Tri-Endomorphisms on BCH-Algebras

Patchara Muangkarn ${ }^{1}$, Cholatis Suanoom ${ }^{1}$, Jirayu Phuto ${ }^{2}$, Aiyared Iampan ${ }^{3, *}$
${ }^{1}$ Science and Applied Science Center, Program of Mathematics, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand
${ }^{2}$ Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
${ }^{3}$ Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand
* Corresponding author: aiyared.ia@up.ac.th

Abstract

In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms on of BCH -algebras. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH -algebras and provide some properties. In addition, we obtain the properties between those tri-endomorphisms and some subsets of BCH -algebras.

1. Introduction

The algebraic structures of BCK -algebras and BCl -algebras were studied by Iséki and his colleague [4,5]. In 1983, Hu and Li [3] generalized a new class of algebras from BCl -algebras, namely, a $\mathrm{BCH}-$ algebra. Next, Bandru and Rafi [1] introduced a new algebra, called a G-algebra. BCH-algebras are also being studied extensively later, $[2,3]$.

In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH -algebras and provide some properties.

Before studying, we will review the definitions and well-known results.

Received: Jul. 31, 2022.
2020 Mathematics Subject Classification. 06F35, 03G25.
Key words and phrases. BCH-algebra; left tri-endomorphism; central tri-endomorphism; right tri-endomorphism; complete tri-endomorphism.

Definition 1.1. [3] $A B C H$-algebra is a non-empty set X with an element 0 and a binary operation * satisfying the following conditions:
(BCH1) $(\forall x \in X)(x * x=0)$,
(BCH2) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$,
(BCH3) $(\forall x, y, z \in X)((x * y) * z=(x * z) * y)$.
In a $B C H$-algebra $X=(X, *, 0)$, the binary relation \leq on X is defined as follows:

$$
(\forall x, y \in X)(x \leq y \Leftrightarrow x * y=0)
$$

Example 1.1. Let $X=\{0, a, b, c\}$ with the following Cayley table as follows:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	c	c
b	b	0	0	b
c	c	0	0	0

Then $X=(X, *, 0)$ is a $B C H$-algebra.
Proposition 1.1. $[2,3]$ Let $X=(X, *, 0)$ be a BCH-algebra. Then the following hold: for all $x, y \in X$,
(BCH4) $(\forall x, y \in X)(x *(x * y) \leq y)$,
(BCH5) $(\forall x \in X)(x * 0=0 \Rightarrow x=0)$,
(BCH6) $(\forall x, y \in X)(0 *(x * y)=(0 * x) *(0 * y))$,
(BCH7) $(\forall x \in X)(x * 0=x)$,
(BCH8) $(\forall x, y \in X)((x * y) * x=0 * y)$,
(BCH9) $(\forall x, y \in X)(x \leq y \Rightarrow 0 * x=0 * y)$.
For a BCH-algebra $X=(X, *, 0)$, some interesting subsets of X play a significant rule in the investigation of its properties described below.

Definition 1.2. A non-empty subset Y of a $B C H$-algebra $X=(X, *, 0)$ is called a subalgebra of X if $x * y \in Y$ for all $x, y \in Y$. A non-empty subset I of a $B C H$-algebra $X=(X, *, 0)$ is called an ideal of X if
(1) $0 \in I$,
(2) $(\forall x, y \in X)(x * y \in I, x \in I \Rightarrow y \in I)$.
2. Main results

In this section, we introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH -algebras as follows.

Definition 2.1. Let $X=(X, *, 0)$ be a $B C H$-algebra. A mapping $f: X^{3} \rightarrow X$ is called
(1) a left tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x * w, y, z)=f(x, y, z) * f(w, y, z))$,
(2) a central tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x, y * w, z)=f(x, y, z) * f(x, w, z))$,
(3) a right tri-endomorphism on X if $(\forall w, x, y, z \in X)(f(x, y, z * w)=f(x, y, z) * f(x, y, w))$,
(4) a complete tri-endomorphism on X if $(\forall a, b, c, x, y, z \in X)(f(x * a, y * b, z * c)=f(x, y, z) *$ $f(a, b, c))$.

Example 2.1. In Example 1.1, we define $f_{l}: X^{3} \rightarrow X$ by

$$
f_{l}(x, y, z)= \begin{cases}x & \text { if } y=z=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then f_{l} is a left tri-endomorphism on X.

Proposition 2.1. Let $X=(X, *, 0)$ be a $B C H$-algebra and f_{l} be a left tri-endomorphism on X. Then
(1) $(\forall y, z \in X)\left(f_{l}(0, y, z)=0\right)$,
(2) $(\forall w, x, y, z \in X)\left(x \leq w \Rightarrow f_{l}(x, y, z) \leq f_{l}(w, y, z)\right)$.

Proof. (1) Let $y, z \in X$. Then, by BCH1, we have $f_{l}(0, y, z)=f_{l}(0 * 0, y, z)=f_{l}(0, y, z) * f_{l}(0, y, z)=$ 0.
(2) Let $w, x, y, z \in X$ be such that $x \leq w$. Then, by (1), we have $0=f_{l}(0, y, z)=f_{l}(x * w, y, z)=$ $f_{l}(x, y, z) * f_{l}(w, y, z)$. Hence, $f_{l}(x, y, z) \leq f_{l}(w, y, z)$.

Similarly, the properties of central and right tri-endomorphisms are easily obtained.

Proposition 2.2. Let $X=(X, *, 0)$ be a $B C H$-algebra and f_{c} be a central tri-endomorphism on X. Then
(1) $(\forall x, z \in X)\left(f_{c}(x, 0, z)=0\right)$,
(2) $(\forall w, x, y, z \in X)\left(y \leq w \Rightarrow f_{c}(x, y, z) \leq f_{c}(x, w, z)\right)$.

Proposition 2.3. Let $X=(X, *, 0)$ be a $B C H$-algebra and f_{r} be a right tri-endomorphism on X. Then
(1) $(\forall x, y \in X)\left(f_{r}(x, y, 0)=0\right)$,
(2) $(\forall w, x, y, z \in X)\left(z \leq w \Rightarrow f_{r}(x, y, z) \leq f_{r}(x, y, w)\right)$.

Theorem 2.1. Let $X=(X, *, 0)$ be a BCH-algebra and f be a complete tri-endomorphism on X. Then
(1) $f(0,0,0)=0$,
(2) if S is a subalgebra of X, then $f\left(S^{3}\right)$ is also a subalgebra of X,
(3) if S is an ideal of X and f is bijective, then $f\left(S^{3}\right)$ is also an ideal of X,
(4) if f is a left tri-endomorphism on X, then $f(x, y, z) * f(x, 0,0)=0$ for any $x, y, z \in X$,
(5) if f is a central tri-endomorphism on X, then $f(x, y, z) * f(0, y, 0)=0$ for any $x, y, z \in X$,
(6) if f is a right tri-endomorphism on X, then $f(x, y, z) * f(0,0, z)=0$ for any $x, y, z \in X$,
(7) if f is a left and right (central and right, left and central) tri-endomorphism on X, then $f(x, y, z)=0$ for any $x, y, z \in X$, i.e., f is the zero map.

Proof. (1) By BCH1, we have $f(0,0,0)=f(0 * 0,0 * 0,0 * 0)=f(0,0,0) * f(0,0,0)=0$.
(2) Suppose that S is a subalgebra of X. Let $a, b \in f\left(S^{3}\right)$. Then there exist $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in S^{3}$ such that $a=f\left(x_{1}, y_{1}, z_{1}\right)$ and $b=f\left(x_{2}, y_{2}, z_{2}\right)$. Thus $a * b=$ $f\left(x_{1}, y_{1}, z_{1}\right) * f\left(x_{2}, y_{2}, z_{2}\right)=f\left(x_{1} * x_{2}, y_{1} * y_{2}, z_{1} * z_{2}\right) \in f\left(S^{3}\right)$. Hence, $f\left(S^{3}\right)$ is a subalgebra of X.
(3) Suppose that S is an ideal of X and f is bijective. Since $0 \in S$ and by (1), we have $0=$ $f(0,0,0) \in f\left(S^{3}\right)$. Assume that $x * y \in f\left(S^{3}\right)$ and $x \in f\left(S^{3}\right)$. There exist $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in S^{3}$ such that $x * y=f\left(x_{1}, y_{1}, z_{1}\right)$ and $x=f\left(x_{2}, y_{2}, z_{2}\right)$. Since f is surjective, there exists $(a, b, c) \in X^{3}$ such that $y=f(a, b, c)$. Thus $f\left(S^{3}\right) \ni f\left(x_{1}, y_{1}, z_{1}\right)=x * y=f\left(x_{2}, y_{2}, z_{2}\right) * f(a, b, c)=f\left(x_{2} * a, y_{2} *\right.$ $b, z_{2} * c$). Since f is injective, we have $x_{2} * a, y_{2} * b, z_{2} * c \in S$. Since S is an ideal of X, we get $a, b, c \in S$. Thus $y=f(a, b, c) \in f\left(S^{3}\right)$. Hence, $f\left(S^{3}\right)$ is an ideal of X.
(4)-(6) It is obvious from Propositions 2.1-2.3.
(7) Suppose that f is a left and right tri-endomorphism on X. Let $x, y, z \in X$. Then, by Propositions 2.1 and 2.3, $\mathrm{BCH} 1, \mathrm{BCH} 70=f(0, y, z)=f(x * x, y * 0, z * 0)=f(x, y, z) * f(x, 0,0)=f(x, y, z) * 0=$ $f(x, y, z)$. Hence, f is the zero map on X.

Let $T_{l}(X)$ (resp., $T_{c}(X), T_{r}(X)$ and $T(X)$) be the set of all left tri-endomorphisms (resp., right, central and complete tri-endomorphisms) on a BCH-algebra $X=(X, *, 0)$. We define an operation \star on $T_{l}(X)$ by $(\forall x, y, z \in X)((f \star g)(x, y, z)=f(x, y, z) * g(x, y, z))$. Let $f \in T_{l}(X)$ and $x, y, z \in X$. Then $(f \star f)(x, y, z)=f(x, y, z) * f(x, y, z)=0$. This means that $f \star f=0_{x}$, where $0_{x}: X^{3} \rightarrow X$ is a function that maps all members to 0 . Let $f, g \in T_{l}(X)$ be such that $f \star g=0_{X}$ and $g \star f=0_{X}$. Then for all $x, y, z \in X, 0=(f \star g)(x, y, z)=f(x, y, z) * g(x, y, z)$ and $0=(g \star f)(x, y, z)=g(x, y, z) *$ $f(x, y, z)$. Since $g(x, y, z), f(x, y, z) \in X$, we have $f(x, y, z)=g(x, y, z)$ for all $x, y, z \in X$. Hence, $f=g$. Let $f, g, h \in T_{l}(X)$ and $x, y, z \in X$. Then $((f \star g) \star h)(x, y, z)=(f \star g)(x, y, z) * h(x, y, z)=$ $(f(x, y, z) * g(x, y, z)) * h(x, y, z)=(f(x, y, z) * h(x, y, z)) * g(x, y, z)=(f \star h)(x, y, z) * g(x, y, z)=$ $((f \star h) \star g)(x, y, z)$. Hence, $(f \star g) \star h=(f \star h) \star g$.

Theorem 2.2. $\left(T_{l}(X), \star, 0_{X}\right),\left(T_{c}(X), \star, 0_{X}\right),\left(T_{r}(X), \star, 0_{X}\right)$, and $\left(T(X), \star, 0_{X}\right)$ are BCH-algebras.
Let $X=(X, *, 0)$ be a BCH-algebra. We define the binary operation \diamond on X^{3} as follows: $\left(\forall(a, b, c),(x, y, z) \in X^{3}\right)((a, b, c) \diamond(x, y, z)=(a * x, b * y, c * z))$. Then $X^{3}=(X, \diamond,(0,0,0))$ is a BCH -algebra.

Theorem 2.3. Let $X=(X, *, 0)$ be a $B C H$-algebra and S_{1}, S_{2}, S_{3} be subsets of X. Then
(1) $S_{1} \times S_{2} \times S_{3}$ is a subalgebra of X^{3} if and only if S_{1}, S_{2} and S_{3} are subsets of X,
(2) $S_{1} \times S_{2} \times S_{3}$ is an ideal of X^{3} if and only if S_{1}, S_{2} and S_{3} are ideals of X.

Proof. (1) Suppose that $S_{1} \times S_{2} \times S_{3}$ is a subalgebra of X^{3}. Firstly, we will show that S_{1} is a subalgebra of X. Let $a, b \in S_{1}$. Let $x \in S_{2}$ and $u \in S_{3}$. Then $(a, x, u),(b, x, u) \in S_{1} \times S_{2} \times S_{3}$. Thus $(a * b, 0,0)=(a * b, x * x, u * u)=(a, x, u) \diamond(b, x, u) \in S_{1} \times S_{2} \times S_{3}$, that is, $a * b \in S_{1}$. Hence, S_{1} is a subalgebra of X. On the other hand, we can show that S_{2} and S_{3} are subalgebras of X.

Conversely, let $(x, y, z),(a, b, c) \in S_{1} \times S_{2} \times S_{3}$. Then $x * a \in S_{1}, y * b \in S_{2}$, and $z * c \in S_{3}$, so $(x, y, z) \diamond(a, b, c)=(x * a, y * b, z * c) \in S_{1} \times S_{2} \times S_{3}$. Hence, $S_{1} \times S_{2} \times S_{3}$ is a subalgebra of X^{3}.
(2) Suppose that $S_{1} \times S_{2} \times S_{3}$ is an ideal of X^{3}. Since $(0,0,0) \in S_{1} \times S_{2} \times S_{3}$, we have $0 \in S_{i}$ for all $i=1,2,3$. Assume that $a * x \in S_{1}$ and $a \in S_{1}$. Let $b \in S_{2}$ and $c \in S_{3}$. Then $(a, b, c) \in S_{1} \times S_{2} \times S_{3}$ and $(x, b, c) \in X^{3}$. Thus $(a, b, c) \diamond(x, b, c)=(a * x, b * b, c * c)=(a * x, 0,0) \in S_{1} \times S_{2} \times S_{3}$. Since $S_{1} \times S_{2} \times S_{3}$ is an ideal of X^{3}, we have $(x, b, c) \in S_{1} \times S_{2} \times S_{3}$, that is, $x \in S_{1}$. Hence, S_{1} is an ideal of X. Similarly, we can show that S_{2} and S_{3} are ideals of X.

Conversely, suppose that S_{1}, S_{2} and S_{3} are ideals of X. Since $0 \in S_{i}$ for all $i=1,2,3$, we have $(0,0,0) \in S_{1} \times S_{2} \times S_{3}$. Assume that $(a, b, c) *(x, y, z) \in S_{1} \times S_{2} \times S_{3}$ and $(a, b, c) \in S_{1} \times S_{2} \times S_{3}$. We get $(a * x, b * y, c * z) \in S_{1} \times S_{2} \times S_{3}$. Since $a * x, a \in S_{1}$, we have $x \in S_{1}$. Moreover, we can obtain that $y \in S_{2}$ and $z \in S_{3}$. This implies that $(x, y, z) \in S_{1} \times S_{2} \times S_{3}$. Hence, $S_{1} \times S_{2} \times S_{3}$ is an ideal of X^{3}.

Acknowledgment: This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF66-UoE017).
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] R.K. Bandru, N. Rafi, On G-algebras, Sci. Magna, 8 (2012), 1-7.
[2] W.A. Dudek, J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131-1138. https: //cir.nii.ac.jp/crid/1572261549626076288.
[3] Q.P. Hu, X. Li, On BCH-algebras, Math. Seminar Notes, 11 (1983), 313-320.
[4] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29. https://doi.org/10.3792/pja/1195522171.
[5] K. Iséki, On BCl-algebras, Math. Seminar Notes, 8 (1980), 125-130.

