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Abstract. This paper proposes a framework based on the celebrated transform of Mellin type (MT) for

the direct solution of the Black-Scholes-Merton European Put Option Model (BSMEPOM) on Divi-

dend Yield (DY) with Modified-Log Payoff Function (MLPF) under the geometric Brownian motion.

The focal goal of this paper is to use MT to obtain a valuation formula for the European Put Option

(EPO) which pays a DY with MLPF. By means of the MT and its inversion formula, the price of EPO

on DY was expressed in terms of integral equation. The valuation formula of EPO was obtained with

the help of the convolution property of MT and final time condition. MT was tested on an illustrative

example in order to measure its performance, effectiveness and suitability. The MLPF was compared

with other existing payoff functions. Hence, the effect of DY on the pricing of EPO with MLPF was

also investigated.

1. Introduction

Option valuation has become extremely popular in computational finance. This popularity has

been displayed as one of the key major areas in derivative security. In other words, option valuation

has contributed greatly to the financial markets. There is a massive growth in trading activities on

derivatives globally from the inception of the Black-Scholes pricing formula [1,2]. It is noteworthy to

say that the Black-Scholes models for linear payoff function has been used by many researchers and as

well as become one of the utmost areas in financial markets over the last few decades. Immediately
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after the huge success recorded by the Black-Scholes model for vanilla option flavours, several other

valuation formula were developed for options pricing with different payoff functions such as Mellin

transform, binomial model, finite difference method, Monte Carlo method, e.t.c; see [3] – [6]. For

mathematical framework, some implementations of transform methods of different types in financial

markets; see [7]– [15]. Ghevariya [16] solved the classical Black-Scholes European put option model for

Modified-Log payoff function with the help of the MT. In this paper, a direct solution of BSMEPOM

via the celebrated transform of Mellin type is proposed in the sense of DY and MLPF. The remaining

part of the paper is listed as follows, Section 2 captures the brief concepts of MT. A new result that

captures the governing model for EPO on DY with MLPF and the solution of BSMEPOM on DY with

MLPF is stated and proved in Section 3. An illustrative example on the application of MT to EPO is

captured by Section 4. Section 5 is the concluding part of the paper.

2. Mellin transform

This section captures some definitions of terms based on the framework of the Mellin transform.

2.1. Definitions of Terms.

Definition 2.1. Let f (x) be a locally Lebesgue integrable function. The Mellin transform of f (x) is

defined as

M[f (x), ω] := f̃ (ω) =
∫ ∞
0

f (x)xω−1dx (2.1)

The Mellin transform variable ω is a complex number, ω = <(.) + i=(.), where <(.) is the real part,

i is the imaginary unit and =(.) is the imaginary part.

Definition 2.2. If f (x) is an integrable function with fundamental strips (a, b), then if c is such that

a < c < b and {f̃ (ω) : ω = c + i t} is integrable, the inverse Mellin transform is defined as

M−1[f̃ (ω)] = f (x) =
1

2πi

∫ c+i∞

c−i∞
f̃ (ω)x−ωdω (2.2)

Remark 2.1. For more details on the condition that ensures the existence of MT; see [17].

Remark 2.2. The fundamental operational properties of the Mellin transforms such as scaling, shifting,

derivatives, integrals, convolution, multiplicative convolution and Parseval’s formula are well detailed

in [9, 12,17,18].

3. The Solution of BSMEPOM on DY with MLPF

Ghevariya derived BSM formula on non-dividend yield for ML-payoff function [16]. In this section,

Black-Scholes-Merton formula on dividend yield with MLPF is derived via the MT in the following

result.
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Theorem 3.1. Consider the BSMEPOM on DY with MLPF of the form

∂PE(St , t)

∂t
+ (r − q)St

∂PE(St , t)

∂St
+
(σSt)

2

2

∂2PE(St , t)

∂(St)2
− rPE(St , t) = 0 (3.1)

subject to the boundary conditions

lim
St→∞

PE(St , t) = 0 on [0, T ) (3.2)

lim
St→0

PE(St , t) =
K

er(T−t)
on [0, T ) (3.3)

and MLPF

PE(ST , T ) =

[
ST ln

(
K

ST

)]+
on [0,∞) (3.4)

where PE(St , t), t, T , St , K, σ, r and q are the price of EPO, current time, time to expiry, underlying

asset price, strike price, volatility, risk-free interest rate and DY, respectively, then the valuation formula

for BSMEPOM on DY with MLPF is given by

PE(St , t) = Ste
−qτ [σ√τη(d)− (D1 +D2τ)N (−d)] (3.5)

with

D1 = ln

(
St
K

)
, (3.6)

D2 =

(
r − q +

σ2

2

)
, (3.7)

d =
D1 +D2τ

σ
√
τ

, (3.8)

τ = T − t, η(κ) =
1√
2π
e−

κ2

2 ,N (κ) =
∫ κ

−∞
η(κ)dκ. (3.9)

Proof. Taking the MT of (3.1) and using its linearity, independence of time derivatives and shifting

properties and rearranging terms, one obtains

∂P̃E(ω, t)

∂t
= −

σ2

2
(ω2 + ω(1− α1)− α2)P̃E(ω, t) (3.10)

where

α1 =
2(r − q)
σ2

, α2 =
2r

σ2

Solving (3.1), yields

P̃E(ω, t) = m(ω)e
− 1
2
σ2(ω2+ω(1−α1)−α2)t (3.11)

But

m(ω) =M(PE(ST , T ), ω)e
1
2
σ2(ω2+(1−α1)ω−α2)T (3.12)

which is equivalent to

m(ω) = g̃(ω)e
1
2
σ2(ω2+(1−α1)ω−α2)T (3.13)
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Substituting (3.13) into (3.11), yields

P̃E(ω, t) = g̃(ω)e
1
2
σ2(ω2+(1−α1)ω−α2)τ (3.14)

with τ = T − t. By means of (2.2), (3.14) yields

PE(St , t) =
1

2πi

∫ c+i∞

c−i∞
g̃(ω)e

1
2
σ2(ω2+(1−α1)ω−α2)τS−ωt dω (3.15)

which is the integral equation for governing equation (3.1). Let

ξ(St) =
1

2πi

∫ c+i∞

c−i∞
e
σ2

2
(ω2+ω(1−α1)−α2)S−ωt dω (3.16)

Using the fact that

e
1
2
σ2(ω2+(1−α1)ω−α2)τ = e−β1(β

2
1+α2)+β1(ω+β2)

2

(3.17)

where

β1 =
σ2τ

2
, β2 =

1− α1
2

(3.18)

Thus

ξ(St) =
e−β1(β

2
1+α2)

2πi

∫ c+i∞

c−i∞
eβ1(ω+β2)

2

S−ωt dω (3.19)

Using the transformation given by [19].

eφω
2

=
1

2
√
π

∫ ∞
0

1√
φ
exp

(
−(lnSt)2

4φ

)
(St)

ω−1dSt , <(φ) ≥ 0 (3.20)

yields

ξ(St) = e
−β1(β21+α2)

Sβ2

σ
√
2πτ

e
− 1
2

(
ln(S)

σ
√
τ

)2
(3.21)

Similarly,

ξ

(
St
v

)
= e−β1(β

2
1+α2)

(Stv )
β2

σ
√
2πτ

e

− 1
2

 ln
(
St
v

)
σ
√
τ

2
(3.22)

Using the terminal condition (3.4), then

g(St) =M−1(g̃(ω)) =
[
ST ln

(
K

ST

)]+
(3.23)

Also

g(v) =

[
v ln

(
K

v

)]+
(3.24)

With the help of the convolution property of MT, (3.15) becomes

PE(St , t) =

∫ ∞
0

g(v)ξ

(
St
v

)
1

v
dv (3.25)

Substituting (3.22) and (3.24) into (3.25), one gets

PE(St , t) =

∫ ∞
0

[
v ln

(
K

v

)]+
e−β1(β

2
1+α2)

(Stv )
β2

σ
√
2πτ

e

− 1
2

 ln
(
St
v

)
σ
√
τ

2
1

v
dv (3.26)
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PE(St , t) = e
−β1(β21+α2)

Sβ2t
σ
√
2πτ

∫ K

0

[
v ln

(
K

v

)]
e

− 1
2

 ln
(
St
v

)
σ
√
τ

2
1

v
dv (3.27)

Simplifying further, yields

PE(St , t) = e
−β1(β21+α2)

Sβ2t
σ
√
2πτ

∫ K

0

ln(K)
1

vβ2
e

− 1
2

 ln
(
St
v

)
σ
√
τ

2
dv

− e−β1(β21+α2)
Sβ2t

σ
√
2πτ

∫ K

0

ln(v)
1

vβ2
e

− 1
2

 ln
(
St
v

)
σ
√
τ

2
dv

(3.28)

PE(St , t) = e
−β1(β21+α2)

Sβ2t
σ
√
τ
[ln(K)G1 − G2] (3.29)

where

G1 =
1√
2π

∫ K

0

1

vβ2
e

− 1
2

 ln
(
St
v

)
σ
√
τ

2
dv (3.30)

G2 =
1√
2π

∫ K

0

ln(v)

vβ2
e

− 1
2

 ln
(
St
v

)
σ
√
τ

2
dv (3.31)

Let

y =
ln
(
S
v

)
σ
√
τ

(3.32)

Thus

G2 = σ
√
τS−β2+1t eβ1(β2−1)

2

[σ
√
τJ1 − ln(St)J2] (3.33)

where

J1 =
1√
2π

∫ ln

(
St
v

)
σ
√
τ

∞
ye−

1
2
(y−σ

√
τ(β2−1))2dy (3.34)

J2 =
1√
2π

∫ ln

(
St
v

)
σ
√
τ

∞
e−

1
2
(y−σ

√
τ(β2−1))2dy (3.35)

Taking

t = y − σ
√
τ(β2 − 1), d =

ln
(
St
K

)
− σ2τ(β2 − 1)
σ
√
τ

=
ln
(
St
K

)
+
(
r − q + σ2

2

)
τ

σ
√
τ

(3.36)

Equations (3.34) and (3.35) become

J1 = −[η(d) + σ
√
τ(β2 − 1)N (−d)] (3.37)

and

J2 = −N (−d) (3.38)
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respectively. Substituting (3.37) and (3.38) into (3.33), yields

G2 = −σ
√
τS−β2+1t eβ1(β2−1)

2

[σ
√
τη(d) + (σ2τ(β2 − 1)− ln(St))N (−d)] (3.39)

Similarly,

G1 = σ
√
τS−β2+1t eβ1(β2−1)

2

[N (−d)] (3.40)

Using (3.39), (3.40), the values of α2, β1, β2 and (3.29), the result follows. Hence, this completes

the proof �

4. Numerical Example

Consider the valuation of the EPO on a DY with MLPF via the MT using the following parameters

S,K, r, σ, q, T in Table 1.

Table 1. The parameters

Parameters Values

S in dollars 100

K in dollars 100, 110, 120, 130, 140, 150

r 8%

σ 0.5

q 0, 5%, 20%, 60%, 100%

T in months 6

The results obtained are displayed in Tables 2 and 3.

Table 2. The comparative study of MLPF, Log Payoff [20] and Linear Payoff [1] with q =0

K MLPF Log Payoff [20] Linear Payoff [1]

100 0 0 0

110 9.5310 0.0953 10

120 18.2322 0.1823 20

130 26.2364 0.2624 30

140 33.6472 0.3365 40

150 40.5465 0.4055 50
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Figure 1. The Plots of Table 2.

Table 3. The Effect of DY on the price of EPO with MLPF

K/q 0 0.05 0.2 0.6 1

100 9.5684 10.3063 12.6497 19.3538 25.5118

110 13.7482 14.6425 17.3986 24.6869 30.6874

120 18.4538 19.4684 22.5140 30.0284 35.6212

130 23.5158 24.6103 27.8197 35.2583 40.2814

140 28.7839 29.9193 33.1776 40.3074 44.6658

150 34.1365 35.2780 38.4899 45.1414 48.7877

Figure 2. Physical Interpretation of the Effect of Dividend Yield on the Price of EPO

using Table 3.
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5. Conclusion

A direct solution of BSMEPOM via the celebrated transform of Mellin type in the sense of DY

and MLPF has been proposed in this paper. The MT has the ability of handling complex functions

by means of its fundamental properties and it is closely related to other well-known transforms such

as Laplace and Fourier types. The integral equation for the representation of the price of EPO with

DY was obtained. The closed form approximation formula for EPO was also obtained via MT with

the help of its convolution property and final time condition. Moreover, the MT was tested on some

parameters to show its performance, effectiveness, and suitability. From Table 2, it is clearly seen

that the MLPF used in this present paper performed better than the log payoff function used in [20]

and also was found to be very close to the linear payoff function of plain vanilla [1]. It is observed

from Table 3, that the holder is more beneficial to enter into a European put option. In other words,

however, the benefits of these cash flows are given to the holder of a put option. Table 3 shows that

increase in DY leads to increase in the prices of the EPO with MLPF. The effect of DY is captured

in Figure 2. Hence, from the results displayed in Figures 1 and 2, it can be concluded that MT is

suitable for the valuation of EPO on MLPF with DY due to its capacity power of solving BSMEPOM

directly in terms of market price.
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