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ABSTRACT. This paper considered the comparison of some tests for assessing the overall homogeneity of 

Kaplan-Meier survival curves under low and high censoring rates when the curves are disjointed towards the 

end. The performances of these tests were measured by their statistical powers. Monte Carlo simulation 

study was conducted to evaluate and numerically compare the relative performances of Log-rank,Wilcoxon, 

Tarone-Ware, Peto-Peto, Modified Peto-Peto, the Fleming-Harrington (1,1), and the Babalola-Adeleke 

tests. The result obtained shows that the Babalola-Adeleke and Fleming-Harrington (1,1) tests have more 
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robust performances than the other five popular tests with relatively high power in detecting differences when 

the censoring rates in the groups are both low and high. The highest overall average powers under low and 

high censoring rates were produced by Babalola-Adeleke and Fleming-Harrington (1,1) tests respectively. 

Hence, these two tests are the most suitable tests for diagnosing homogeneity of survival curves under these 

conditions. 

 

 

1.  Introduction 

The rate at which survival analysis is advancing and gaining popularity in every field of study is 

pretty impressive. The nature of data obtained in the area of Biostatistics has necessitated the growth 

in the volume of works done in the survival analysis [1-5]. Survival analysis is also of massive use in 

Engineering and Social sciences fields [6-8]. A very predominant method in Survival analysis is 

Kaplan-Meier method, which is capable of estimating the survivorship function for different sample 

sizes. Several scholars have established its huge efficiency in capturing necessary survival details in 

cohort studies and otherwise. The Kaplan-Meier estimator is a nonparametric method that allows for 

the incorporation of censoring for the purpose of estimation of probabilities of survival [9-12]. More 

related and relevant research works have also been reported in the literature. 

The log-rank test is arguably the most popular test in testing for homogeneity of survival 

distribution. However, it may fail to recognize some crucial differences that exist among groups 

whereby the main difference takes place very early in the study or towards the end of the study 

[13].This is because it was proposed in order to give equal weight to all failures among the follow-up 

[14]. The shortfall of the log-rank test is in the assumption that the hazard ratio of the groups should 

be proportional along the follow-up period as that is the only condition that makes the test superior 

to others [15-17]. When this assumption is not met, that is when the hazard ratio is non-constant, the 

Gehan-Wilcoxon and Tarone-Ware tests can be more powerful than the log-rank test [18,19]. The 

Peto-Peto test is also efficient when the proportional hazard assumption is violated [10]. The strength 

of the Fleming-Harrington tests (F-H) is in its flexibility. Unlike the other tests, it allows for the choice 

of weights and focuses on crossing the hazard ratios of groups [19]. Different combinations of the 

weight, therefore, yield different tests entirely.  

[20] compared the statistical powers of some nonparametric tests and concluded that the 

Peto-Prentice generalized Wilcoxon statistic performed best under the investigated situation. [15,21] 

examined the properties of the tests based on linear rank statistics and the effect of unequal censoring 
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by using various combinations of censoring proportions, respectively. In the paper, Wilcoxon test had 

the lowest relative power of all tests examined. [22,23] and [24] were interested in the comparison of 

the Wilcoxon and the Log-rank tests under different scenarios. [25] added more tests, which are the 

Tarone-Ware, Peto-Peto, and F-H tests to the comparison of the log-rank and Wilcoxon tests when 

the sample size is quite small. It was concluded in the paper that the choice of weight function has a 

tremendous impact on the power of the tests under any given situation. The importance of simulations 

and Monte Carlo methods in modern research were the focus of [26]. [27] proposed a modified 

one-sample log-rank test, and a sample size formula was derived based on its exact variance to provide 

a study design that preserves the type I error. [28] discussed the versatile tests for comparing survival 

curves based on weighted log-rank statistics. [29] proposed a nonparametric test for the comparison 

of survival curves using the median. [30] examined the tests for comparing survival curves with 

right-censored data. In the study, the type I error rate of Logrank test was equal or close to the 

nominal value. 

[31] developed a new method and demonstrated that this method outclassed some existing 

methods and relatively performed better under low and high censoring rates when the Kaplan-Meier 

survival curves are proportional. It was also ascertained that when there are crossing survival curves, 

the powers of the tests are relatively low since none of the tests gave statistical power in close of one. 

Other relevant works on censoring and other methodologies are [1],[32-38]. 

Thus, this paper considers a typical situation whereby the survival curves of the two groups are 

similar at the beginning of the study but gradually diverged towards the end. The censoring rates 

were categorized into two parts (low and high censoring rates). The censoring times among the 

groups were carefully chosen to fit into the intended survival pattern. All survival times were 

simulated from an exponential distribution. The outcome of this study will assist researchers as a 

further guide for their choice of tests when survival curves are disjointed towards the end. 

Hence, the novelty of this study would be in comparing the relatively new Babalola-Adeleke 

test with some of the popular methods for checking homogeneity of Kaplan-Meier survival curves 

with disjointed ends under both high and low censoring rates. It is expected that the findings of 

this study would help the users of survival analysis as it will certainly further expose to them 

performances of the tests under consideration. It will also guide in decision making when 

confronted with the choosing of the most appropriate test to detect differences in survival curves 
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with disjointed ends. To the best of our knowledge, this is the first study that would compare 

Babalola-Adeleke test with others under this particular situation. 

2. Methodology 

Given that there are two groups, that is, groups 1 and 2, where the survival times were observed 

and recorded as jt . The number of observed failures (death) in group 1 and group 2 being jm1 and 

jm2  respectively, the number not experiencing the event of interest being jj mn 11 −  and 
2 2j jn m−

 

for group 1 and group 2 respectively, and the number at risk is  jjj nnn 21 +=
 

 

Table 1. Table used for test of equality of the survivorship function in two groups at observed survival 

time jt  

Event/Group  1 2 Total 

Number of death 
jm1  jm2  jj mm 21 +  

Number not dying 
jj mn 11 −  2 2j jn m−  

1 2 1 2j j j jn n m m+ − −  

Number at risk 
jn1  jn2  jjj nnn 21 +=  

 

The various multiple-group versions of the two-group test statistic is obtained by computing a 

weighted difference between the observed and the expected numbers of events. Table 2 presents a K 

groups pattern for the test of equality. 

Table 2. Table used for test of equality of the survivorship function in K groups at observed survival 

time jt  

Event/Group  1 2 … k … K Total 

Number 

of death 
jm1  jm2  … 

kjm  … 
Kjm  jm  

Number not 

dying 
jj mn 11 −

 

jj mn 12 −

 

… 
kj kjn m−  … 

Kjj mn −2  j jn m−  

Number at 

risk 
jn1  jn2  … 

kjn  … 
Kjn  jn  

where, 1 2 ...j j j Kjm m m m= + + +
 

1 2 ...j j j Kjn n n n= + + +
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1 2 1 2... ...j j j j Kj j j Kjn m n n n m m m− = + + + − − − −
 

Based on the argument above, the test hypothesis considered is: 

                         0 1 2: ( ) ( )H S t S t=  

                         1 1 2: ( ) ( )H S t S t  

For the test statistics of the tests, see: [39-42] and [8]. The tests are based on some assumptions 

namely: censoring is unrelated to prognosis; the survival probabilities are equal for subjects recruited 

early and late in the study; the events happened at the times specified. 

Simulation Study 

The use of simulation study for the examination of statistical powers of tests under a variety of 

situations is a popular concept which is well reported in the literature. Over the years, Monte-Carlo 

simulations have been employed for testing heterogeneity of survival distributions when the 

proportional hazard assumption is satisfied and when it is not. Therefore, a Monte Carlo simulation to 

compare the statistical power of the Log-rank, Wilcoxon, Tarone-Ware, Peto-Peto, Modified 

Peto-Peto, Fleming-Harrington(1,1), and Babalola-Adeleke tests was conducted. It is a known fact 

that due to the flexibility of the Fleming-Harrington test, there are several options for its weights. 

Hence, for the purpose of placing weights of hazard in the middle, Fleming-Harrington (1,1) was 

selected since every other test either places equal weight across the board or places more weight at 

the beginning or towards the end. Figure 1 shows the survival curves of two groups that have a similar 

pattern for some time but have a disjointed end. Therefore, all the simulated datasets followed this 

pattern. 

 

Figure 1. Figure of the Situation for consideration in the simulation study 
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For each of the combination of the sample sizes, 5000 iterations were simulated in order to 

obtain statistically viable powers of the aforesaid tests. Since the larger the number of iterations, the 

better the result. The estimated statistical power was obtained as the proportion of 5000 repeated 

random samples where the hypothesis of no difference in the survival curves (null hypothesis) at the 

0.05 significance level is correctly rejected. 

3. Results  

Considering the sub-situation with low censoring rates in both groups, the survival times in Group 

1 follow an exponential distribution with a mean of 4 (rate 0.25), and in Group 2, the survival times 

follow an exponential distribution with mean 4(rate 0.25) as well. In order to get disconnected survival 

curves towards the end, if the survival time in Group 2 is greater than or equal to 4, then the survival 

time is automatically simulated from an exponential distribution with a mean 40(rate 0.025). In order 

to have low censoring rates in the two groups, if the survival time is greater than the maximum 

survival time divided by 1.25 into both groups, then the observation was censored. These yielded an 

overall average censoring rate of 4.50% and 9.99% in Groups 1 and 2, respectively. Table 3 displays 

the result of the powers of the seven tests obtained from the simulation conducted for this 

sub-situation under low censoring rates alongside the censoring rates. The censoring rates in both 

groups decrease as the sample sizes increase. The same trend is also exhibited in mixed sample sizes. 

Table 3. Powers of the tests and censoring rates for the Situation (low censoring rates) 

Sample 

size 

Log- 

rank 
Wilcoxon 

Tarone

- 

Ware 

Peto- 

Peto 

Modified 

Peto-Peto 

Fleming- 

Harrington 

Babalola- 

Adeleke  

  

 Censoring rates 

(%) 

20,20 0.0798 0.0698 0.0732 0.0698 0.0688 0.1016 0.0810 8.3840 11.0760 

40,40 0.1824 0.0878 0.1144 0.0884 0.0872 0.1906 0.1884 4.8805 9.7795 

50,50 0.2386 0.1082 0.1428 0.1072 0.1062 0.2360 0.2462 4.0228 9.6964 

60,60 0.2890 0.1142 0.1554 0.1132 0.1126 0.2706 0.2976 3.4980 9.7923 

80,80 0.3914 0.1404 0.2096 0.1390 0.1386 0.3480 0.3998 2.8098 9.5333 

100,100 0.4508 0.1610 0.2344 0.1578 0.1578 0.3916 0.4586 2.3252 9.6056 

          

20,50 0.0784 0.0674 0.0668 0.0670 0.0674 0.1082 0.0796 8.5350 9.6608 

50,20 0.1880 0.0852 0.1170 0.0836 0.0834 0.1756 0.1966 4.1364 11.0430 

50,100 0.2690 0.1104 0.1516 0.1056 0.1054 0.2908 0.2774 4.0152 9.5900 

100,50 0.3890 0.1374 0.2016 0.1346 0.1356 0.3218 0.3976 2.3938 9.5516 
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From Table 3, it is evident that the powers of all the tests increase as the sample size increase as 

the highest powers recorded for all the tests is obtained at sample size (100,100). The 

Babalola-Adeleke test has the highest power at the largest equal sample size, with a value of 0.4586. 

The Babalola-Adeleke test outperforms all the other tests at all sample sizes except when the sample 

sizes were (20,40), (40,40) and (20,50) for the Fleming-Harrington test. The Peto-Peto and the 

Modified Peto-Peto produced similar results under this Situation with just small differences in the 

powers of the two tests across all the sample sizes, which is not statistically significant judging by 

student t-test. However, the Peto-Peto test still outperforms the Modified Peto-Peto under equal 

sample sizes. The statistical description of Table 3 is given in Table 4.  

Table 4. Descriptive statistics of the power of the tests for the Situation (low censoring rates) 

  Log-rank Wilcoxon 
Tarone-

Ware 

Peto- 

Peto 

Modified 

Peto-Peto 

Fleming- 

Harrington 

Babalola- 

Adeleke  

Mean 0.2556 0.1082 0.1466 0.1066 0.1063 0.2435 0.2622 

Standard 

Error 
0.0406 0.0099 0.0178 0.0096 0.0097 0.0312 0.0413 

Median 0.2538 0.1093 0.1472 0.1064 0.1058 0.2533 0.2618 

Standard 

Deviation 
0.1283 0.0313 0.0563 0.0304 0.0306 0.0988 0.1306 

Kurtosis -1.0388 -0.9181 -0.9519 -0.9273 -0.9537 -1.1006 -1.0237 

Skewness 0.0424 0.2763 0.0984 0.2998 0.3179 -0.1156 -0.0025 

Range 0.3724 0.0936 0.1676 0.0908 0.0904 0.2900 0.3790 

Minimum 0.0784 0.0674 0.0668 0.0670 0.0674 0.1016 0.0796 

Maximum 0.4508 0.1610 0.2344 0.1578 0.1578 0.3916 0.4586 

Table 4 shows that the Babalola-Adeleke test has the highest mean of 0.2622 as the average 

power of the method across all the combinations of sample sizes and the standard error of 0.0413. 

This is followed by the Log-rank test with an average statistical power of 0.2556 with a standard error 

of 0.0406, while the Modified Peto-Peto test resulted in the lowest average statistical power 0.1063 

with standard error 0.0097. The descriptive statistics of the Modified Peto-Peto and Peto-Peto tests 

are similar. The median powers for the tests arranged in descending order are 0.2618, 0.2538, 0.2533, 

0.1472, 0.1093, 0.1064, and 0.1058, which are results of the Babalola-Adeleke test, Log-rank, 

Fleming-Harrington, Tarone-Ware, Wilcoxon tests, Peto-Peto and Modified Peto-Peto, respectively. 
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For skewness, the result shows that the power of all the tests is positively skewed except for the 

Babalola-Adeleke test and Fleming-Harrington test, which indicates that both the mean and the 

median are less than the mode of the powers of the tests.  The negative values of the Kurtosis 

indicate that the distribution of the powers has lighter tails and a flatter peak than the normal 

distribution. 

 

Figure 2. A chart showing the statistical powers of the tests under the Situation with low censoring 

rates 

3.1 The situation with high censoring rates  

In the presence of high censoring rates in both groups, the survival times in Group 1 follow an 

exponential distribution with a mean of 4 (rate 0.25), and in Group 2, the survival times follow an 

exponential distribution with mean 4(rate 0.25) as well. In order to get disconnected survival curves 

towards the end, if the survival time in Group 2 is greater than or equal to 4, then the survival time is 

automatically simulated from an exponential distribution with a mean 40(rate 0.025). Additionally, in 

order to have high censoring rates in both groups, if the survival time is greater than the minimum 

survival time plus two. That is, (the minimum survival time in both groups +2), then the observation 

was censored. These yielded an overall average censoring rate of 59.3096% and 55.6807% in Groups 

1 and 2, respectively. These censoring rates are quite high since more than half of the cohorts in both 

groups censored. The result of the powers of the tests when there are high censoring rates is displayed 

in Table 5. Unlike the first sub-situation with low censoring rates, the censoring rates in both groups 

increase with sample size.  
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Table 5. Powers of the tests and censoring rates for the Situation (High censoring rates) 

Sample 

size 

Log- 

rank 
Wilcoxon 

Tarone-

Ware 

Peto- 

Peto 

Modified 

Peto-Pet

o 

Fleming- 

Harringto

n 

Babalola-

Adeleke  
Censoring rates(%) 

20,20 0.0546 0.0526 0.0530 0.0520 0.0526 0.0692 0.0554 57.8950 53.9850 

40,40 0.0724 0.068 0.0712 0.0664 0.0664 0.0834 0.0722 59.2980 55.7400 

50,50 0.0796 0.0802 0.0806 0.0784 0.0786 0.0918 0.0796 59.3356 56.0164 

60,60 0.0964 0.0924 0.0916 0.0902 0.0902 0.1004 0.0964 59.7593 56.1180 

80,80 0.1118 0.1056 0.1098 0.1038 0.1038 0.1178 0.1118 59.8665 56.3325 

100,100 0.1264 0.1230 0.1250 0.1180 0.1180 0.1378 0.1264 59.9832 56.4456 

                    

20,50 0.0576 0.0592 0.0584 0.0576 0.0574 0.0680 0.0576 57.9630 55.7360 

50,20 0.0786 0.0704 0.0750 0.0698 0.0700 0.1068 0.0788 59.4056 53.8740 

50,100 0.0968 0.0934 0.094 0.0890 0.0892 0.0958 0.0966 59.5496 56.5508 

100,50 0.1092 0.1022 0.1048 0.1002 0.1000 0.1192 0.1092 60.0398 56.0084 

 

Generally, the powers of all the tests are low. Even at that, the Fleming-Harrington still 

outperforms the other tests. As expected, the powers increase as the sample sizes increase. This could 

indicate that at much larger sample sizes, the powers of the tests could attain higher values than the 

ones reported.  

 

 

Figure 3. A chart showing the statistical powers of the tests under the Situation with high censoring 

rates 
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Figure 3 above further reiterates the outstanding performance of the Fleming-Harrington test 

under this Situation and censoring rates. It apparently outclasses all the other tests when the sample 

sizes are the same in the two groups. The value of its power is only in the range of the other tests 

when the sample size is 50 in the first group and 100 in the second group. In any other sample size, 

it outperforms all the other tests. 

Table 6. Descriptive statistics of the power of the tests for the Situation (High censoring rates) 

  
Log- 

rank 
Wilcoxon 

Tarone-

Ware 

Peto- 

Peto 

Modified 

Peto-Peto 

Fleming- 

Harrington 

Babalola-A

deleke  

Mean 0.0883 0.0847 0.0863 0.0825 0.0826 0.0990 0.0884 

Standard Error 0.0075 0.0071 0.0073 0.0068 0.0067 0.0071 0.0075 

Median 0.0880 0.0863 0.0861 0.0837 0.0839 0.0981 0.0880 

Standard Deviation 0.0238 0.0224 0.0230 0.0214 0.0213 0.0223 0.0236 

Kurtosis -1.0034 -0.8489 -0.7644 -0.9598 -0.9645 -0.5284 -1.0139 

Skewness 0.0534 0.1778 0.1554 0.1432 0.1486 0.1630 0.0713 

Range 0.0718 0.0704 0.0720 0.0660 0.0654 0.0698 0.0710 

Minimum 0.0546 0.0526 0.0530 0.0520 0.0526 0.0680 0.0554 

Maximum 0.1264 0.1230 0.1250 0.1180 0.1180 0.1378 0.1264 

 

From Table 6, the Fleming-Harrington test has the highest mean of 0.0990 as the average power 

of the method across all the combinations of sample sizes and the standard error of 0.0071. This is 

followed by the Babalola-Adeleke test with an average statistical power of 0.0884 with a standard error 

of 0.0075, while the Peto-Peto test resulted in the lowest average statistical power 0.0825 with 

standard error 0.0068. As in the case of low censoring rates in this Situation, the descriptive statistics 

of the Modified Peto-Peto and Peto-Peto tests are similar. However, the Modified Peto-Peto performs 

better than Peto-Peto under the condition.  The median powers for the tests arranged in descending 

order are 0.0981, 0.0880, 0.0880, 0.0863, 0.0861, 0.0839, and 0.0837, which are results for 

Fleming-Harrington, Babalola-Adeleke, Log-rank, Wilcoxon, Tarone-Ware, Modified Peto-Peto, and 

Peto-Peto, respectively. For skewness and Kurtosis, the result shows that the power of all the tests 

is positively skewed with negative Kurtosis. 

3.2 Application of the tests to real-life data 

Survival in patients with Acute Myelogenous Leukemia was studied with the interest of knowing 

the impact of the standard course of chemotherapy extension [43,44]. The variables in the study were 
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time, which is the survival or censoring time, and event (recurrence of AML cancer) is indicated by the 

variable "status" 1 = event (recurrence) and 0 = no event (censored). The treatment group was 

represented by the variable "x", which indicates if maintenance chemotherapy was given (Maintained) 

or not (Non-maintained). 

This is a popular data set with 8.33% patients censored in group 1(maintained) and 36.36% in 

the second group (non-maintained). The property of this data set is "slightly" similar to the situation 

under study as the survival curves have a similar pattern from the beginning of the study till about the 

week 45(though not exactly the same form from the beginning). Then homogeneity of the survival 

curves can be investigated. This is the closest real-life data we have at our disposal for the situation 

under study.  

The test hypothesis is: 

                             0 Maintained NonmaintainedH : ( ) ( )S t S t=
 

                             1 Maintained NonmaintainedH : ( ) ( )S t S t
 

Table 7. Comparison of the results of the different tests using the Acute Myelogenous Leukemia   

Method Log- 

rank 

Wilcoxon Tarone- 

Ware 

Peto-Peto Modified 

Peto-Peto 

Fleming- 

Harrington 

Babalola- 

Adeleke 

2 - value 3.3964 2.7233 2.9816 3.5880 3.5670 1.4310 3.6236 

p-value 0.0654 0.0988 0.0842 0.0582 0.0590 0.2316 0.0570 

 

Table 7 clearly shows that all the tests validate that the Kaplan-Meier survival curves of those 

who were maintained and those who were not maintained are not significantly different as none of the 

p-values is less than 0.05. All the tests yielded very low chi-squared values. This result is consistent 

with the results earlier reported.   

4. Conclusion 

Generally, the powers of all the tests are low. Even at that, the Fleming-Harrington still 

outperforms the other tests. The powers increase as the sample sizes increase. This could indicate 

that at much larger sample sizes, the powers of the tests could attain higher values than the ones 

reported.  A general comment about this situation, that is when the survival curves are separate 

towards the end is that, the powers of the tests are also low as expected. This means that it is quite 

difficult for the different tests to correctly diagnose survival curves because of the similarity of the 

curves for a larger part of the study (not until towards the end of the study). The low values of the 
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power are expected, and it has been reported by other researches as well. Generally, across all the 

sample sizes, the overall average of the power of the entire tests combined is lower when dealing with 

high censoring rates (0.0874) than when dealing with lower censoring rate (0.1756).  
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