown by the following example.

Example 2.2. Consider a BCC-algebra U = (U , ?, 0), where U = {0, 1, 2, 3} is defined in the Cayley

table below.
? 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 0 0 3

3 0 0 0 0



8 Int. J. Anal. Appl. (2023), 21:59

Figure 2. Lattice

Consider a lattice L = (L,≤,∨,∧), where L = {a, b, c, d, e} is drawn in Figure 2.

We define an LFS L in U as follows:

µL =

(
0

e

1

b

2

d

3

b

)
.

Then L is an L-fuzzy near BCC-filter of U . Since µL(1) = b � d = e ∧ d = µL(0) ∧ µL(2) =

µL(2 ? 1) ∧ µL(2), we have L is not an L-fuzzy BCC-filter of U .

Theorem 2.4. Every L-fuzzy BCC-ideal of U is an L-fuzzy BCC-filter.

Proof. Let L be an L-fuzzy BCC-ideal of U . It is sufficient to prove the condition (2.3). Then for all

a, b ∈ U ,

¯L(b) = ¯L(0 ? b) (BCC-2)

≥ ¯L(0 ? (a ? b)) ∧ ¯L(a) ((2.5))

= ¯L(a ? b) ∧ ¯L(a). (BCC-2)

Therefore, L is an L-fuzzy BCC-filter of U . �

The converse of Theorem 2.4 does not hold in general. This is shown by the following example.

Example 2.3. Consider a BCC-algebra U = (U , ?, 0), where U = {0, 1, 2, 3} is defined in the Cayley

table below.
? 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 2

3 0 1 0 0

Consider a lattice L = (L,≤,∨,∧), where L = {a, b, c, d, e, f } is drawn in Figure 3.

We define an LFS L in U as follows:

µL =

(
0

f

1

d

2

e

3

e

)
.
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Figure 3. Lattice

Then L is an L-fuzzy BCC-filter of U . Since µL(2 ? 3) = µL(2) = e � d = f ∧ d = µL(0) ∧ µL(1) =

µL(2 ? (1 ? 3)) ∧ µL(1), we have L is not an L-fuzzy BCC-ideal of U .

Theorem 2.5. Every L-fuzzy strong BCC-ideal of U is an L-fuzzy BCC-ideal.

Proof. Let L be an L-fuzzy strong BCC-ideal of U . By Theorem 2.1, we have L is constant. Therefore,

it is obvious that L is an L-fuzzy BCC-ideal of U . �

The converse of Theorem 2.5 does not hold in general. This is shown by the following example.

Example 2.4. Consider a BCC-algebra U = (U , ?, 0), where U = {0, 1, 2, 3} is defined in the Cayley

table below.

? 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

Consider a lattice L = (L,≤,∨,∧), where L = {a, b, c, d, e, f , g} is drawn in Figure 4.

Figure 4. Lattice

We define an LFS L in U as follows:

µL =

(
0

g

1

c

2

a

3

e

)
.

Then L is an L-fuzzy BCC-ideal of U . Since µL(2) = a � c = g ∧ c = µL(0) ∧ µL(1) = µL((2 ? 1) ?

(2 ? 2)) ∧ µL(1), we have L is not an L-fuzzy strong BCC-ideal of U .
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3. Characteristic LFSs

Our aim in this section is to study the relation between special subsets and special LFSs in BCC-

algebras. In this section only, we shall determine L is a complete lattice (L,≤,∨,∧, 0L, 1L).

Let A be a subset of U . Then the characteristic function χA of U is a function of U into {1L, 0L}
defined as follows:

χA(a) =

{
1L if a ∈ A,
0L otherwise.

By the definition of characteristic function, χA is a function of U into {1L, 0L} ⊂ L. We denote the

LFS LA in U is described by its membership function χA, is called the characteristic LFS of A in U .

Lemma 3.1. Let the constant 0 of U is in A. Then χA(0) ≥ χA(a) for all a ∈ U .

Proof. Assume that 0 ∈ A. Then for all a ∈ U , χA(0) = 1L ≥ χA(a). �

Lemma 3.2. Let A be a nonempty subset of a BCC-algebra U . If χA(0) ≥ χA(a) for all a ∈ U , then
the constant 0 of U is in A.

Proof. Assume that χA(0) ≥ χA(a) for all a ∈ U . Since A is a nonempty subset of U , we have an

element u in A, that is, χA(u) = 1L. Thus 1L ≥ χA(0) ≥ χA(u) = 1L. So χA(0) = 1L, that is,

0 ∈ A. �

Theorem 3.1. A nonempty subset A of U is a BCC-subalgebra of U if and only if the characteristic

LFS LA is an L-fuzzy BCC-subalgebra of U .

Proof. Assume that A is a BCC-subalgebra of U . Let a, b ∈ U .
Case 1: a, b ∈ A. Then χA(a) = 1L = χA(b), so χA(a)∧χA(b) = 1L. Since A is a BCC-subalgebra

of U , we have a ? b ∈ A and so χA(a ? b) = 1L. Therefore, χA(a ? b) = 1L ≥ 1L = χA(a) ∧ χA(b).

Case 2: a /∈ A or b /∈ A. Then χA(a) = 0L or χA(b) = 0L, so χA(a) ∧ χA(b) = 0L. Therefore,

χA(a ? b) ≥ 0L = χA(a) ∧ χA(b).

Hence, LA is an L-fuzzy BCC-subalgebra of U .
Conversely, assume that LA is an L-fuzzy BCC-subalgebra of U . Let a, b ∈ A. Then χA(a) =

1L = χA(b), so χA(a) ∧ χA(b) = 1L. Since LA is an L-fuzzy BCC-subalgebra of U , we have

1L ≥ χA(a ?b) ≥ χA(a)∧χA(b) = 1L. By anti-symmetry, we have χA(a ?b) = 1L, that is, a ?b ∈ A.
Hence, A is a BCC-subalgebra of U .

�

Theorem 3.2. A nonempty subset A of U is a near BCC-filter of U if and only if the characteristic

LFS LA is an L-fuzzy near BCC-filter of U .

Proof. Assume that A is a near BCC-filter of U . Let a, b ∈ U .
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Case 1: b ∈ A. Then χA(b) = 1L. Since A is a near BCC-filter of U , we have a ? b ∈ A and so

χA(a ? b) = 1L. Therefore, χA(a ? b) = 1L ≥ 1L = χA(b).

Case 2: b /∈ A. Then χA(b) = 0L. Therefore, χA(a ? b) ≥ 0L = χA(b).

Hence, LA is an L-fuzzy near BCC-filter of U .
Conversely, assume that LA is an L-fuzzy near BCC-filter of U . Let b ∈ A. Then χA(b) = 1L. Since

LA is an L-fuzzy near BCC-filter of U , we have 1L ≥ χA(a ? b) ≥ χA(b) = 1L. By anti-symmetry, we

have χA(a ? b) = 1L, that is, a ? b ∈ A. Hence, A is a near BCC-filter of U .
�

Theorem 3.3. A nonempty subset A of U is a BCC-filter of U if and only if the characteristic LFS

LA is an L-fuzzy BCC-filter of U .

Proof. Assume that A is a BCC-filter of U . Since 0 ∈ A, it follows from Lemma 3.1 that χA(0) ≥
χA(x) for all a ∈ U . Next, let a, b ∈ U .

Case 1: a, b ∈ A. Then χA(a) = 1L = χA(b). Thus χA(b) = 1L ≥ χA(a ? b) = χA(a ? b)∧χA(a).

Case 2: a /∈ A or b /∈ A. If a /∈ A, then χA(a) = 0L. Thus χA(b) ≥ 0L = χA(a ? b) ∧ χA(a).

If b /∈ A, then χA(b) = 0L. Since A is a BCC-filter of A, we have a ? b /∈ A or a /∈ A and so

χA(a ? b) = 0L or χA(a) = 0L. Thus χA(b) = 0L ≥ 0L = χA(a ? b) ∧ χA(a).

Hence, LA is an L-fuzzy BCC-filter of U .
Conversely, assume that LA is an L-fuzzy BCC-filter of U . Since χA(0) ≥ χA(a) for all a ∈ U ,

it follows from Lemma 3.1 that 0 ∈ A. Next, let a, b ∈ U be such that a ? b, a ∈ A. Then

χA(a ? b) = 1L = χA(a), so χA(a ? b) ∧ χA(a) = 1L. Since LA is an L-fuzzy BCC-filter of U , we
have 1L ≥ χA(b) ≥ χA(a ? b)∧χA(a) = 1L. By anti-symmetry, we have χA(b) = 1L, that is, y ∈ A.
Hence, A is a BCC-filter of U . �

Theorem 3.4. A nonempty subset A of U is a BCC-ideal of U if and only if the characteristic LFS

LA is an L-fuzzy BCC-ideal of U .

Proof. Assume that A is a BCC-ideal of U . Since 0 ∈ A, it follows from Lemma 3.1 that χA(0) ≥
χA(x) for all a ∈ U . Next, let a, b, c ∈ U .

Case 1: a ? (b ? c), b ∈ A. Then χA(a ? (b ? c)) = 1L = χA(b), so χA(a ? (b ? c)) ∧ χA(b) = 1L.

Since A is a BCC-ideal of U , we have a ? c ∈ A and so χA(a ? c) = 1L. Thus χA(a ? c) = 1L ≥ 1L =

χA(a ? (b ? c)) ∧ χA(b).

Case 2: a?(b?c) /∈ A or b /∈ A. Then χA(a?(b?c)) = 0L or χA(b) = 0L, so χA(a?(b?c))∧χA(b) =

0L. Thus χA(a ? c) ≥ 0L = χA(a ? (b ? c)) ∧ χA(b).

Hence, LA is an L-fuzzy BCC-ideal of U .
Conversely, assume that LA is an L-fuzzy BCC-ideal of U . Since χA(0) ≥ χA(a) for all a ∈ U ,

it follows from Lemma 3.1 that 0 ∈ A. Next, let a, b, c ∈ U such that a ? (b ? c), y ∈ A. Then

χA(a ? (b ? c)) = 1L = χA(b), so χA(a ? (b ? c))∧χA(b) = 1L. Since LA is an L-fuzzy BCC-ideal of
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U , we have 1L ≥ χA(a?c) ≥ χA(a?(b?c))∧χA(b) = 1L. By anti-symmetry, we have χA(a?c) = 1L,

that is, a ? c ∈ A. Hence, A is a BCC-ideal of U . �

Theorem 3.5. A nonempty subset A of U is a strong BCC-ideal of U if and only if the characteristic

LFS LA is an L-fuzzy strong BCC-ideal of U .

Proof. It is straightforward by Theorem 2.1, and U is the only one strong BCC-ideal of itself. �

4. t-Level subset of an LFS

In this section, we shall discuss the relationships between L-fuzzy BCC-subalgebras (resp., L-fuzzy
near BCC-filters, L-fuzzy BCC-filters, L-fuzzy BCC-ideals, and L-fuzzy strong BCC-ideals) of BCC-

algebras and their t-level subsets. We shall determine L = (L,≤,∨,∧) is a lattice.

Definition 4.1. Let L be an LFS in U with the membership function µL. For any t ∈ L, the sets

U(µL, t) = {a ∈ U | µL(a) ≥ t},

U+(µL, t) = {a ∈ U | µL(a) > t},

L(µL, t) = {a ∈ U | µL(a) ≤ t},

L−(µL, t) = {a ∈ U | µL(a) < t},

E(µL, t) = {a ∈ U | µL(a) = t}

are referred to as an upper t-level subset, an upper t-strong level subset, a lower t-level subset, a

lower t-strong level subset, and an equal t-level subset of L, respectively.

Theorem 4.1. An LFS L is an L-fuzzy strong BCC-ideal of U if and only if E(µL, µL(0)) is a strong

BCC-ideal of U .

Proof. Assume that L is an L-fuzzy strong BCC-ideal of U . By Theorem 2.1, we have L is constant.

Then

(∀a ∈ U)(µL(a) = µL(0)).

Thus a ∈ E(µL, µL(0)) and so E(µL, µL(0)) = U . Hence, E(µL, µL(0)) is a strong BCC-ideal of U .
Conversely, assume E(µL, µL(0)) is a strong BCC-ideal of U . Then E(µL, µL(0)) = U . We consider

(∀a ∈ U)(µL(a) = µL(0)).

Thus L is constant, that is, L is an L-fuzzy strong BCC-ideal of U . �
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4.1. Upper t-level subset of an LFS.

Theorem 4.2. An LFS L is an L-fuzzy BCC-subalgebra of U if and only if U(µL, t) is, if it is nonempty,

a BCC-subalgebra of U for every t ∈ L.

Proof. Assume L is an L-fuzzy BCC-subalgebra of U . Let t ∈ L be such that U(µL, t) 6= ∅. Let

a, b ∈ U . Then

a, b ∈ U(µL, t)⇒ µL(a) ≥ t, µL(b) ≥ t

⇒ µL(a) ∧ µL(b) ≥ t

⇒ µL(a ? b) ≥ µL(a) ∧ µL(b) ≥ t ((2.1))

⇒ µL(a ? b) ≥ t (≤ is transitive)

⇒ a ? b ∈ U(µL, t).

Hence, U(µL, t) is a BCC-subalgebra of U .
Conversely, assume for all t ∈ L, U(µL, t) is a BCC-subalgebra of U if it is nonempty. Let a, b ∈ U .
Choose t = µL(a)∧µL(b) ∈ L. Then µL(a) ≥ t and µL(b) ≥ t. Thus a, b ∈ U(µL, t) 6= ∅. As the

hypothesis, we get U(µL, t) is a BCC-subalgebra of U and so a ? b ∈ U(µL, t). Thus µL(a ? b) ≥ t =

µL(a) ∧ µL(b).

Hence, L is an L-fuzzy BCC-subalgebra of U . �

Theorem 4.3. An LFS L is an L-fuzzy near BCC-filter of U if and only if U(µL, t) is, if it is nonempty,

a near BCC-filter of U for every t ∈ L.

Proof. Assume L is an L-fuzzy near BCC-filter of U . Let t ∈ L be such that U(µL, t) 6= ∅. Let

a, b ∈ U . Then

b ∈ U(µL, t)⇒ µL(b) ≥ t

⇒ µL(a ? b) ≥ µL(b) ≥ t ((2.2))

⇒ µL(a ? b) ≥ t (≤ is transitive)

⇒ a ? b ∈ U(µL, t).

Hence, U(µL, t) is a BCC-subalgebra of U .
Conversely, assume for all t ∈ L, U(µL, t) is a near BCC-filter of U if it is nonempty. Let a, b ∈ U .
Choose t = µL(b) ∈ L. Then µL(b) ≥ t. Thus b ∈ U(µL, t) 6= ∅. As the hypothesis, we get

U(µL, t) is a near BCC-filter of U and so a ? b ∈ U(µL, t). Thus µL(a ? b) ≥ t = µL(b).

Hence, L is an L-fuzzy near BCC-filter of U . �

Lemma 4.1. Let L be an LFS in U . Then L satisfies the condition (2.3) if and only if U(µL, t), if it

is nonempty, contains 0 ∈ U for every t ∈ L.
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Proof. Let t ∈ L be such that U(µL, t) 6= ∅. Let a ∈ U . Then

a ∈ U(µL, t)⇒ µL(a) ≥ t

⇒ µL(0) ≥ µL(a) ≥ t ((2.3))

⇒ 0 ∈ U(µL, t).

Conversely, assume for all t ∈ L, U(µL, t) contains 0 ∈ U if it is nonempty. Choose t = µL(a) ∈ L.
Then µL(a) ≥ t. Thus a ∈ U(µL, t) 6= ∅. As the hypothesis, 0 ∈ U(µL, t). Thus µL(0) ≥ t =

µL(a). �

Theorem 4.4. An LFS L is an L-fuzzy BCC-filter of U if and only if U(µL, t) is, if it is nonempty, a

BCC-filter of U for every t ∈ L.

Proof. Assume L is an L-fuzzy BCC-filter of U . Let t ∈ L be such that U(µL, t) 6= ∅. Let a, b ∈ U .
Then

a ? b, a ∈ U(µL, t)⇒ µL(a ? b) ≥ t, µL(a) ≥ t

⇒ µL(a ? b) ∧ µL(a) ≥ t

⇒ µL(b) ≥ µL(a ? b) ∧ µL(a) ≥ t ((2.4))

⇒ b ∈ U(µL, t).

By Lemma 4.1, we have 0 ∈ U(µL, t). Hence, U(µL, t) is a BCC-filter of U .
Conversely, assume for all t ∈ L, U(µL, t) is a BCC-filter of U if it is nonempty. Let a, b ∈ U . By

Lemma 4.1, we have L satisfies the condition (2.3).

Choose t = µL(a?b)∧µL(a) ∈ L. Then µL(a?b) ≥ t and µL(a) ≥ t. Thus a?b, a ∈ U(µL, t) 6= ∅.
As the hypothesis, we get U(µL, t) is a BCC-filter of U and so b ∈ U(µL, t). Thus µL(b) ≥ t =

µL(a ? b) ∧ µL(a).

Hence, L is an L-fuzzy BCC-filter of U . �

Theorem 4.5. An LFS L is an L-fuzzy BCC-ideal of U if and only if U(µL, t) is, if it is nonempty, a

BCC-ideal of U for every t ∈ L.

Proof. Assume L is an L-fuzzy BCC-ideal of U . Let t ∈ L be such that U(µL, t) 6= ∅. Let a, b ∈ U .
Then

a ? (b ? c), b ∈ U(µL, t)⇒ µL(a ? (b ? c)) ≥ t, µL(b) ≥ t

⇒ µL(a ? (b ? c)) ∧ µL(b) ≥ t

⇒ µL(a ? c) ≥ µL(a ? (b ? c)) ∧ µL(b) ≥ t ((2.5))

⇒ a ? c ∈ U(µL, t).

By Lemma 4.1, we have 0 ∈ U(µL, t). Hence, U(µL, t) is a BCC-ideal of U .
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Conversely, assume for all t ∈ L, U(µL, t) is a BCC-ideal of U if it is nonempty. Let a, b ∈ U . By

Lemma 4.1, we have L satisfies the condition (2.3).

Choose t = µL(a ? (b ? c)) ∧ µL(b) ∈ L. Then µL(a ? (b ? c)) ≥ t and µL(b) ≥ t. Thus

a ? (b ? c), b ∈ U(µL, t) 6= ∅. As the hypothesis, we get U(µL, t) is a BCC-ideal of U and so

a ? c ∈ U(µL, t). Thus µL(a ? c) ≥ t = µL(a ? (b ? c)) ∧ µL(b).

Hence, L is an L-fuzzy BCC-ideal of U . �

Theorem 4.6. An LFS L is an L-fuzzy strong BCC-ideal of U if and only if U(µL, t) is, if it is nonempty,

a strong BCC-ideal of U for every t ∈ L.

Proof. Assume L is an L-fuzzy strong BCC-ideal of U . Let t ∈ L be such that U(µL, t) 6= ∅. Let

a, b ∈ U . Then

(c ? b) ? (c ? a), b ∈ U(µL, t)⇒ µL((c ? b) ? (c ? a)) ≥ t, µL(b) ≥ t

⇒ µL((c ? b) ? (c ? a)) ∧ µL(b) ≥ t

⇒ µL(a) ≥ µL((c ? b) ? (c ? a)) ∧ µL(b) ≥ t ((2.6))

⇒ a ∈ U(µL, t).

By Lemma 4.1, we have 0 ∈ U(µL, t). Hence, U(µL, t) is a strong BCC-ideal of U .
Conversely, assume for all t ∈ L, U(µL, t) is a strong BCC-ideal of U if it is nonempty. Let a, b ∈ U .

By Lemma 4.1, we have L satisfies the condition (2.3).

Choose t = µL((c ? b) ? (c ? a))∧ µL(b) ∈ L. Then µL((c ? b) ? (c ? a)) ≥ t and µL(b) ≥ t. Thus
(c ? b) ? (c ? a), b ∈ U(µL, t) 6= ∅. As the hypothesis, we get U(µL, t) is a strong BCC-ideal of U and

so a ∈ U(µL, t). Thus µL(a) ≥ t = µL((c ? b) ? (c ? a)) ∧ µL(b).

Hence, L is an L-fuzzy strong BCC-ideal of U . �

4.2. Upper t-strong level subset of an LFS.

Theorem 4.7. Let L = (L,≤,∨,∧) be a linearly ordered set. Then L is an L-fuzzy BCC-subalgebra

of U if and only if U+(µL, t) is, if it is nonempty, a BCC-subalgebra of U for every t ∈ L.

Proof. Assume L is an L-fuzzy BCC-subalgebra of U . Let t ∈ L be such that U+(µL, t) 6= ∅. Let

a, b ∈ U . Then µL(a) and µL(b) are compatible. Suppose that µL(a) ≥ µL(b), that is, µL(a)∧µL(b) =

µL(b). Then

a, b ∈ U+(µL, t)⇒ µL(a) > t, µL(b) > t

⇒ µL(a) ∧ µL(b) = µL(b) > t

⇒ µL(a ? b) ≥ µL(a) ∧ µL(b) > t ((2.1))

⇒ a ? b ∈ U+(µL, t).
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Hence, U+(µL, t) is a BCC-subalgebra of U .
Conversely, assume for all t ∈ L, U+(µL, t) is a BCC-subalgebra of U if it is nonempty. Suppose

there exist a, b ∈ U such that µL(a ? b) � µL(a) ∧ µL(b). It means that µL(a ? b) < µL(a) ∧ µL(b).

Choose t = µL(a ? b) ∈ L. Then µL(a) ∧ µL(b) > t, and so µL(a) ≥ µL(a) ∧ µL(b) > t and

µL(b) ≥ µL(a) ∧ µL(b) > t. Thus a, b ∈ U+(µL, t) 6= ∅. As the hypothesis, we get U+(µL, t) is a

BCC-subalgebra of U and so a ? b ∈ U+(µL, t). Thus µL(a ? b) > t = µL(a ? b), a contradiction.

Hence, µL(a ? b) ≥ µL(a) ∧ µL(b) for all a, b ∈ U . Therefore, L is an L-fuzzy BCC-subalgebra of

U . �

Theorem 4.8. If L is an L-fuzzy near BCC-filter of U , then U+(µL, t) is, if it is nonempty, a near

BCC-filter of U for every t ∈ L.

Proof. Assume L is an L-fuzzy near BCC-filter of U . Let t ∈ L be such that U+(µL, t) 6= ∅. Let

a, b ∈ U . Then

b ∈ U+(µL, t)⇒ µL(b) > t

⇒ µL(a ? b) ≥ µL(b) > t ((2.2))

⇒ a ? b ∈ U+(µL, t).

Hence, U+(µL, t) is a near BCC-filter of U . �

Theorem 4.9. Let L = (L,≤,∨,∧) be a linearly ordered set. If U+(µL, t) is, if it is nonempty, a near

BCC-filter of U for every t ∈ L, then L is an L-fuzzy near BCC-filter of U .

Proof. Assume for all t ∈ L, U+(µL, t) is a near BCC-filter of U if it is nonempty. Suppose there exist

a, b ∈ U such that µL(a ? b) � µL(b). It means that µL(a ? b) < µL(b). Choose t = µL(a ? b) ∈ L.
Then µL(b) > t. Thus b ∈ U+(µL, t) 6= ∅. As the hypothesis, we get U+(µL, t) is a near BCC-filter of

U and so a?b ∈ U+(µL, t). Thus µL(a?b) > t = µL(a?b), a contradiction. Hence, µL(a?b) ≥ µL(b)

for all a, b ∈ U . Therefore, L is an L-fuzzy near BCC-filter of U . �

Lemma 4.2. Let L = (L,≤,∨,∧) be a linearly ordered set and L an LFS in U . Then L satisfies the

condition (2.3) if and only if U+(µL, t), if it is nonempty, contains 0 ∈ U for every t ∈ L.

Proof. Let t ∈ L be such that U+(µL, t) 6= ∅. Let a ∈ U . Then

a ∈ U+(µL, t)⇒ µL(a) > t

⇒ µL(0) ≥ µL(a) > t ((2.3))

⇒ 0 ∈ U+(µL, t).

Conversely, assume for all t ∈ L, U+(µL, t) contains 0 ∈ U if it is nonempty. Suppose there

exists a ∈ U such that µL(0) � µL(a). It means that µL(0) < µL(a). Choose t = µL(0) ∈ L.
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Then µL(a) > t. Thus a ∈ U+(µL, t) 6= ∅. As the hypothesis, we get 0 ∈ U+(µL, t). Thus

µL(0) > t = µL(0), a contradiction. Hence, µL(0) ≥ µL(a) for all a ∈ U . �

Theorem 4.10. Let L = (L,≤,∨,∧) be a linearly ordered set. Then L is an L-fuzzy BCC-filter of U
if and only if U+(µL, t) is, if it is nonempty, a BCC-filter of U for every t ∈ L.

Proof. Assume L is an L-fuzzy BCC-filter of U . Let t ∈ L be such that U+(µL, t) 6= ∅. Let

a, b ∈ U . Then µL(a ? b) and µL(a) are compatible. Suppose that µL(a ? b) ≥ µL(a), that is,

µL(a ? b) ∧ µL(a) = µL(a). Then

a ? b, a ∈ U+(µL, t)⇒ µL(a ? b) > t, µL(a) > t

⇒ µL(a ? b) ∧ µL(a) = µL(a) > t

⇒ µL(b) ≥ µL(a ? b) ∧ µL(a) > t ((2.4))

⇒ b ∈ U+(µL, t).

By Lemma 4.2, we have 0 ∈ U+(µL, t). Hence, U+(µL, t) is a BCC-filter of U .
Conversely, assume for all t ∈ L, U+(µL, t) is a BCC-filter of U if it is nonempty. Suppose there exist

a, b ∈ U such that µL(b) � µL(a?b)∧µL(a). It means that µL(b) < µL(a?b)∧µL(a). By Lemma 4.2,

we have L satisfies the condition (2.3). Choose t = µL(b) ∈ L. Then µL(a ? b) ∧ µL(a) > t, and so

µL(a?b) ≥ µL(a?b)∧µL(a) > t and µL(a) ≥ µL(a?b)∧µL(a) > t. Thus a?b, a ∈ U+(µL, t) 6= ∅. As
the hypothesis, we get U+(µL, t) is a BCC-filter of U and so b ∈ U+(µL, t). Thus µL(b) > t = µL(b),

a contradiction. Hence, µL(b) ≥ µL(a ? b) ∧ µL(a) for all a, b ∈ U . Therefore, L is an L-fuzzy BCC-

filter of U . �

Theorem 4.11. Let L = (L,≤,∨,∧) be a linearly ordered set. Then L is an L-fuzzy BCC-ideal of U
if and only if U+(µL, t) is, if it is nonempty, a BCC-ideal of U for every t ∈ L.

Proof. Assume L is an L-fuzzy BCC-ideal of U . Let t ∈ L be such that U+(µL, t) 6= ∅. Let

a, b, c ∈ U . Then µL(a ? (b ? c)) and µL(b) are compatible. Suppose that µL(a ? (b ? c)) ≥ µL(b),

that is, µL(a ? (b ? c)) ∧ µL(b) = µL(b). Then

a ? (b ? c), b ∈ U+(µL, t)⇒ µL(a ? (b ? c)) ≥ t, µL(b) > t

⇒ µL(a ? (b ? c)) ∧ µL(b) = µL(b) > t

⇒ µL(a ? c) ≥ µL(a ? (b ? c)) ∧ µL(b) > t ((2.5))

⇒ a ? c ∈ U+(µL, t).

By Lemma 4.2, we have 0 ∈ U+(µL, t). Hence, U+(µL, t) is a BCC-ideal of U .
Conversely, assume for all t ∈ L, U+(µL, t) is a BCC-ideal of U if it is nonempty. Suppose there

exist a, b, c ∈ U such that µL(a ? c) � µL(a ? (b ? c)) ∧ µL(b). It means that µL(a ? c) < µL(a ?

(b ? c)) ∧ µL(b). By Lemma 4.2, we have L satisfies the condition (2.3). Choose t = µL(a ? c) ∈ L.
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Then µL(a ? (b ? c)) ∧ µL(b) > t, and so µL(a ? (b ? c)) ≥ µL(a ? (b ? c)) ∧ µL(b) > t and

µL(b) ≥ µL(a ? (b ? c)) ∧ µL(b) > t. Thus a ? (b ? c), b ∈ U+(µL, t) 6= ∅. As the hypothesis, we

get U+(µL, t) is a BCC-ideal of U and so a ? c ∈ U+(µL, t). Thus µL(a ? c) > t = µL(a ? c), a

contradiction. Hence, µL(a?c) ≥ µL(a? (b ?c))∧µL(b) for all a, b.c ∈ U . Therefore, L is an L-fuzzy
BCC-ideal of U . �

Theorem 4.12. Let L = (L,≤,∨,∧) be a linearly ordered set. Then L is an L-fuzzy strong BCC-ideal

of U if and only if U+(µL, t) is, if it is nonempty, a strong BCC-ideal of U for every t ∈ L.

Proof. Assume L is an L-fuzzy strong BCC-ideal of U . Let t ∈ L be such that U+(µL, t) 6= ∅. Let

a, b, c ∈ U . Then µL((c ? b) ? (c ? a)) and µL(b) are compatible. Suppose that µL((c ? b) ? (c ? a)) ≥
µL(b), that is, µL((c ? b) ? (c ? a)) ∧ µL(b) = µL(b). Then

(c ? b) ? (c ? a), b ∈ U+(µL, t)⇒ µL((c ? b) ? (c ? a)) > t, µL(b) > t

⇒ µL((c ? b) ? (c ? a)) ∧ µL(b) = µL(b) > t

⇒ µL(a) ≥ µL((c ? b) ? (c ? a)) ∧ µL(b) > t ((2.6))

⇒ a ∈ U+(µL, t).

By Lemma 4.2, we have 0 ∈ U+(µL, t). Hence, U+(µL, t) is a strong BCC-ideal of U .
Conversely, assume for all t ∈ L, U+(µL, t) is a strong BCC-ideal of U if it is nonempty. Suppose

there exist a, b, c ∈ U such that µL(a) � µL((c ? b) ? (c ? a))∧µL(b). It means that µL(a) < µL((c ?

b) ? (c ? a))∧µL(b). By Lemma 4.2, we have L satisfies the condition (2.3). Choose t = µL(a) ∈ L.
Then µL((c ?b)?(c ?a))∧µL(b) > t, and so µL((c ?b)?(c ?a)) ≥ µL((c ?b)?(c ?a))∧µL(b) > t and

µL(b) ≥ µL((c ?b)? (c ?a))∧µL(b) > t. Thus (c ?b)? (c ?a), b ∈ U+(µL, t) 6= ∅. As the hypothesis,
we get U+(µL, t) is a strong BCC-ideal of U and so a ∈ U+(µL, t). Thus µL(a) > t = µL(a), a

contradiction. Hence, µL(a) ≥ µL((c ? b) ? (c ? a)) ∧ µL(b) for all a, b, c ∈ U . Therefore, L is an

L-fuzzy strong BCC-ideal of U . �

4.3. Lower t-level subset of an LFS.

Definition 4.2. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Let L be an LFS in U . The LFS

L
′
defined by

(∀a ∈ U)(µL′ (a) = (µL(a))
′

= µL(a)
′
)

is called the complement of L in U .

Theorem 4.13. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Then L
′
is an L-fuzzy BCC-

subalgebra of U if and only if L(µL, t) is, if it is nonempty, a BCC-subalgebra of U for every t ∈ L.
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Proof. Assume L
′
is an L-fuzzy BCC-subalgebra of U . Let t ∈ L be such that L(µL, t) 6= ∅. Let

a, b ∈ U . Then

a, b ∈ L(µL, t)⇒ µL(a) ≤ t, µL(b) ≤ t

⇒ µL(a) ∨ µL(b) ≤ t

⇒ ((µL(a) ∨ µL(b))
′ ≥ t ′ (Lemma 1.1 (3))

⇒ µL(a)
′ ∧ µL(b)

′
= (µL(a) ∨ µL(b))

′ ≥ t ′ (Lemma 1.1 (1))

⇒ µL(a ? b)
′ ≥ µL(a)

′ ∧ µL(b)
′ ≥ t ′ ((2.1))

⇒ µL(a ? b)
′ ≥ t ′ (≤ is transitive)

⇒ µL(a ? b) ≤ t (Lemma 1.1 (3))

⇒ a ? b ∈ L(µL, t).

Hence, L(µL, t) is a BCC-subalgebra of U .
Conversely, assume for all t ∈ L, L(µL, t) is a BCC-subalgebra of U if it is nonempty. Let a, b ∈ U .

Choose t = µL(a) ∨ µL(b) ∈ L. Then µL(a) ≤ t and µL(b) ≤ t. Thus a, b ∈ L(µL, t) 6= ∅. As the

hypothesis, we get L(µL, t) is a BCC-subalgebra of U and so a ? b ∈ L(µL, t). Thus µL(a ? b) ≤ t =

µL(a) ∨ µL(b). By Lemma 1.1 (1), we have µL(a ? b)
′ ≥ µL(a)

′ ∧ µL(b)
′
. Hence, L

′
is an L-fuzzy

BCC-subalgebra of U . �

Theorem 4.14. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Then L
′
is an L-fuzzy near

BCC-filter of U if and only if L(µL, t) is, if it is nonempty, a near BCC-filter of U for every t ∈ L.

Proof. Assume L
′
is an L-fuzzy near BCC-filter of U . Let t ∈ L be such that L(µL, t) 6= ∅. Let

a, b ∈ U . Then

b ∈ L(µL, t)⇒ µL(b) ≤ t

⇒ µL(b))
′ ≥ t ′ (Lemma 1.1 (3))

⇒ µL(a ? b)
′ ≥ µL(b)

′ ≥ t ′ ((2.1))

⇒ µL(a ? b)
′ ≥ t ′ (≤ is transitive)

⇒ µL(a ? b) ≤ t (Lemma 1.1 (3))

⇒ a ? b ∈ L(µL, t).

Hence, L(µL, t) is a near BCC-filter of U .
Conversely, assume for all t ∈ L, L(µL, t) is a near BCC-filter of U if it is nonempty. Let a, b ∈ U .

Choose t = µL(b) ∈ L. Then µL(b) ≤ t. Thus b ∈ L(µL, t) 6= ∅. As the hypothesis, we get L(µL, t)

is a near BCC-filter of U and so a ? b ∈ L(µL, t). Thus µL(a ? b) ≤ t = µL(b). By Lemma 1.1 (3),

we have µL(a ? b)
′ ≥ µL(b)

′
. Hence, L

′
is an L-fuzzy near BCC-filter of U . �
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Lemma 4.3. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice and L an LFS in U . Then L
′
satisfies

the condition (2.3) if and only if L(µL, t), if it is nonempty, contains 0 ∈ U for every t ∈ L.

Proof. Let t ∈ L be such that L(µL, t) 6= ∅. Let a ∈ U . Then

a ∈ L(µL, t)⇒ µL(a) ≤ t

⇒ µL(a)
′ ≥ t ′ (Lemma 1.1 (3))

⇒ µL(0)
′ ≥ µL(a)

′ ≥ t ′ ((2.3))

⇒ µL(0)
′ ≥ t ′ (≤ is transitive)

⇒ µL(0) ≤ t (Lemma 1.1 (3))

⇒ 0 ∈ L(µL, t).

Conversely, assume for all t ∈ L, L(µL, t) contains 0 ∈ U if it is nonempty. Choose t = µL(a) ∈ L.
Then µL(a) ≤ t. Thus a ∈ L(µL, t) 6= ∅. As the hypothesis, 0 ∈ L(µL, t). Thus µL(0) ≤ t = µL(a).

By Lemma 1.1 (3), we have µL(0)
′ ≥ µL(a)

′
. �

Theorem 4.15. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Then L
′
is an L-fuzzy BCC-filter

of U if and only if L(µL, t) is, if it is nonempty, a BCC-filter of U for every t ∈ L.

Proof. Assume L
′
is an L-fuzzy BCC-filter of U . Let t ∈ L be such that L(µL, t) 6= ∅. Let a, b ∈ U .

Then

a ? b, a ∈ L(µL, t)⇒ µL(a ? b) ≤ t, µL(a) ≤ t

⇒ µL(a ? b) ∨ µL(a) ≤ t

⇒ ((µL(a ? b) ∨ µL(a))
′ ≥ t ′ (Lemma 1.1 (3))

⇒ µL(a ? b)
′ ∧ µL(a)

′
= (µL(a ? b) ∨ µL(a))

′ ≥ t ′ (Lemma 1.1 (1))

⇒ µL(b)
′ ≥ µL(a ? b)

′ ∧ µL(a)
′ ≥ t ′ ((2.4))

⇒ µL(b)
′ ≥ t ′ (≤ is transitive)

⇒ µL(b) ≤ t (Lemma 1.1 (3))

⇒ b ∈ L(µL, t).

By Lemma 4.3, we have 0 ∈ L(µL, t). Hence, L(µL, t) is a BCC-filter of U .
Conversely, assume for all t ∈ L, L(µL, t) is a BCC-filter of U if it is nonempty. Let a, b ∈ U .

By Lemma 4.3, we have L
′
satisfies the condition (2.3). Choose t = µL(a ? b) ∨ µL(a) ∈ L. Then

µL(a ? b) ≤ t and µL(a) ≤ t. Thus a ? b, a ∈ L(µL, t) 6= ∅. As the hypothesis, we get L(µL, t) is a

BCC-filter of U and so b ∈ L(µL, t). Thus µL(b) ≤ t = µL(a ? b) ∨ µL(a). By Lemma 1.1 (1), we

have µL(b)
′ ≥ µL(a ? b)

′ ∧ µL(a)
′
. Hence, L

′
is an L-fuzzy BCC-filter of U . �
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Theorem 4.16. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Then L
′
is an L-fuzzy BCC-ideal

of U if and only if L(µL, t) is, if it is nonempty, a BCC-ideal of U for every t ∈ L.

Proof. Assume L
′
is an L-fuzzy BCC-ideal of U . Let t ∈ L be such that L(µL, t) 6= ∅. Let a, b, c ∈ U .

Then

a ? (b ? c), b ∈ L(µL, t)⇒ µL(a ? (b ? c)) ≤ t, µL(b) ≤ t

⇒ µL(a ? (b ? c)) ∨ µL(b) ≤ t

⇒ ((µL(a ? (b ? c)) ∨ µL(b))
′ ≥ t ′ (Lemma 1.1 (3))

⇒ µL(a ? (b ? c))
′ ∧ µL(b)

′

= (µL(a ? (b ? c)) ∨ µL(b))
′ ≥ t ′ (Lemma 1.1 (1))

⇒ µL(a ? c)
′ ≥ µL(a ? (b ? c))

′ ∧ µL(b)
′ ≥ t ′ ((2.5))

⇒ µL(a ? c)
′ ≥ t ′ (≤ is transitive)

⇒ µL(a ? c) ≤ t (Lemma 1.1 (3))

⇒ a ? c ∈ L(µL, t).

By Lemma 4.3, we have 0 ∈ L(µL, t). Hence, L(µL, t) is a BCC-ideal of U .
Conversely, assume for all t ∈ L, L(µL, t) is a BCC-ideal of U if it is nonempty. Let a, b, c ∈ U . By

Lemma 4.3, we have L
′
satisfies the condition (2.3). Choose t = µL(a ? (b ? c)) ∨ µL(b) ∈ L. Then

µL(a ? (b ? c)) ≤ t and µL(b) ≤ t. Thus a ? (b ? c), b ∈ L(µL, t) 6= ∅. As the hypothesis, we get

L(µL, t) is a BCC-ideal of U and so a ? c ∈ L(µL, t). Thus µL(a ? c) ≤ t = µL(a ? (b ? c)) ∨ µL(b).

By Lemma 1.1 (1), we have µL(a ? c)
′ ≥ µL(a ? (b ? c))

′ ∧µL(b)
′
. Hence, L

′
is an L-fuzzy BCC-ideal

of U . �

Theorem 4.17. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Then L
′
is an L-fuzzy strong

BCC-ideal of U if and only if L(µL, t) is, if it is nonempty, a strong BCC-ideal of U for every t ∈ L.

Proof. Assume L
′
is an L-fuzzy strong BCC-ideal of U . Let t ∈ L be such that L(µL, t) 6= ∅. Let

a, b, c ∈ U . Then

(c ? b) ? (c ? a), b ∈ L(µL, t)

⇒ µL((c ? b) ? (c ? a)) ≤ t, µL(b) ≤ t

⇒ µL((c ? b) ? (c ? a)) ∨ µL(b) ≤ t

⇒ ((µL((c ? b) ? (c ? a)) ∨ µL(b))
′ ≥ t ′ (Lemma 1.1 (3))

⇒ µL((c ? b) ? (c ? a))
′ ∧ µL(b)

′

= (µL((c ? b) ? (c ? a)) ∨ µL(b))
′ ≥ t ′ (Lemma 1.1 (1))
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⇒ µL(a)
′ ≥ µL((c ? b) ? (c ? a))

′ ∧ µL(b)
′ ≥ t ′ ((2.6))

⇒ µL(a)
′ ≥ t ′ (≤ is transitive)

⇒ µL(a) ≤ t (Lemma 1.1 (3))

⇒ a ∈ L(µL, t).

By Lemma 4.3, we have 0 ∈ L(µL, t). Hence, L(µL, t) is a strong BCC-ideal of U .
Conversely, assume for all t ∈ L, L(µL, t) is a strong BCC-ideal of U if it is nonempty. Let a, b, c ∈

U . By Lemma 4.3, we have L
′
satisfies the condition (2.3). Choose t = µL((c?b)?(c?a))∨µL(b) ∈ L.

Then µL((c ? b) ? (c ? a)) ≤ t and µL(b) ≤ t. Thus (c ? b) ? (c ? a), b ∈ L(µL, t) 6= ∅. As the

hypothesis, we get L(µL, t) is a strong BCC-ideal of U and so a ∈ L(µL, t). Thus µL(a) ≤ t =

µL((c ? b) ? (c ? a)) ∨ µL(b). By Lemma 1.1 (1), we have µL(a)
′ ≥ µL((c ? b) ? (c ? a))

′ ∧ µL(b)
′
.

Hence, L
′
is an L-fuzzy strong BCC-ideal of U . �

4.4. Lower t-strong level subset of an LFS.

Theorem 4.18. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. Then L
′

is an L-fuzzy BCC-subalgebra of U if and only if L−(µL, t) is, if it is nonempty, a BCC-subalgebra of

U for every t ∈ L.

Proof. Assume L
′
is an L-fuzzy BCC-subalgebra of U . Let t ∈ L be such that L−(µL, t) 6= ∅. Let

a, b ∈ L−(µL, t). Then µL(a) and µL(b) are compatible. Suppose that µL(a) ≤ µL(b), that is,

µL(a) ∨ µL(b) = µL(b). Then µL(a) < t and µL(b) < t and so µL(a) ∨ µL(b) = µL(b) < t. Since L
′

is an L-fuzzy BCC-subalgebra of U , we have

µL(a ? b)
′ ≥ µL(a)

′ ∧ µL(b)
′

= (µL(a) ∨ µL(b))
′
. (Lemma 1.1 (1))

By Lemma 1.1 (3), we have µL(a?b) ≤ µL(a)∨µL(b) < t. Thus a?b ∈ L−(µL, t). Hence, L−(µL, t)

is a BCC-subalgebra of U .
Conversely, assume for all t ∈ L, L−(µL, t) is a BCC-subalgebra of U if it is nonempty. Suppose

there exist a, b ∈ U such that µL(a?b)
′ � µL(a)

′ ∧µL(b)
′
. It means that µL(a?b)

′
< µL(a)

′ ∧µL(b)
′
.

By Lemma 1.1 (1), we have

µL(a ? b)
′
< µL(a)

′ ∧ µL(b)
′

= (µL(a) ∨ µL(b))
′
.

By Lemma 1.1 (5), we have µL(a ? b) > µL(a) ∨ µL(b). Choose t = µL(a ? b) ∈ L. Then

µL(a) ∨ µL(b) < t, and so µL(a) ≤ µL(a) ∨ µL(b) < t and µL(b) ≤ µL(a) ∨ µL(b) < t. Thus

a, b ∈ L−(µL, t) 6= ∅. As the hypothesis, we get L−(µL, t) is a BCC-subalgebra of U and so a ? b ∈
L−(µL, t). Thus µL(a ? b) < t = µL(a ? b), a contradiction. Hence, µL(a ? b)

′ ≥ µL(a)
′ ∧ µL(b)

′
for

all a, b ∈ U . Hence, L
′
is an L-fuzzy BCC-subalgebra of U . �

Theorem 4.19. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. If L
′
is an L-fuzzy near BCC-filter

of U , then L−(µL, t) is, if it is nonempty, a near BCC-filter of U for every t ∈ L.
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Proof. Assume L
′
is an L-fuzzy near BCC-filter of U . Let t ∈ L be such that L−(µL, t) 6= ∅. Let

a, b ∈ U and b ∈ L−(µL, t). Then µL(b) < t. Since L
′
is an L-fuzzy near BCC-filter of U , we have

µL(a ? b)
′ ≥ µL(b)

′
.

By Lemma 1.1 (3), we have µL(a ? b) ≤ µL(b) < t. Thus a ? b ∈ L−(µL, t). Hence, L−(µL, t) is a

near BCC-filter of U . �

Theorem 4.20. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. If

L−(µL, t) is, if it is nonempty, a near BCC-filter of U for every t ∈ L, then L
′
is an L-fuzzy near

BCC-filter of U .

Proof. Assume for all t ∈ L, L−(µL, t) is a near BCC-filter of U if it is nonempty. Suppose there exist

a, b ∈ U such that µL(a ? b)
′ � µL(b)

′
. It means that µL(a ? b)

′
< µL(b)

′
. By Lemma 1.1 (5), we

have µL(a ? b) > µL(b). Choose t = µL(a ? b) ∈ L. Then µL(b) < t. Thus b ∈ L−(µL, t) 6= ∅.
As the hypothesis, we get L−(µL, t) is a near BCC-filter of U and so a ? b ∈ L−(µL, t). Thus

µL(a ? b) < t = µL(a ? b), a contradiction. Hence, µL(a ? b)
′ ≥ µL(b)

′
for all a, b ∈ U . Hence, L

′
is

an L-fuzzy near BCC-filter of U . �

Lemma 4.4. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order and L an LFS

in U . Then L
′
satisfies the condition (2.3) if and only if L−(µL, t), if it is nonempty, contains 0 ∈ U

for every t ∈ L.

Proof. Let t ∈ L be such that L−(µL, t) 6= ∅. Let a ∈ U and a ∈ L−(µL, t). Then µL(a) < t. Since

L
′
satisfies the condition (2.3), we have

µL(0)
′ ≥ µL(a)

′
.

By Lemma 1.1 (3), we have µL(0) ≤ µL(a) < t. Thus 0 ∈ L−(µL, t).

Conversely, assume for all t ∈ L, L−(µL, t) contains 0 ∈ U if it is nonempty. Suppose there exist

a ∈ U such that µL(0)
′ � µL(a)

′
. It means that µL(0)

′
< µL(a)

′
. By Lemma 1.1 (5), we have

µL(0) > µL(a). Choose t = µL(0) ∈ L. Then µL(a) < t. Thus a ∈ L−(µL, t) 6= ∅. As the

hypothesis, we get 0 ∈ L−(µL, t). Thus µL(0) < t = µL(0), a contradiction. Hence, µL(0)
′ ≥ µL(a)

′

for all a ∈ U . �

Theorem 4.21. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. Then L
′

is an L-fuzzy BCC-filter of U if and only if L−(µL, t) is, if it is nonempty, a BCC-filter of U for every

t ∈ L.

Proof. Assume L
′
is an L-fuzzy BCC-filter of U . Let t ∈ L be such that L−(µL, t) 6= ∅. Let

a, b ∈ U . Then µL(a ? b) and µL(a) are compatible. Suppose that µL(a ? b) ≤ µL(a), that is,
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µL(a ? b) ∨ µL(a) = µL(b). Let a ? b, a ∈ L−(µL, t). Then µL(a ? b) < t and µL(a) < t and so

µL(a ? b) ∨ µL(a) = µL(a) < t. Since L
′
is an L-fuzzy BCC-filter of U , we have

µL(b)
′ ≥ µL(a ? b)

′ ∧ µL(a)
′

= (µL(a ? b) ∨ µL(a))
′
. (Lemma 1.1 (1))

By Lemma 1.1 (3), we have µL(b) ≤ µL(a ? b)∨µL(a) < t. Thus b ∈ L−(µL, t). By Lemma 4.4, we

have 0 ∈ L−(µL, t). Hence, L−(µL, t) is a BCC-filter of U .
Conversely, assume for all t ∈ L, L−(µL, t) is a BCC-filter of U if it is nonempty. Suppose there

exist a, b ∈ U such that µL(b)
′ � µL(a ? b)

′ ∧ µL(a)
′
. It means that µL(b)

′
< µL(a ? b)

′ ∧ µL(a)
′
. By

Lemma 1.1 (1), we have

µL(b)
′
< µL(a ? b)

′ ∧ µL(a)
′

= (µL(a ? b) ∨ µL(a))
′
.

By Lemma 1.1 (5), we have µL(b) > µL(a ? b) ∨ µL(a). By Lemma 4.4, we have L
′
satisfies

the condition (2.3). Choose t = µL(b) ∈ L. Then µL(a ? b) ∨ µL(a) < t, and so µL(a ? b) ≤
µL(a ? b) ∨ µL(a) < t and µL(a) ≤ µL(a ? b) ∨ µL(a) < t. Thus a ? b, a ∈ L−(µL, t) 6= ∅. As the

hypothesis, we get L−(µL, t) is a BCC-filter of U and so b ∈ L−(µL, t). Thus µL(b) < t = µL(b), a

contradiction. Hence, µL(b)
′ ≥ µL(a ? b)

′ ∧µL(a)
′
for all a, b ∈ U . Hence, L

′
is an L-fuzzy BCC-filter

of U . �

Theorem 4.22. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. Then L
′

is an L-fuzzy BCC-ideal of U if and only if L−(µL, t) is, if it is nonempty, a BCC-ideal of U for every

t ∈ L.

Proof. Assume L
′
is an L-fuzzy BCC-ideal of U . Let t ∈ L be such that L−(µL, t) 6= ∅. Let a, b ∈ U .

Then µL(a ? (b ? c)) and µL(b) are compatible. Suppose that µL(a ? (b ? c)) ≤ µL(b), that is,

µL(a?(b?c))∨µL(b) = µL(b). Let a?(b?c), b ∈ L−(µL, t). Then µL(a?(b?c)) < t and µL(b) < t

and so µL(a ? (b ? c)) ∨ µL(b) = µL(b) < t. Since L
′
is an L-fuzzy BCC-ideal of U , we have

µL(a ? c)
′ ≥ µL(a ? (b ? c))

′ ∧ µL(b)
′

= (µL(a ? (b ? c)) ∨ µL(b))
′
. (Lemma 1.1 (1))

By Lemma 1.1 (3), we have µL(a ? c) ≤ µL(a ? (b ? c)) ∨ µL(b) < t. Thus a ? c ∈ L−(µL, t). By

Lemma 4.4, we have 0 ∈ L−(µL, t). Hence, L−(µL, t) is a BCC-ideal of U .
Conversely, assume for all t ∈ L, L−(µL, t) is a BCC-ideal of U if it is nonempty. Suppose there

exist a, b, c ∈ U such that µL(a ? c)
′ � µL(a ? (b ? c))

′ ∧ µL(b)
′
. It means that µL(a ? c)

′
<

µL(a ? (b ? c))
′ ∧ µL(b)

′
. By Lemma 1.1 (1), we have

µL(a ? c)
′
< µL(a ? (b ? c))

′ ∧ µL(b)
′

= (µL(a ? (b ? c)) ∨ µL(b))
′
.

By Lemma 1.1 (5), we have µL(a ? c) > µL(a ? (b ? c)) ∨ µL(b). By Lemma 4.4, we have L
′

satisfies the condition (2.3). Choose t = µL(a ? c) ∈ L. Then µL(a ? (b ? c)) ∨ µL(b) < t, and so

µL(a?(b?c)) ≤ µL(a?(b?c))∨µL(b) < t and µL(b) ≤ µL(a?(b?c))∨µL(b) < t. Thus a?(b?c), b ∈
L−(µL, t) 6= ∅. As the hypothesis, we get L−(µL, t) is a BCC-ideal of U and so a ? c ∈ L−(µL, t).
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Thus µL(a ? c) < t = µL(a ? c), a contradiction. Hence, µL(a ? c)
′ ≥ µL(a ? (b ? c))

′ ∧ µL(b)
′
for all

a, b ∈ U . Hence, L
′
is an L-fuzzy BCC-ideal of U . �

Theorem 4.23. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. Then L
′

is an L-fuzzy strong BCC-ideal of U if and only if L−(µL, t) is, if it is nonempty, a strong BCC-ideal

of U for every t ∈ L.

Proof. Assume L
′
is an L-fuzzy strong BCC-ideal of U . Let t ∈ L be such that L−(µL, t) 6= ∅. Let

a, b ∈ U . Then µL((c ? b) ? (c ? a)) and µL(b) are compatible. Suppose that µL((c ? b) ? (c ? a)) ≤
µL(b), that is, µL((c ? b) ? (c ? a)) ∨ µL(b) = µL(b). Let (c ? b) ? (c ? a), b ∈ L−(µL, t). Then

µL((c ? b) ? (c ? a)) < t and µL(b) < t and so µL((c ? b) ? (c ? a)) ∨ µL(b) = µL(b) < t. Since L
′
is

an L-fuzzy strong BCC-ideal of U , we have

µL(a)
′ ≥ µL((c ? b) ? (c ? a))

′ ∧ µL(b)
′

= (µL((c ? b) ? (c ? a)) ∨ µL(b))
′
. (Lemma 1.1 (1))

By Lemma 1.1 (3), we have µL(a) ≤ µL((c ? b) ? (c ? a)) ∨ µL(b) < t. Thus a ∈ L−(µL, t). By

Lemma 4.4, we have 0 ∈ L−(µL, t). Hence, L−(µL, t) is a strong BCC-ideal of U .
Conversely, assume for all t ∈ L, L−(µL, t) is a strong BCC-ideal of U if it is nonempty. Suppose

there exist a, b, c ∈ U such that µL(a)
′ � µL((c ? b) ? (c ? a))

′ ∧ µL(b)
′
. It means that µL(a)

′
<

µL((c ? b) ? (c ? a))
′ ∧ µL(b)

′
. By Lemma 1.1 (1), we have

µL(a)
′
< µL((c ? b) ? (c ? a))

′ ∧ µL(b)
′

= (µL((c ? b) ? (c ? a)) ∨ µL(b))
′
.

By Lemma 1.1 (5), we have µL(a) > µL((c ? b) ? (c ? a)) ∨ µL(b). By Lemma 4.4, we have L
′

satisfies the condition (2.3). Choose t = µL(a) ∈ L. Then µL((c ? b) ? (c ? a)) ∨ µL(b) < t, and so

µL((c ? b) ? (c ? a)) ≤ µL((c ? b) ? (c ? a))∨µL(b) < t and µL(b) ≤ µL((c ? b) ? (c ? a))∨µL(b) < t.

Thus (c ? b) ? (c ? a), b ∈ L−(µL, t) 6= ∅. As the hypothesis, we get L−(µL, t) is a strong BCC-

ideal of U and so a ∈ L−(µL, t). Thus µL(a) < t = µL(a), a contradiction. Hence, µL(a)
′ ≥

µL((c ? b) ? (c ? a))
′ ∧ µL(b)

′
for all a, b ∈ U . Hence, L

′
is an L-fuzzy strong BCC-ideal of U . �

5. Cartesian product of LFSs

Definition 5.1. Let L and M be LFSs in nonempty sets U1 and U2, respectively. The Cartesian product
of L and M is L×M : U1 × U2 → L described by its membership function ¯L×M such that

(∀a ∈ U1, b ∈ U2)(µL×M(a, b) = µL(a) ∧ µM(b)).

It is clearly that L×M is an LFS in U1 × U2.

Remark 5.1. [28] Let U1 = (U1, ?, 01) and U2 = (U2, ◦, 02) be BCC-algebras. We can easily prove

that U1 × U2 is a BCC-algebra defined by

(∀a, b ∈ U1, u, v ∈ U2)((a, u)~ (b, v) = (a ? b, u ◦ v)).
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Theorem 5.1. Let L and M be L-fuzzy BCC-subalgebras of BCC-algebras U1 = (U1, ?, 01) and

U2 = (U2, ◦, 02), respectively. Then L×M is an L-fuzzy BCC-subalgebra of a BCC-algebra U1 × U2.

Proof. Let a, b ∈ U1, u, v ∈ U2. Then

µL×M((a, u)~ (b, v)) = µL×M(a ? b, u ◦ v)

= µL(a ? b) ∧ µM(u ◦ v)

≥ (µL(a) ∧ µL(b)) ∧ (µM(u) ∧ µM(v)) ((2.1))

= (µL(a) ∧ µM(u)) ∧ (µL(b) ∧ µM(v)) (∧ is associative and commutative)

= µL×M(a, u) ∧ µL×M(b, v).

Hence, L×M is an L-fuzzy BCC-subalgebra of U1 × U2. �

Theorem 5.2. Let L and M be L-fuzzy near BCC-filters of BCC-algebras U1 = (U1, ?, 01) and

U2 = (U2, ◦, 02), respectively. Then L×M is an L-fuzzy near BCC-filter of a BCC-algebra U1 × U2.

Proof. Let a, b ∈ U1, u, v ∈ U2. Then

µL×M((a, u)~ (b, v)) = µL×M(a ? b, u ◦ v)

= µL(a ? b) ∧ µM(u ◦ v)

≥ µL(b) ∧ µM(v) ((2.2))

= µL×M(b, v).

�

Theorem 5.3. Let L and M be L-fuzzy BCC-filters of BCC-algebras U1 = (U1, ?, 01) and U2 =

(U2, ◦, 02), respectively. Then L×M is an L-fuzzy BCC-filter of a BCC-algebra U1 × U2.

Proof. Let a, b ∈ U1, u, v ∈ U2. Then

µL×M(01, 02) = µL(01) ∧ µM(02)

≥ µL(a) ∧ µM(u) ((2.3))

= µL×M(a, u)

and

µL×M(b, v) = µL(b) ∧ µM(v)

≥ (µL(a ? b) ∧ µb(a)) ∧ (µM(u ◦ v) ∧ µM(u)) ((2.4))

= (µL(a ? b) ∧ µM(u ◦ v)) ∧ (µL(a) ∧ µM(u)) (∧ is associative and commutative)

= µL×M(a ? b, u ◦ v) ∧ µL×M(a, u)

= µL×M((a, u)~ u(b, v)) ∧ µL×M(a, u).
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�

Theorem 5.4. Let L and M be L-fuzzy BCC-ideals of BCC-algebras U1 = (U1, ?, 01) and U2 =

(U2, ◦, 02), respectively. Then L×M is an L-fuzzy BCC-ideal of a BCC-algebra U1 × U2.

Proof. Let a, b, c ∈ U1, u, v , w ∈ U2. Then

µL×M(01, 02) = µL(01) ∧ µM(02)

≥ µL(a) ∧ µM(u) ((2.3))

= µL×M(a, u)

and

µL×M((a, u)~ (c, w)) = µL×M(a ? c, u ◦ w)

= µL(a ? c) ∧ µM(u ◦ w)

≥ (µL(a ? (b ? c)) ∧ µL(b)) ∧ (µM(u ◦ (v ◦ w)) ∧ µM(v)) ((2.5))

= (µL(a ? (b ? c)) ∧ µM(u ◦ (v ◦ w))) ∧ (µL(b) ∧ µM(v))

(∧ is associative and commutative)

= µL×M(a ? (b ? c), u ◦ (v ◦ w)) ∧ µL×M(b, v)

= µL×M((a, u)~ ((b, v)~ (c, w))) ∧ µL×M(b, v).

�

Theorem 5.5. Let L and M be L-fuzzy strong BCC-ideals of BCC-algebras U1 = (U1, ?, 01) and

U2 = (U2, ◦, 02), respectively. Then L×M is an L-fuzzy strong BCC-ideal of a BCC-algebra U1×U2.

Proof. Let a, b, c ∈ U1, u, v , w ∈ U2. Then

µL×M(01, 02) = µL(01) ∧ µM(02)

≥ µL(a) ∧ µM(u) ((2.3))

= µL×M(a, u)

and

µL×M(a, u) = µL(a) ∧ µM(u)

≥ (µL((c ? b) ? (c ? a)) ∧ µL(b)) ∧ (µM((w ◦ v) ◦ (w ◦ u)) ∧ µM(v)) ((2.6))

= (µL((c ? b) ? (c ? a)) ∧ µM((w ◦ v) ◦ (w ◦ u))) ∧ (µL(b) ∧ µM(v))

(∧ is associative and commutative)

= µL×M((c ? b) ? (c ? a), (w ◦ v) ◦ (w ◦ u)) ∧ µL×M(b, v)

= µL×M(((c, w)~ (b, v))~ ((c, w)~ (a, u))) ∧ µL×M(b, v).
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�

Finally, we shall discuss the relationships between the Cartesian product of two LFSs and their

t-level subsets. After this, L = (L,≤,∨,∧) refers to a lattice until otherwise defined.

The following theorem is a straightforward result of Theorems 4.2, 4.3, 4.4, 4.5, and 4.6.

Theorem 5.6. (1) An LFS L×M is an L-fuzzy BCC-subalgebra of U1×U2 if and only if U(µL×M, t)

is, if it is nonempty, a BCC-subalgebra of U1 × U2 for every t ∈ L.
(2) An LFS L ×M is an L-fuzzy near BCC-filter of U1 × U2 if and only if U(µL×M, t) is, if it is

nonempty, a near BCC-filter of U1 × U2 for every t ∈ L.
(3) An LFS L×M is an L-fuzzy BCC-filter of U1×U2 if and only if U(µL×M, t) is, if it is nonempty,

a BCC-filter of U1 × U2 for every t ∈ L.
(4) An LFS L×M is an L-fuzzy BCC-ideal of U1×U2 if and only if U(µL×M, t) is, if it is nonempty,

a BCC-ideal of U1 × U2 for every t ∈ L.
(5) An LFS L×M is an L-fuzzy strong BCC-ideal of U1 × U2 if and only if U(µL×M, t) is, if it is

nonempty, a strong BCC-ideal of U1 × U2 for every t ∈ L.

The following theorem is a straightforward result of Theorems 4.8 and 4.9.

Theorem 5.7. (1) If an LFS L×M is an L-fuzzy near BCC-filter of U1 × U2, then U+(µL×M, t)

is, if it is nonempty, a near BCC-filter of U1 × U2 for every t ∈ L.
(2) Let L = (L,≤,∨,∧) be a linearly ordered set. If U+(µL×M, t) is, if it is nonempty, a near

BCC-filter of U1 × U2 for every t ∈ L, then L×M is an L-fuzzy near BCC-filter of U1 × U2.

The following theorem is a straightforward result of Theorems 4.7, 4.10, 4.11, and 4.12.

Theorem 5.8. Let L = (L,≤,∨,∧) be a linearly ordered set. Then the following statements are true.

(1) An LFS L×M is an L-fuzzy BCC-subalgebra of U1 ×U2 if and only if U+(µL×M, t) is, if it is

nonempty, a BCC-subalgebra of U1 × U2 for every t ∈ L.
(2) An LFS L × M is an L-fuzzy BCC-filter of U1 × U2 if and only if U+(µL×M, t) is, if it is

nonempty, a BCC-filter of U1 × U2 for every t ∈ L.
(3) An LFS L × M is an L-fuzzy BCC-ideal of U1 × U2 if and only if U+(µL×M, t) is, if it is

nonempty, a BCC-ideal of U1 × U2 for every t ∈ L.
(4) An LFS L×M is an L-fuzzy strong BCC-ideal of U1 × U2 if and only if U+(µL×M, t) is, if it

is nonempty, a strong BCC-ideal of U1 × U2 for every t ∈ L.

The following theorem is a straightforward result of Theorems 4.13, 4.14, 4.15, 4.16, and 4.17.

Theorem 5.9. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. Then the following statements are

true.
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(1) An LFS (L ×M)
′
is an L-fuzzy BCC-subalgebra of U1 × U2 if and only if L(µL×M, t) is, if it

is nonempty, a BCC-subalgebra of U1 × U2 for every t ∈ L.
(2) An LFS (L×M)

′
is an L-fuzzy near BCC-filter of U1 ×U2 if and only if L(µL×M, t) is, if it is

nonempty, a near BCC-filter of U1 × U2 for every t ∈ L.
(3) An LFS (L × M)

′
is an L-fuzzy BCC-filter of U1 × U2 if and only if L(µL×M, t) is, if it is

nonempty, a BCC-filter of U1 × U2 for every t ∈ L.
(4) An LFS (L × M)

′
is an L-fuzzy BCC-ideal of U1 × U2 if and only if L(µL×M, t) is, if it is

nonempty, a BCC-ideal of U1 × U2 for every t ∈ L.
(5) An LFS (L×M)

′
is an L-fuzzy strong BCC-ideal of U1 × U2 if and only if L(µL×M, t) is, if it

is nonempty, a strong BCC-ideal of U1 × U2 for every t ∈ L.

The following theorem is a straightforward result of Theorems 4.19 and 4.20.

Theorem 5.10. (1) Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice. If an LFS (L×M)
′
is an

L-fuzzy near BCC-filter of U1 × U2, then L−(µL×M, t) is, if it is nonempty, a near BCC-filter

of U1 × U2 for every t ∈ L.
(2) Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. If L−(µL×M, t) is,

if it is nonempty, a near BCC-filter of U1 × U2 for every t ∈ L, then (L ×M)
′
is an L-fuzzy

near BCC-filter of U1 × U2.

The following theorem is a straightforward result of Theorems 4.18, 4.21, 4.22, and 4.23.

Theorem 5.11. Let L = (L,≤,∨,∧,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. Then the

following statements are true.

(1) An LFS (L×M)
′
is an L-fuzzy BCC-subalgebra of U1 ×U2 if and only if L−(µL×M, t) is, if it

is nonempty, a BCC-subalgebra of U1 × U2 for every t ∈ L.
(2) An LFS (L ×M)

′
is an L-fuzzy BCC-filter of U1 × U2 if and only if L−(µL×M, t) is, if it is

nonempty, a BCC-filter of U1 × U2 for every t ∈ L.
(3) An LFS (L × M)

′
is an L-fuzzy BCC-ideal of U1 × U2 if and only if L−(µL×M, t) is, if it is

nonempty, a BCC-ideal of U1 × U2 for every t ∈ L.
(4) An LFS (L×M)

′
is an L-fuzzy strong BCC-ideal of U1 × U2 if and only if L−(µL×M, t) is, if

it is nonempty, a strong BCC-ideal of U1 × U2 for every t ∈ L.

The following theorem is a straightforward result of Theorem 4.1.

Theorem 5.12. An LFS L×M is an L-fuzzy strong BCC-ideal of U1 × U2 if and only if E(µL×M, t)

is a strong BCC-ideal of U1 × U2 for every t ∈ L.
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6. Conclusions and future works

In this paper, we have introduced the concept of LFSs in BCC-algebras, and then we have in-

troduced five types of LFSs in BCC-algebras, namely L-fuzzy BCC-subalgebras, L-fuzzy near BCC-

filters, L-fuzzy BCC-filters, L-fuzzy BCC-ideals, and L-fuzzy strong BCC-ideals. Further, we have

discussed the relationship between L-fuzzy BCC-subalgebras (resp., L-fuzzy near BCC-filters, L-fuzzy
BCC-filters, L-fuzzy BCC-ideals, L-fuzzy strong BCC-ideals) and BCC-subalgebras (resp., near BCC-

filters, BCC-filters, BCC-ideals, strong BCC-ideals) with characteristic functions and t-level subsets

of LFSs. In addition, we proved that the Cartesian product of two L-fuzzy BCC-subalgebras (resp.,

L-fuzzy near BCC-filters, L-fuzzy BCC-filters, L-fuzzy BCC-ideals, L-fuzzy strong BCC-ideals) is also
a L-fuzzy BCC-subalgebra (resp., L-fuzzy near BCC-filter, L-fuzzy BCC-filter, L-fuzzy BCC-ideal, L-
fuzzy strong BCC-ideal). After, we studies the relationship between above results and BCC-subalgebras

(resp., near BCC-filters, BCC-filters, BCC-ideals, strong BCC-ideals) with t-level subsets of the Carte-

sian product of LFSs. Finally, we get the diagram of generalization of LFSs in BCC-algebras, which

is shown with Figure 5.

Figure 5. LFSs in BCC-algebras

Some important topics for our future study of BCC-algebras are as follows:

(1) to define new types of LFSs,

(2) to apply the concept of LFSs to intuitionistic fuzzy sets, and

(3) to apply the concept of LFSs to hesitant fuzzy sets.
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