International Journal of Analysis and Applications

Tri-Endomorphisms on BCH-Algebras

Patchara Muangkarn¹, Cholatis Suanoom¹, Jirayu Phuto², Aiyared lampan^{3,*}

¹Science and Applied Science Center, Program of Mathematics, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand

²Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
³Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

* Corresponding author: aiyared.ia@up.ac.th

Abstract. In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms on of BCH-algebras. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras and provide some properties. In addition, we obtain the properties between those tri-endomorphisms and some subsets of BCH-algebras.

1. Introduction

The algebraic structures of BCK-algebras and BCI-algebras were studied by Iséki and his colleague [4, 5]. In 1983, Hu and Li [3] generalized a new class of algebras from BCI-algebras, namely, a BCH-algebra. Next, Bandru and Rafi [1] introduced a new algebra, called a *G*-algebra. BCH-algebras are also being studied extensively later, [2, 3].

In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras and provide some properties.

Before studying, we will review the definitions and well-known results.

Received: Jul. 31, 2022.

²⁰²⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. BCH-algebra; left tri-endomorphism; central tri-endomorphism; right tri-endomorphism; complete tri-endomorphism.

Definition 1.1. [3] A BCH-algebra is a non-empty set X with an element 0 and a binary operation * satisfying the following conditions:

 $(BCH1) \ (\forall x \in X)(x * x = 0),$

 $(BCH2) \ (\forall x, y \in X)(x * y = 0, y * x = 0 \Rightarrow x = y),$

(BCH3) $(\forall x, y, z \in X)((x * y) * z = (x * z) * y).$

In a BCH-algebra X = (X, *, 0), the binary relation \leq on X is defined as follows:

$$(\forall x, y \in X)(x \le y \Leftrightarrow x * y = 0)$$

Example 1.1. Let $X = \{0, a, b, c\}$ with the following Cayley table as follows:

*	0	а	b	С
0	0	0	0	0
а	а	0	С	С
b	b	0	0	b
С	С	0	0	0

Then X = (X, *, 0) is a BCH-algebra.

Proposition 1.1. [2,3] Let X = (X, *, 0) be a BCH-algebra. Then the following hold: for all x, y ∈ X, (BCH4) $(\forall x, y \in X)(x * (x * y) \le y)$, (BCH5) $(\forall x \in X)(x * 0 = 0 \Rightarrow x = 0)$, (BCH6) $(\forall x, y \in X)(0 * (x * y) = (0 * x) * (0 * y))$, (BCH7) $(\forall x \in X)(x * 0 = x)$, (BCH8) $(\forall x, y \in X)((x * y) * x = 0 * y)$, (BCH9) $(\forall x, y \in X)(x \le y \Rightarrow 0 * x = 0 * y)$.

For a BCH-algebra X = (X, *, 0), some interesting subsets of X play a significant rule in the investigation of its properties described below.

Definition 1.2. A non-empty subset Y of a BCH-algebra X = (X, *, 0) is called a subalgebra of X if $x * y \in Y$ for all $x, y \in Y$. A non-empty subset I of a BCH-algebra X = (X, *, 0) is called an ideal of X if

(1) $0 \in I$, (2) $(\forall x, y \in X)(x * y \in I, x \in I \Rightarrow y \in I)$.

2. Main results

In this section, we introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras as follows.

Definition 2.1. Let X = (X, *, 0) be a BCH-algebra. A mapping $f : X^3 \to X$ is called

- (1) a left tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x * w, y, z) = f(x, y, z) * f(w, y, z))$,
- (2) a central tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x, y * w, z) = f(x, y, z) * f(x, w, z))$,
- (3) a right tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x, y, z * w) = f(x, y, z) * f(x, y, w))$,
- (4) a complete tri-endomorphism on X if $(\forall a, b, c, x, y, z \in X)(f(x * a, y * b, z * c) = f(x, y, z) * f(a, b, c))$.

Example 2.1. In Example 1.1, we define $f_l : X^3 \to X$ by

$$f_l(x, y, z) = \begin{cases} x & \text{if } y = z = 0\\ 0 & \text{otherwise.} \end{cases}$$

Then f_I is a left tri-endomorphism on X.

Proposition 2.1. Let X = (X, *, 0) be a BCH-algebra and f_1 be a left tri-endomorphism on X. Then

- (1) $(\forall y, z \in X)(f_l(0, y, z) = 0),$
- (2) $(\forall w, x, y, z \in X)(x \le w \Rightarrow f_l(x, y, z) \le f_l(w, y, z)).$

Proof. (1) Let $y, z \in X$. Then, by BCH1, we have $f_l(0, y, z) = f_l(0*0, y, z) = f_l(0, y, z)*f_l(0, y, z) = 0$.

(2) Let $w, x, y, z \in X$ be such that $x \le w$. Then, by (1), we have $0 = f_l(0, y, z) = f_l(x * w, y, z) = f_l(x, y, z) * f_l(w, y, z)$. Hence, $f_l(x, y, z) \le f_l(w, y, z)$.

Similarly, the properties of central and right tri-endomorphisms are easily obtained.

Proposition 2.2. Let X = (X, *, 0) be a BCH-algebra and f_c be a central tri-endomorphism on X. Then

- (1) $(\forall x, z \in X)(f_c(x, 0, z) = 0),$
- (2) $(\forall w, x, y, z \in X)(y \le w \Rightarrow f_c(x, y, z) \le f_c(x, w, z)).$

Proposition 2.3. Let X = (X, *, 0) be a BCH-algebra and f_r be a right tri-endomorphism on X. Then

- (1) $(\forall x, y \in X)(f_r(x, y, 0) = 0),$
- (2) $(\forall w, x, y, z \in X)(z \le w \Rightarrow f_r(x, y, z) \le f_r(x, y, w)).$

Theorem 2.1. Let X = (X, *, 0) be a BCH-algebra and f be a complete tri-endomorphism on X. Then

- $(1) \ f(0,0,0) = 0,$
- (2) if S is a subalgebra of X, then $f(S^3)$ is also a subalgebra of X,
- (3) if S is an ideal of X and f is bijective, then $f(S^3)$ is also an ideal of X,
- (4) if f is a left tri-endomorphism on X, then f(x, y, z) * f(x, 0, 0) = 0 for any $x, y, z \in X$,
- (5) if f is a central tri-endomorphism on X, then f(x, y, z) * f(0, y, 0) = 0 for any $x, y, z \in X$,
- (6) if f is a right tri-endomorphism on X, then f(x, y, z) * f(0, 0, z) = 0 for any $x, y, z \in X$,

(7) if f is a left and right (central and right, left and central) tri-endomorphism on X, then f(x, y, z) = 0 for any $x, y, z \in X$, i.e., f is the zero map.

Proof. (1) By BCH1, we have f(0, 0, 0) = f(0 * 0, 0 * 0, 0 * 0) = f(0, 0, 0) * f(0, 0, 0) = 0.

(2) Suppose that *S* is a subalgebra of *X*. Let $a, b \in f(S^3)$. Then there exist $(x_1, y_1, z_1), (x_2, y_2, z_2) \in S^3$ such that $a = f(x_1, y_1, z_1)$ and $b = f(x_2, y_2, z_2)$. Thus $a * b = f(x_1, y_1, z_1) * f(x_2, y_2, z_2) = f(x_1 * x_2, y_1 * y_2, z_1 * z_2) \in f(S^3)$. Hence, $f(S^3)$ is a subalgebra of *X*.

(3) Suppose that *S* is an ideal of *X* and *f* is bijective. Since $0 \in S$ and by (1), we have $0 = f(0, 0, 0) \in f(S^3)$. Assume that $x * y \in f(S^3)$ and $x \in f(S^3)$. There exist $(x_1, y_1, z_1), (x_2, y_2, z_2) \in S^3$ such that $x * y = f(x_1, y_1, z_1)$ and $x = f(x_2, y_2, z_2)$. Since *f* is surjective, there exists $(a, b, c) \in X^3$ such that y = f(a, b, c). Thus $f(S^3) \ni f(x_1, y_1, z_1) = x * y = f(x_2, y_2, z_2) * f(a, b, c) = f(x_2 * a, y_2 * b, z_2 * c)$. Since *f* is injective, we have $x_2 * a, y_2 * b, z_2 * c \in S$. Since *S* is an ideal of *X*, we get $a, b, c \in S$. Thus $y = f(a, b, c) \in f(S^3)$. Hence, $f(S^3)$ is an ideal of *X*.

(4)-(6) It is obvious from Propositions 2.1-2.3.

(7) Suppose that f is a left and right tri-endomorphism on X. Let $x, y, z \in X$. Then, by Propositions 2.1 and 2.3, BCH1, BCH7 0 = f(0, y, z) = f(x * x, y * 0, z * 0) = f(x, y, z) * f(x, 0, 0) = f(x, y, z) * 0 = f(x, y, z). Hence, f is the zero map on X.

Let $T_I(X)$ (resp., $T_c(X)$, $T_r(X)$ and T(X)) be the set of all left tri-endomorphisms (resp., right, central and complete tri-endomorphisms) on a BCH-algebra X = (X, *, 0). We define an operation * on $T_I(X)$ by $(\forall x, y, z \in X)((f * g)(x, y, z) = f(x, y, z) * g(x, y, z))$. Let $f \in T_I(X)$ and $x, y, z \in X$. Then (f * f)(x, y, z) = f(x, y, z) * f(x, y, z) = 0. This means that $f * f = 0_X$, where $0_X : X^3 \to X$ is a function that maps all members to 0. Let $f, g \in T_I(X)$ be such that $f * g = 0_X$ and $g * f = 0_X$. Then for all $x, y, z \in X$, 0 = (f * g)(x, y, z) = f(x, y, z) * g(x, y, z) and 0 = (g * f)(x, y, z) = g(x, y, z) * f(x, y, z) = f(x, y, z) * g(x, y, z) for all $x, y, z \in X$. Hence, f = g. Let $f, g, h \in T_I(X)$ and $x, y, z \in X$. Then ((f * g) * h)(x, y, z) = (f * g)(x, y, z) * h(x, y, z) = (f(x, y, z) * g(x, y, z)) * h(x, y, z) = (f(x, y, z) * g(x, y, z)) * h(x, y, z) = (f(x, y, z) * g(x, y, z)) * h(x, y, z) = (f(x, y, z) * g(x, y, z)) * h(x, y, z) = (f(x, y, z) * g(x, y, z)) * h(x, y, z) = (f(x, y, z) * g(x, y, z)) * g(x, y, z) = (f * h)(x, y, z) * g(x, y, z) = ((f * h) * g)(x, y, z). Hence, (f * g) * h = (f * h) * g.

Theorem 2.2. $(T_{l}(X), \star, 0_{X}), (T_{c}(X), \star, 0_{X}), (T_{r}(X), \star, 0_{X}), and (T(X), \star, 0_{X})$ are BCH-algebras.

Let X = (X, *, 0) be a BCH-algebra. We define the binary operation \diamond on X^3 as follows: $(\forall (a, b, c), (x, y, z) \in X^3)((a, b, c) \diamond (x, y, z) = (a * x, b * y, c * z))$. Then $X^3 = (X, \diamond, (0, 0, 0))$ is a BCH-algebra.

Theorem 2.3. Let X = (X, *, 0) be a BCH-algebra and S_1, S_2, S_3 be subsets of X. Then

- (1) $S_1 \times S_2 \times S_3$ is a subalgebra of X^3 if and only if S_1, S_2 and S_3 are subsets of X,
- (2) $S_1 \times S_2 \times S_3$ is an ideal of X^3 if and only if S_1, S_2 and S_3 are ideals of X.

Proof. (1) Suppose that $S_1 \times S_2 \times S_3$ is a subalgebra of X^3 . Firstly, we will show that S_1 is a subalgebra of X. Let $a, b \in S_1$. Let $x \in S_2$ and $u \in S_3$. Then $(a, x, u), (b, x, u) \in S_1 \times S_2 \times S_3$. Thus $(a * b, 0, 0) = (a * b, x * x, u * u) = (a, x, u) \diamond (b, x, u) \in S_1 \times S_2 \times S_3$, that is, $a * b \in S_1$. Hence, S_1 is a subalgebra of X. On the other hand, we can show that S_2 and S_3 are subalgebras of X.

Conversely, let (x, y, z), $(a, b, c) \in S_1 \times S_2 \times S_3$. Then $x * a \in S_1$, $y * b \in S_2$, and $z * c \in S_3$, so $(x, y, z) \diamond (a, b, c) = (x * a, y * b, z * c) \in S_1 \times S_2 \times S_3$. Hence, $S_1 \times S_2 \times S_3$ is a subalgebra of X^3 .

(2) Suppose that $S_1 \times S_2 \times S_3$ is an ideal of X^3 . Since $(0, 0, 0) \in S_1 \times S_2 \times S_3$, we have $0 \in S_i$ for all i = 1, 2, 3. Assume that $a * x \in S_1$ and $a \in S_1$. Let $b \in S_2$ and $c \in S_3$. Then $(a, b, c) \in S_1 \times S_2 \times S_3$ and $(x, b, c) \in X^3$. Thus $(a, b, c) \diamond (x, b, c) = (a * x, b * b, c * c) = (a * x, 0, 0) \in S_1 \times S_2 \times S_3$. Since $S_1 \times S_2 \times S_3$ is an ideal of X^3 , we have $(x, b, c) \in S_1 \times S_2 \times S_3$, that is, $x \in S_1$. Hence, S_1 is an ideal of X. Similarly, we can show that S_2 and S_3 are ideals of X.

Conversely, suppose that S_1 , S_2 and S_3 are ideals of X. Since $0 \in S_i$ for all i = 1, 2, 3, we have $(0, 0, 0) \in S_1 \times S_2 \times S_3$. Assume that $(a, b, c) * (x, y, z) \in S_1 \times S_2 \times S_3$ and $(a, b, c) \in S_1 \times S_2 \times S_3$. We get $(a * x, b * y, c * z) \in S_1 \times S_2 \times S_3$. Since $a * x, a \in S_1$, we have $x \in S_1$. Moreover, we can obtain that $y \in S_2$ and $z \in S_3$. This implies that $(x, y, z) \in S_1 \times S_2 \times S_3$. Hence, $S_1 \times S_2 \times S_3$ is an ideal of X^3 .

Acknowledgment: This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF66-UoE017).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] R.K. Bandru, N. Rafi, On G-algebras, Sci. Magna, 8 (2012), 1-7.
- [2] W.A. Dudek, J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131-1138. https: //cir.nii.ac.jp/crid/1572261549626076288.
- [3] Q.P. Hu, X. Li, On BCH-algebras, Math. Seminar Notes, 11 (1983), 313-320.
- K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29. https://doi.org/10.3792/pja/1195522171.
- [5] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125-130.