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Abstract. In this paper, we introduce the concept of (inf, sup)-hesitant fuzzy ideals, which is a gener-

alization of the concept of interval-valued fuzzy ideals, in BCK/BCI-algebras and its related properties

are investigated. The concept is established in terms of sets, fuzzy sets, negative fuzzy sets, interval-

valued fuzzy sets, Pythagorean fuzzy sets, bipolar fuzzy sets and hesitant fuzzy sets. Moreover,

characterizations of ideals, fuzzy ideals, anti-fuzzy ideals, negative fuzzy ideals, Pythagorean fuzzy

ideals and bipolar fuzzy ideals of BCK/BCI-algebras are discussed in terms of (inf, sup)-hesitant fuzzy

ideals and interval-valued fuzzy ideals.

1. Introduction

The concept of fuzzy sets, introduced by Zadeh [3], has been widely and successfully applied

in many branches: finite state machine, computer science, automata, artificial intelligence, expert,

control engineering, robotics and theory of groups, semigroups, BCK/BCI-algebras and UP-algebras.
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Several general, extended and related concepts of fuzzy sets have been introduced and studied such

as interval-valued fuzzy sets [4, 5], intuitionistic fuzzy sets [6, 7], Pythagorean fuzzy sets [10–12],

negative fuzzy sets [13,14], bipolar fuzzy sets [15,16], hesitant fuzzy sets [17,18,20,22] and so forth.

BCK and BCI-algebras are algebraic structures, introduced by Imai, Iséki and Tanaka, that describe

fragments of the propositional calculus involving implication known as BCK and BCI logic (see [29–

31]). In 1991, Xi [8] applied the concept of fuzzy sets to BCK-algebras. Later, a number of authors

applied and discussed concept of fuzzy sets and its some general, extended and related concepts to

BCK/BCI-algebras. Hong and Jun [9] introduced anti-fuzzy ideals of BCK-algebras and investigated

their some useful properties. Subha and Dhanalakshmi [12] exposed and studied Pythagorean fuzzy

ideals of BCK-algebras. Jun [5] introduced interval-valued fuzzy subalgebras and ideals of BCK-

algebras, and investigated their related properties and characterizations. Lee [16] introduced bipolar

fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, investigated their related properties,

and considered equivalent relations on the set of all bipolar fuzzy ideals of BCK/BCI-algebras. Jun and

Ahn [19] introduced hesitant fuzzy subalgebras and ideals of BCK/BCI-algebras, and investigated their

related properties and important characterizations. Muhiuddin et al. [32] introduced hesitant fuzzy

translations and hesitant fuzzy extensions of a hesitant fuzzy set on BCK/BCI-algebras, investigated

related properties, and characterized hesitant fuzzy (subalgebras) ideals.

Studying hesitant fuzzy sets on algebraic structures in the meaning of the infimum or supremum

of its images, Mosrijai et al. [33] introduced sup-hesitant fuzzy UP-subalgebras, UP-filters, UP-ideals,

and strong UP-ideals of UP-algebras and investigated their related properties. Muhiuddin and Jun [34]

Muhiuddin et al. [35] Muhiuddin et al. [38], Harizavi and Jun [37], Jun and Song [39] and Takallo

et al. [36] used hesitant fuzzy sets related to the infimum or supremum of their images in study of

BCK/BCI-algebras. Jittburus and Julatha [24,25], Phummee et al. [28], and Jittburus et al. [27] used

hesitant fuzzy sets related to the infimum or the supremum of their images in study of semigroups.

Julatha and Iampan [21–23, 26] used hesitant fuzzy sets related to the infimum or the supremum of

their images in study of ternary semigroups and Γ-semigroups.

As previously stated, it motivated us to study hesitant fuzzy set theory based on ideals of BCK/BCI-

algebras in the meaning of infimum and supremum. On BCK/BCI-algebras, we introduce (inf, sup)-

hesitant fuzzy ideals, show that it is a general concept of interval-valued fuzzy ideals, and investigate its

related properties. Characterizations of (inf, sup)-hesitant fuzzy ideals are established in terms of sets,

fuzzy sets, negative fuzzy sets, interval-valued fuzzy sets, Pythagorean fuzzy sets, bipolar fuzzy sets

and hesitant fuzzy sets. Moreover, characterizations of ideals, fuzzy ideals, anti-fuzzy ideals, negative

fuzzy ideals, Pythagorean fuzzy ideals and bipolar fuzzy ideals of BCK/BCI-algebras are discussed in

terms of (inf, sup)-hesitant fuzzy ideals and interval-valued fuzzy ideals.

2. Preliminaries

An algebra (X ;�, 0) of type (2, 0) is called a BCI-algebra if the followings hold:
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(I) (∀x, y , z ∈ X )(((x � y)� (x � z))� (z � y) = 0),

(II) (∀x, y ∈ X )(((x � (x � y))� y) = 0),

(III) (∀x ∈ X )(x � x = 0),

(IV) (∀x, y ∈ X )(x � y = 0 = y � x ⇒ x = y).

By a BCK-algebra we mean a BCI-algebra (X ;�, 0) satisfies 0�x = 0 for all x ∈ X . For any x, y ∈ X ,
we define x ≤ y by x � y = 0. In a BCK/BCI-algebra (X ;�, 0), the following hold:

(∀x ∈ X )(x � 0 = x), (2.1)

(∀x, y , z ∈ X )((x � y)� z = (x � z)� y). (2.2)

A nonempty subset A of a BCK/BCI-algebra (X ;�, 0) is called an ideal (Id) of X if it satisfies the

following:

0 ∈ A, (2.3)

(∀x ∈ X )(y ∈ A, x � y ∈ A ⇒ x ∈ A). (2.4)

We refer the reader to the books [1, 2] for further information regarding BCK/BCI-algebras. In what

follows, let X denote a BCK/BCI-algebra (X ,�, 0) and Y denote an arbitrary nonempty set unless

otherwise specified.

A fuzzy set (FS) [3] in Y is an arbitrary function from Y into [0, 1]. For FSs ζ and ξ in Y, we
denote ζ ≤ ξ in case that ζ(x) ≤ ξ(x) for all x ∈ Y. A FS ζ in X is call a fuzzy ideal (FId) [8] of X
if it satisfies the following conditions:

(∀x ∈ X )(ζ(0) ≥ ζ(x)), (2.5)

(∀x, y ∈ X )(ζ(x) ≥ min{ζ(x � y), ζ(y)}) (2.6)

and called an anti-fuzzy ideal (AFId) [9] of X if it satisfies the following conditions:

(∀x ∈ X )(ζ(0) ≤ ζ(x)), (2.7)

(∀x, y ∈ X )(ζ(x) ≤ max{ζ(x � y), ζ(y)}). (2.8)

Then ζ is both a FId and an AFId of X if and only if it is a constant function.

A Pythagorean fuzzy set (PFS) [10, 11] on Y is an object having the form P =

{(x, ζ(x), ξ(x)) | x ∈ Y } when the functions ζ : Y → [0, 1] denote the degree of membership and

ξ : Y → [0, 1] denote the degree of nonmembership, and 0 ≤ (ζ(x))2 + (ξ(x))2 ≤ 1 for all x ∈ Y.
For the sake of simplicity, we will use the symbol (ζ, ξ) of the PFS {(x, ζ(x), ξ(x)) | x ∈ Y}. For a

FS ζ in Y, we define a FS ζ
2 by ζ

2 (x) = ζ(x)
2 for all x ∈ Y. Then ( ζ2 ,

ξ
2 ) and ( ζ2 ,

ζ
2 ) are PFSs in Y for

all FSs ζ and ξ in Y. Thus the concept of PFSs is an extension of the concept of FSs. A PFS (ζ, ξ)

on X is called a Pythagorean fuzzy ideal (PFId) [12] of X if ζ is a FId and ξ is an AFId of X .
A bipolar fuzzy set (BFS) [15] in Y is an object having the form B = {(x, ζ(x), ξ(x)) | x ∈ Y},

where ζ : Y → [−1, 0] is a negative fuzzy set (NFS) in Y and ξ : Y → [0, 1] is a FS in Y. We’ll use
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the symbol 〈ζ, ξ〉 for the BFS {(x, ζ(x), ξ(x)) | x ∈ Y} for the purpose of simplicity. Let R be the set

of all real numbers. For any element r of R and any function ζ from Y into R, define functions r − ζ,
r + ζ, rζ and −ζ by:

r − ζ : Y → R, x 7→ r − ζ(x), (2.9)

r + ζ : Y → R, x 7→ r + ζ(x) (2.10)

rζ : Y → R, x 7→ rζ(x) (2.11)

− ζ : Y → R, x 7→ −ζ(x). (2.12)

Then the followings hold:

(1) 〈ζ − 1, ζ〉 is a BFS in Y for any FS ζ in Y,
(2) ( 1+ζ

2 , ξ2 ) and ( ξ2 ,
1+ζ

2 ) are PFSs in Y for any BFS 〈ζ, ξ〉 in Y,
(3) 〈ζ − 1, ξ〉 and 〈ξ − 1, ζ〉 are BFSs in Y for any PFS (ζ, ξ) in Y.

Thus the concept of BFSs is an extension of the concept of FSs.

A BFS B = 〈ζ, ξ〉 in X is called a bipolar fuzzy ideal (BFId) [16] of X if it satisfies the following

conditions:

(∀x ∈ X )(ζ(0) ≤ ζ(x)), (2.13)

(∀x ∈ X )(ξ(0) ≥ ξ(x)), (2.14)

(∀x, y ∈ X )(ζ(x) ≤ max{ζ(x � y), ζ(y)}), (2.15)

(∀x, y ∈ X )(ξ(x) ≥ min{ξ(x � y), ξ(y)}). (2.16)

By a negative fuzzy ideal (NFId) of X we mean a NFS ζ of X satisfies the conditions (2.13) and

(2.15). Then a BFS 〈ζ, ξ〉 of X is a BFId of X if and only if ζ is a NFId and ξ is a FId of X .
By an interval number ă we mean an interval [a−, a+], where 0 ≤ a− ≤ a+ ≤ 1. The set of all

interval numbers is denoted by D([0, 1]). For two elements ă = [a−, a+] and b̆ = [b−, b+] in D([0, 1]),

define the operations -, =, ≺ and rmin in case of two elements in D([0, 1]) as follows:

(1) ă - b̆ ⇔ a+ ≤ b+ and a− ≤ b−,
(2) ă = b̆ ⇔ a+ = b+ and a− = b−,

(3) ă ≺ b̆ ⇔ ă - b̆ and ă 6= b̆,

(4) rmin{ă, b̆} = [min{a−, b−},min{a+, b+}].

An interval-valued fuzzy set (IvFS) [4] on Y is defined to be a function λ̆ : Y → D([0, 1]), where

λ̆(x) = [λ̆L(x), λ̆U(x)] for all x ∈ Y, λ̆L and λ̆U are FSs in Y such that λ̆L ≤ λ̆U . Thus the concept

of IvFSs is an extension of the concept of FSs. An IvFS λ̆ on X is called an interval-valued fuzzy ideal
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(IvFId) [5] of X if it satisfies:

(∀x ∈ X )(λ̆(x) - λ̆(0)), (2.17)

(∀x, y ∈ X )(rmin{λ̆(x � y), λ̆(y)} - λ̆(x)). (2.18)

Remark 2.1. an IvFS λ̆ on X is an IvFId of X if and only if λ̆L and λ̆U are FIds of X .

A hesitant fuzzy set (HFS) [17,18] on Y is defined to be a function ω̃ : Y → ℘([0, 1]) when ℘([0, 1])

is the set of all subsets of [0, 1]. Note that every IvFS on Y is a HFS on Y. Then the concept of HFSs

is a generalization of the concept of IvFSs, and the concept of HFSs is an extension of the concept

of FSs. A HFS ω̃ is a hesitant fuzzy ideal (HFId) [19,20] of X if it satisfies the following:

(∀x ∈ X )(ω̃(x) ⊆ ω̃(0)), (2.19)

(∀x, y ∈ X )(ω̃(x � y) ∩ ω̃(y) ⊆ ω̃(x)). (2.20)

3. Main Results

For an element ∇ ∈ ℘([0, 1]), define INF∇ [24, 27] and SUP∇ [25, 26] by

INF∇ =

{
inf∇

0

if ∇ 6= ∅,
otherwise,

and

SUP∇ =

{
sup∇

0

if ∇ 6= ∅,
otherwise.

Definition 3.1. A HFS ω̃ on X is called an (inf, sup)-hesitant fuzzy ideal ((inf, sup)-HFId) of X
if the set [X , ω̃,∇] is an Id of X for all ∇ ∈ ℘([0, 1]) when [X , ω̃,∇] := {x ∈ X | INF ω̃(x) ≥
INF∇,SUP ω̃(x) ≥ SUP∇} is not empty.

Example 3.1. Let X = {0, u, v , w, x} be a BCI-algebra [1] with the following Cayley table:

� 0 u v w x

0 0 0 v w x

u u 0 v w x

v v v 0 x w

w w w x 0 v

x x x w v 0

Define a HFS ω̃ on X by ω̃(0) = [0.6, 0.8], ω̃(u) = (0.5, 0.7), ω̃(v) = [0.5, 0.6] ∪ {0.7}, ω̃(w) =

{0.3, 0.4}, ω̃(z) = (0.3, 0.4). It is routine to verify that ω̃ is an (inf, sup)-HFId of X .
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Example 3.2. Let X = {0, w, x, y , z} be a BCK-algebra with the following Cayley table:

� 0 w x y z

0 0 0 0 0 0

w w 0 0 0 0

x x x 0 0 0

y y x w 0 w

z z x w w 0

Define a HFS ω̃ on X by ω̃(0) = {0.8, 0.9, 1}, ω̃(w) = (0.6, 0.8], ω̃(x) = ω̃(y) = {0}, ω̃(z) = ∅. It
is routine to verify that ω̃ is an (inf, sup)-HFId of X . Moreover, we know that ω̃ is not a HFId of X
because ω̃(w) * ω̃(0), and ω̃ is not an IvFId of X because it is not an IvFS.

For any HFS ω̃ on Y, define the FSs F ω̃ and Fω̃ in Y by

(∀x ∈ Y)(F ω̃(x) = SUP ω̃(x)), (3.1)

(∀x ∈ Y)(Fω̃(x) = INF ω̃(x)). (3.2)

A HFS ϑ̃ on Y is called an infimum complement [21, 24] of ω̃ on Y if INF ϑ̃(x) = (1 − Fω̃)(x)

for all x ∈ Y and called a supremum complement of ω̃ on Y if SUP ϑ̃(x) = (1 − F ω̃)(x) for all

x ∈ Y. Let IC(ω̃) and SC(ω̃) be the set of all infimum complements of ω̃ and the set of all supremum

complements of ω̃, respectively. Define the HFSs ω̃± and ω̃∓ on Y by ω̃±(x) = {(1 − Fω̃)(x)} and
ω̃∓(x) = {(1− F ω̃)(x)} for all x ∈ Y. Then we have ω̃± ∈ IC(ω̃), Fω̃± = 1− Fω̃ and ω̃∓ ∈ SC(ω̃),

F ω̃∓ = 1 − F ω̃. Next, we investigate characterizations of (inf, sup)-HFIds of BCK/BCI-algebras in

terms of Ids, FIds, AFIds and NFIds.

Lemma 3.1. Let ω̃ be a HFS on X . Then the followings are equivalent.

(1) ω̃ is an (inf, sup)-HFId of X .
(2) The set [X , ω̃, ă] is an Id of X for all ă ∈ D([0, 1]) when [X , ω̃, ă] is not empty.

(3) Fω̃ and F ω̃ are FIds of X .
(4) F

ϑ̃
and F θ̃ are AFIds of X for all ϑ̃ ∈ IC(ω̃) and θ̃ ∈ SC(ω̃).

(5) Fω̃± and F ω̃∓ are AFIds of X .
(6) F

ϑ̃
− 1 and F θ̃ − 1 are NFIds of X for all ϑ̃ ∈ IC(ω̃) and θ̃ ∈ SC(ω̃).

(7) Fω̃± − 1 and F ω̃∓ − 1 are NFIds of X .

Proof. (1)⇒ (2), (4)⇒ (5) and (6)⇒ (7). They are clear.

(2) ⇒ (3). Let x ∈ X and ă := {t ∈ [0, 1] | INF ω̃(x) ≤ t ≤ SUP ω̃(x)}. Then ă ∈ D([0, 1])

and x ∈ [X , ω̃, ă]. By the assumption (2), we get [X , ω̃, ă] is an Id of X and so 0 ∈ [X , ω̃, ă]. Thus

SUP ω̃(x) = a+ ≤ SUP ω̃(0) and INF ω̃(x) = a− ≤ INF ω̃(0), which imply that F ω̃(x) ≤ F ω̃(0) and

Fω̃(x) ≤ Fω̃(0). Hence, F ω̃ and Fω̃ satisfy the condition (2.5). To show that F ω̃ and Fω̃ satisfy the
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condition (2.6), let x, y ∈ X and

b̆ := {t ∈ [0, 1] | min{INF ω̃(y), INF ω̃(x � y)} ≤ t ≤ min{SUP ω̃(y),SUP ω̃(x � y)}}.

Then b̆ ∈ D([0, 1]) and y , x � y ∈ [X , ω̃, b̆]. By the assumption (2), we have x ∈ [X , ω̃, b̆]. Thus

F ω̃(x) = SUP ω̃(x)

≥ b+

= min{SUP ω̃(y),SUP ω̃(x � y)}

= min{F ω̃(y),F ω̃(x � y)},

Fω̃(x) = INF ω̃(x)

≥ b−

= min{INF ω̃(y), INF ω̃(x � y)}

= min{Fω̃(y),Fω̃(x � y)}.

Hence, F ω̃ and Fω̃ satisfy the condition (2.6). Therefore, it follows from the conditions (2.5) and

(2.6) that F ω̃ and Fω̃ are FIds of X .
(3) ⇒ (1). Let ∇ be an element of ℘([0, 1]) such that [X , ω̃,∇] 6= ∅. Let x ∈ X and y , x � y ∈

[X , ω̃,∇]. Then SUP ω̃(y) ≥ SUP∇, INF ω̃(y) ≥ INF∇, SUP ω̃(x�y) ≥ SUP∇ and INF ω̃(x�y) ≥
INF∇. By the assumption (3), we have

SUP ω̃(0) = F ω̃(0) ≥ F ω̃(y) = SUP ω̃(y) ≥ SUP∇,

INF ω̃(0) = Fω̃(0) ≥ Fω̃(y) = INF ω̃(y) ≥ INF∇,

SUP ω̃(x) = F ω̃(x) ≥ min{F ω̃(y),F ω̃(x � y)} = min{SUP ω̃(y),SUP ω̃(x � y)} ≥ SUP∇,

and

INF ω̃(x) = Fω̃(x) ≥ min{Fω̃(y),Fω̃(x � y)} = min{INF ω̃(y), INF ω̃(x � y)} ≥ INF∇.

Thus 0, x ∈ [X , ω̃,∇]. Hence, [X , ω̃,∇] is an Id of X . Therefore, ω̃ is an (inf, sup)-HFId of X .
(3) ⇒ (4). Let ϑ̃ ∈ IC(ω̃) and θ̃ ∈ SC(ω̃). By the assumption (3), we obtain that F

ϑ̃
and F θ̃

satisfy the conditions (2.5) and (2.6). Thus, for all x, y ∈ X , we have

F θ̃(0) = 1−F ω̃(0) ≤ 1−F ω̃(x) = F θ̃(x),

F
ϑ̃

(0) = 1−Fω̃(0) ≤ 1−Fω̃(x) = F
ϑ̃

(x),

F θ̃(x) = 1−F ω̃(x)

≤ 1−min{F ω̃(y),F ω̃(x � y)}

= max{1−F ω̃(y), 1−F ω̃(x � y)}
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= max{F θ̃(y),F θ̃(x � y)},

F
ϑ̃

(x) = 1−Fω̃(x)

≤ 1−min{Fω̃(y),Fω̃(x � y)}

= max{1−Fω̃(y), 1−Fω̃(x � y)}

= max{F
ϑ̃

(y),F
ϑ̃

(x � y)}.

Hence, F
ϑ̃
and F θ̃ satisfy that conditions (2.7) and (2.8) that they are AFIds of X .

(4) ⇒ (6). Let ϑ̃ ∈ IC(ω̃) and θ̃ ∈ SC(ω̃). It is clear that F
ϑ̃
− 1 and F θ̃ − 1 are NFSs in X .

By the assumption (4), we get that F
ϑ̃
and F θ̃ satisfy the conditions (2.7) and (2.8). Thus, for all

x, y ∈ X , we get

(F θ̃ − 1)(0) = F θ̃(0)− 1 ≤ F θ̃(x)− 1 = (F θ̃ − 1)(x),

(F
ϑ̃
− 1)(0) = F

ϑ̃
(0)− 1 ≤ F

ϑ̃
(x)− 1 = (F

ϑ̃
− 1)(x),

(F θ̃ − 1)(x) = F θ̃(x)− 1

≤ max{F θ̃(y),F θ̃(x � y)} − 1

= max{F θ̃(y)− 1,F θ̃(x � y)− 1}

= max{(F θ̃ − 1)(y), (F θ̃ − 1)(x � y)},

(F
ϑ̃
− 1)(x) = F

ϑ̃
(x)− 1

≤ max{F
ϑ̃

(y),F
ϑ̃

(x � y)} − 1

= max{F
ϑ̃

(y)− 1,F
ϑ̃

(x � y)− 1}

= max{(F
ϑ̃
− 1)(y), (F

ϑ̃
− 1)(x � y)}.

Hence, F
ϑ̃
− 1 and F θ̃ − 1 satisfy that conditions (2.13) and (2.15) that they are NFIds of X .

(5)⇒ (7). It is similar to prove (4)⇒ (6).

(7)⇒ (3). Let x, y ∈ X . Since Fω̃± − 1 = −Fω̃, F ω̃
∓ − 1 = −F ω̃ and by the assumption (7), we

have −F ω̃(0) ≤ −F ω̃(x), −Fω̃(0) ≤ −Fω̃(x), and

−F ω̃(x) ≤ max{−F ω̃(y),−F ω̃(x � y)} = −(min{F ω̃(y),F ω̃(x � y)}),

−Fω̃(x) ≤ max{−Fω̃(y),−Fω̃(x � y)} = −(min{Fω̃(y),Fω̃(x � y)}).

Thus F ω̃(0) ≥ F ω̃(x), Fω̃(0) ≥ Fω̃(x), F ω̃(x) ≥ min{F ω̃(y),F ω̃(x � y)} and Fω̃(x) ≥
min{Fω̃(y),Fω̃(x � y)}. Hence, Fω̃ and F ω̃ satisfy the conditions (2.5) and (2.6). Therefore,

Fω̃ and F ω̃ are FIds of X . �

Proposition 3.1. Every IvFId of X is an (inf, sup)-HFId of X .

Proof. It follows from Remark 2.1 and Lemma 3.1 �
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The converse of Proposition 3.1 is not generally true, which can see in Example 3.2. By Proposition

3.1 and Example 3.2, we obtain that an (inf, sup)-HFId of a BCK/BCI-algebra X is a generalization

of the concept of an IvFId of X .

Theorem 3.1. Let λ̆ be an IvFS on X . Then the followings are equivalent.

(1) λ̆ is an IvFId of X .
(2) The set [X , λ̆, ă] is an Id of X for all ă ∈ D([0, 1]) when [X , λ̆, ă] is not empty.

(3) λ̆ is an (inf, sup)-HFId of X .

Proof. It follows from Remark 2.1, Lemma 3.1 and Proposition 3.1. �

Theorem 3.2. Let ω̃ be a HFS on X . The followings are equivalent.

(1) ω̃ is an (inf, sup)-HFId of X .
(2) λ̆ is an IvFId of X when λ̆ is an IvFS on X such that λ̆L = Fω̃ and λ̆U = F ω̃.
(3) ϑ̃ is an (inf, sup)-HFId of X for all HFS ϑ̃ on X such that F

ϑ̃
= Fω̃ and F ϑ̃ = F ω̃.

Proof. It follows from Lemma 3.1 and Theorem 3.1. �

Proposition 3.2. Let ω̃ be an (inf, sup)-HFId of X and x, y , z ∈ X such that x � y ≤ z . Then

F ω̃(x) ≥ min{F ω̃(y),F ω̃(z)} and Fω̃(x) ≥ min{Fω̃(y),Fω̃(z)}.

Proof. Since x � y ≤ z , we have (x � y)� z = 0. Thus

F ω̃(x) ≥ min{F ω̃(y),F ω̃(x � y)}

≥ min{F ω̃(y),min{F ω̃(z),F ω̃((x � y)� z)}}

= min{F ω̃(y),min{F ω̃(z),F ω̃(0)}}

= min{F ω̃(y),F ω̃(z)}

and similarly, we hve Fω̃(x) ≥ min{Fω̃(y),Fω̃(z)}. �

Corollary 3.1. Let λ̆ be an IvFId of X and x, y , z ∈ X such that x�y ≤ z . Then rmin{λ̆(y), λ̆(z)} -
λ̆(x).

Proof. It follows from Proposition 3.2 and Theorem 3.1. �

Proposition 3.3. Let ω̃ be an (inf, sup)-HFId of X and x, y ∈ X such that x ≤ y . Then F ω̃(x) ≥
F ω̃(y) and Fω̃(x) ≥ Fω̃(y).

Proof. Since x ≤ y , we have x � y = 0. Then

F ω̃(x) ≥ min{F ω̃(y),F ω̃(x � y)} = min{F ω̃(y),F ω̃(0)} = F ω̃(y),

Fω̃(x) ≥ min{Fω̃(y),Fω̃(x � y)} = min{Fω̃(y),Fω̃(0)} = Fω̃(y).

Hence, F ω̃(x) ≥ F ω̃(y) and Fω̃(x) ≥ Fω̃(y). �
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Corollary 3.2. Let λ̆ be an IvFId of X and x, y ∈ X such that x ≤ y . Then λ̆(y) - λ̆(x).

Proof. It follows from Proposition 3.3 and Theorem 3.1. �

For any subset A of Y and ∇,∆ ∈ ℘([0, 1]), define a map C(A,∇,∆) [21, 23] as follows:

C(A,∇,∆): Y → ℘([0, 1]), x 7→

{
∆

∇
if x ∈ A,
otherwise.

We denote C(A) for C(A, [0, 0], [1, 1]) and it is called the characteristic interval-valued fuzzy set of A

on X .

Theorem 3.3. Let A be a nonempty subset of X and ∇,∆ ∈ ℘([0, 1]) such that SUP∇ <

SUP ∆, INF∇ ≤ INF ∆ or SUP∇ ≤ SUP ∆, INF∇ < INF ∆. Then A is an Id of X if and only if

C(A,∇,∆) is an (inf, sup)-HFId of X .

Proof. Since A is an Id of X , we have 0 ∈ A. Then

FC(A,∇,∆)(0) = SUP ∆ = max{SUP ∆,SUP∇} ≥ FC(A,∇,∆)(x),

FC(A,∇,∆)(0) = INF ∆ = max{INF ∆, INF∇} ≥ FC(A,∇,∆)(x)

for all x ∈ X . Thus FC(A,∇,∆) and FC(A,∇,∆) satisfy the condition (2.5).

To show that FC(A,∇,∆) and FC(A,∇,∆) satisfy the condition (2.6), let x, y ∈ X . If y /∈ A or

x � y /∈ A, then

FC(A,∇,∆)(x) ≥ SUP∇ = min{FC(A,∇,∆)(y),FC(A,∇,∆)(x � y)},

FC(A,∇,∆)(x) ≥ INF∇ = min{FC(A,∇,∆)(y),FC(A,∇,∆)(x � y)}.

On the other hand, suppose that y , x � y ∈ A. Since A is an Id of X , we have x ∈ A. Thus

FC(A,∇,∆)(x) = SUP ∆ = min{FC(A,∇,∆)(y),FC(A,∇,∆)(x � y)},

FC(A,∇,∆)(x) = INF ∆ = min{FC(A,∇,∆)(y),FC(A,∇,∆)(x � y)}.

Hence, FC(A,∇,∆) and FC(A,∇,∆) satisfy the condition (2.6). Therefore, FC(A,∇,∆) and FC(A,∇,∆) are

Ids of X and by Lemma 3.1, we obtain that C(A,∇,∆) is an (inf, sup)-HFId of X .
Conversely, let x ∈ X and y , x � y ∈ A. Then C(A,∇,∆)(y) = ∆ = C(A,∇,∆)(x � y). If

SUP∇ < SUP ∆ and INF∇ ≤ INF ∆, then by Lemma 3.1, we have

FC(A,∇,∆)(0) ≥ FC(A,∇,∆)(x) ≥ min{FC(A,∇,∆)(y),FC(A,∇,∆)(x � y)} = SUP ∆ > SUP∇.

Thus 0, x ∈ A. In the case that SUP∇ ≤ SUP ∆ and INF∇ < INF ∆, then by Lemma 3.1, we get

FC(A,∇,∆)(0) ≥ FC(A,∇,∆)(x) ≥ min{FC(A,∇,∆)(y),FC(A,∇,∆)(x � y)} = INF ∆ > INF∇.

Thus 0, x ∈ A. Therefore, A is an Id of X . �

Theorem 3.4. Let A be a nonempty subset of X . The followings are equivalent.
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(1) A is an Id of X .
(2) C(A, ă, b̆) is an IvFId of X when ă, b̆ ∈ D([0, 1]) and ă ≺ b̆.
(3) C(A) is an IvFId of X .

Proof. It follows from Theorem 3.3 and Theorem 3.1. �

For a FS ζ in Y and a positive integer n, we define the HFS H(ζ, n) and the IvFS I(ζ, n) on Y as

follows:

H(ζ, n) : Y → ℘([0, 1]), x 7→ {
ζ

1 + n
(x),

n + ζ

1 + n
(x)}

and

I(ζ, n) : Y → D([0, 1]), x 7→ {t ∈ [0, 1] |
ζ

1 + n
(x) ≤ t ≤

n + ζ

1 + n
(x)}.

Then the followings are true.

(1) SUPH(ζ, n)(x) = SUP I(ζ, n)(x), INFH(ζ, n)(x) = INF I(ζ, n)(x) and H(ζ, n)(x) ⊆
I(ζ, n)(x) for all x ∈ Y.

(2) H(ζ, 1)(x) = { ζ2 (x), 1+ζ
2 (x)} and I(ζ, 1)(x) = {t ∈ [0, 1] | ζ2 (x) ≤ t ≤ 1+ζ

2 (x)} for all x ∈ Y.
(3) H(−ζ, n) is a HFS and I(−ζ, n) is an IvFS on Y for all NFS ζ in Y.

Next, we use (inf, sup)-HFIds and IvFIds of BCK/BCI-algebras to characterize FIds in Theorem

3.5, AFIds in Theorem 3.6 and NFIds in Theorem 3.7.

Theorem 3.5. Let ζ be a FS in X . The followings are equivalent.

(1) ζ is a FId of X .
(2) I(ζ, n) is an IvFId of X for all positive integer n.

(3) H(ζ, n) is an (inf, sup)-HFId of X for all positive integer n.

(4) ω̃ is an (inf, sup)-HFId of X for all HFS ω̃ on X and positive integer n such that Fω̃ = ζ
1+n

and F ω̃ = n+ζ
1+n .

Proof. By using Theorem 3.2, the conditions (2), (3) and (4) are equivalent. Next, we show that (1)

and (4) are equivalent. Let ω̃ be a HFS on X and n be a positive integer such that Fω̃ = ζ
1+n and

F ω̃ = n+ζ
1+n . By the assumption (1), we have

Fω̃(0) =
ζ(0)

1 + n
≥
ζ(x)

1 + n
= Fω̃(x),

F ω̃(0) =
n + ζ(0)

1 + n
≥
n + ζ(x)

1 + n
= F ω̃(x),

Fω̃(x) =
ζ(x)

1 + n
≥

min{ζ(y), ζ(x � y)}
1 + n

= min{
ζ(y)

1 + n
,
ζ(x � y)

1 + n
}

= min{Fω̃(y),Fω̃(x � y)},

F ω̃(x) =
n + ζ(x)

1 + n
≥
n + min{ζ(y), ζ(x � y)}

1 + n
= min{

n + ζ(y)

1 + n
,
n + ζ(x � y)

1 + n
}

= min{Fω̃(y),Fω̃(x � y)}
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for all x, y ∈ X . Hence, F ω̃ and Fω̃ are FIds of X and by using Lemma 3.1, we obtain that ω̃ is an

(inf, sup)-HFId of X . Therefore, (4) is true.

Conversely, assume that (4) is true. Let ω̃ be a HFS on X such that Fω̃ = ζ
2 and F ω̃ = 1+ζ

2 . By

the assumption (4) and Lemma 3.1, we obtain that Fω̃ = ζ
2 is a FId of X . Then for all x, y ∈ X , we

get ζ(0) = 2( ζ(0)
2 ) ≥ 2( ζ(x)

2 ) = ζ(x) and

ζ(x) = 2(
ζ(x)

2
) ≥ 2(

min{ζ(y), ζ(x � y)}
2

) = min{ζ(y), ζ(x � y)}.

Hence, ζ is an Id of X , that is (1) is true. �

Lemma 3.2. A FS ζ in X is an AFId of X if and only if 1− ζ is a FId of X .

Proof. Assume that ζ is an AFId of X . Then for all x, y ∈ X , we get 1− ζ(0) ≥ 1− ζ(x) and

1− ζ(x) ≥ 1−max{ζ(y), ζ(x � y)} = min{1− ζ(y), 1− ζ(x � y)}.

Then 1− ζ is a FId of X .
Conversely, assume that 1− ζ is a FId of X . Then 1− (1− ζ)(0) ≤ 1− (1− ζ)(x) and

1− (1− ζ)(x) ≤ 1−min{(1− ζ)(y), (1− ζ)(x � y)} = max{1− (1− ζ)(y), 1− (1− ζ)(x � y)}

for all x, y ∈ X . Since ζ = 1− (1− ζ), we obtain that ζ is an AFId of X . �

Theorem 3.6. Let ζ be a FS in X . The followings are equivalent.

(1) ζ is an AFId of X .
(2) I(1− ζ, n) is an IvFId of X for all positive integer n.

(3) H(1− ζ, n) is an (inf, sup)-HFId of X for all positive integer n.

(4) ω̃ is an (inf, sup)-HFId of X for all HFS ω̃ on X and positive integer n such that Fω̃ = 1−ζ
1+n

and F ω̃ = 1 + −ζ
1+n .

Proof. It follows from Lemma 3.2 and Theorem 3.5. �

Lemma 3.3. A NFS ζ in X is a NFId of X if and only if −ζ is a FId of X .

Proof. Assume that ζ is a NFId of X . Let x, y ∈ X . Then ζ(0) ≤ ζ(x) and ζ(x) ≤ max{ζ(y), ζ(x �

y)}. Thus −ζ(0) ≥ −ζ(x) and

−ζ(x) ≥ −(max{ζ(y), ζ(x � y)}) = min{−ζ(y),−ζ(x � y)}.

Hence, −ζ is a FId of X .
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Conversely, assume that −ζ is a FId of X . Then ζ(0) = −(−ζ(0)) ≤ −(−ζ(x)) = ζ(x) and

ζ(x) = −(−ζ(x))

≤ −(min{−ζ(y),−ζ(x � y)})

= max{−(−ζ(y)),−(−ζ(x � y))}

= max{ζ(y), ζ(x � y)}

for all x, y ∈ X . Hence, ζ is a NFId of X . �

Theorem 3.7. Let ζ be a NFS in X . The followings are equivalent.

(1) ζ is a NFId of X .
(2) I(−ζ, n) is an IvFId of X for all positive integer n.

(3) H(−ζ, n) is an (inf, sup)-HFId of X for all positive integer n.

(4) ω̃ is an (inf, sup)-HFId of X for all HFS ω̃ on X and positive integer n such that Fω̃ = −ζ
1+n

and F ω̃ = n−ζ
1+n .

Proof. It follows from Lemma 3.3 and Theorem 3.5. �

For any HFS ω̃ on Y and any element ∇ of ℘([0, 1]), define the HFS Hω̃∇ on Y by

Hω̃∇(x) = {t ∈ ∇ | Fω̃±2 (x) ≤ t ≤ 1+F ω̃
2 (x)} for all x ∈ Y.

We denote Hω̃ for Hω̃[0,1]. Then H
ω̃
∇(x) ⊆ Hω̃∆(x) ⊆ Hω̃(x) when x ∈ Y and ∇ ⊆ ∆ ⊆ [0, 1].

Theorem 3.8. Let ω̃ be a HFS on X . The followings are equivalent.

(1) ω̃ is an (inf, sup)-HFId of X .
(2) Hω̃∇ is a HFId of X for all ∇ ∈ ℘([0, 1]).

(3) Hω̃ is a HFId of X .

Proof. (1)⇒ (2). Let x ∈ X , ∇ ∈ ℘([0, 1]) and t ∈ Hω̃∇(x). Then t ∈ ∇ and Fω̃±2 (x) ≤ t ≤ 1+F ω̃
2 (x)

. By the assumption (1) and Lemma 3.1, we get Fω̃±(x) ≥ Fω̃±(0) and F ω̃(x) ≤ F ω̃(0). Thus

Fω̃±
2

(0) ≤
Fω̃±

2
(x) ≤ t ≤

1 + F ω̃

2
(x) ≤

1 + F ω̃

2
(0)

and so t ∈ Hω̃(0). Hence, Hω̃(x) ⊆ Hω̃(0). Therefore, Hω̃ satisfies the condition (2.19).

To show that Hω̃ satisfies the condition (2.20), let x, y ∈ X , ∇ ∈ ℘([0, 1]) and t ∈ Hω̃∇(y) ∩
Hω̃∇(x � y). Then

t ∈ ∇, Fω̃±2 (y) ≤ t ≤ 1+F ω̃
2 (y) and Fω̃±2 (x � y) ≤ t ≤ 1+F ω̃

2 (x � y).
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By the assumption (1) and Lemma 3.1, we have Fω̃±(x) ≤ max{Fω̃±(y),Fω̃±(x � y)} and F ω̃(x) ≥
min{F ω̃(y),F ω̃(x � y)}. Thus

Fω̃±
2

(x) ≤ max{
Fω̃±

2
(y),
Fω̃±

2
(x � y)}

≤ t

≤ min{
1 + F ω̃

2
(y),

1 + F ω̃

2
(x � y)}

≤
1 + F ω̃

2
(x),

and so t ∈ Hω̃∇(x). Hence, Hω̃∇(y)∩Hω̃∇(x�y) ⊆ Hω̃∇(x). It is showed that Hω̃∇ satisfies the condition

(2.20). Therefore, it follows from the conditions (2.19) and (2.20) that Hω̃∇ is a HFId of X for all

∇ ∈ ℘([0, 1]).

(2)⇒ (3). It is clear.

(3) ⇒ (1). Let x, y ∈ X . Then Fω̃±
2 (x), 1+F ω̃

2 (x) ∈ Hω̃(x) and max{Fω̃±2 (y),
Fω̃±

2 (x �

y)},min{1+F ω̃
2 (y), 1+F ω̃

2 (x � y)} ∈ Hω̃(y) ∩ Hω̃(x � y). By the assumption (3), we get
Fω̃±

2 (x), 1+F ω̃
2 (x) ∈ Hω̃(0) and max{Fω̃±2 (y),

Fω̃±
2 (x � y)},min{1+F ω̃

2 (y), 1+F ω̃
2 (x � y)} ∈ Hω̃(x).

Thus Fω̃±
2 (x) ≥ Fω̃±

2 (0), 1+F ω̃
2 (x) ≤ 1+F ω̃

2 (0), max{Fω̃±2 (y),
Fω̃±

2 (x � y)} ≥ Fω̃±
2 (x) and

min{1+F ω̃
2 (y), 1+F ω̃

2 (x � y)} ≤ 1+F ω̃
2 (x). Since Fω̃ = 1 − 2(

Fω̃±
2 ) and F ω̃ = 2( 1+F ω̃

2 ) − 1, we

have

F ω̃(0) = 2(
1 + F ω̃

2
(0))− 1 ≥ 2(

1 + F ω̃

2
(x))− 1 = F ω̃(x),

Fω̃(0) = 1− 2(
Fω̃±

2
(0)) ≥ 1− 2(

Fω̃±
2

(x)) = Fω̃(x),

F ω̃(x) = 2(
1 + F ω̃

2
(x))− 1

≥ 2(min{
1 + F ω̃

2
(y),

1 + F ω̃

2
(x � y)})− 1

= min{2(
1 + F ω̃

2
(y))− 1, 2(

1 + F ω̃

2
(x � y))− 1}

= min{F ω̃(y),F ω̃(x � y)},

Fω̃(x) = 1− 2(
Fω̃±

2
(x))

≥ 1− 2(max{
Fω̃±

2
(y),
Fω̃±

2
(x � y)})

= min{1− 2(
Fω̃±

2
(y)), 1− 2(

Fω̃±
2

(x � y))}

= min{Fω̃(y),Fω̃(x � y)}.

Hence, Fω̃ and F ω̃ are FIds of X and by using Lemma 3.1, we obtain that ω̃ is an (inf, sup)-HFId of

X . �



Int. J. Anal. Appl. (2022), 20:34 15

Theorem 3.9. Let ω̃ be a HFS on X . The followings are equivalent.

(1) ω̃ is an (inf, sup)-HFId of X .
(2) (Fω̃,F θ̃) is a PFId of X for all θ̃ ∈ SC(ω̃).

(3) (Fω̃,F ω̃
∓

) is a PFId of X .
(4) (F

ω̃

2 ,
F
ϑ̃

2 ) is a PFId of X for all ϑ̃ ∈ IC(ω̃).

(5) (F
ω̃

2 ,
Fω̃±

2 ) is a PFId of X .

Proof. (1)⇒ (2) and (1)⇒ (4). They follow from Lemma 3.1.

(2)⇒ (3) and (4)⇒ (5). They are clear.

(3) ⇒ (1). By the assumption (3), we obtain that Fω̃ is a FId and F ω̃∓ is an AFId of X . Since

F ω̃ = 1− F ω̃∓ and Lemma 3.2, we get F ω̃ is a FId of X . Hence, Fω̃ and F ω̃ are FIds of X and by

using Lemma 3.1, we have that ω̃ is an (inf, sup)-HFId of X .
(5)⇒ (1). It is similar to prove in the case (3)⇒ (1). �

For any PFS P = (ζ, ξ) in Y, define the HFS H(P ) on Y by

H(P )(x) = {t ∈ [0, 1] | 1−ξ
2 (x) ≤ t ≤ 1+ζ

2 (x)} for all x ∈ Y.

Theorem 3.10. Let P = (ζ, ξ) be a PFS in X . The followings are equivalent.

(1) P is a PFId of X .
(2) H(P ) is an (inf, sup)-HFId of X .
(3) H(P ) is an IvFId of X .

Proof. It follows from Theorem 3.2 and Lemmas 3.1 and 3.2. �

Theorem 3.11. Let ω̃ be a HFS on X . The followings are equivalent.

(1) ω̃ is an (inf, sup)-HFId of X .
(2) 〈F

ϑ̃
− 1,F ω̃〉 is a BFId of X for all ϑ̃ ∈ IC(ω̃).

(3) 〈Fω̃± − 1,F ω̃〉 is a BFId of X .

Proof. (1)⇒ (2). It follows from Lemma 3.1.

(2)⇒ (3). It is clear.

(3) ⇒ (1). By the assumption (3), we have that F ω̃ is a FId and Fω̃± − 1 is a NFId of X . Since

Fω̃ = −(Fω̃± − 1) and Lemma 3.3, we get Fω̃ is a FId of X . Thus Fω̃ and F ω̃ are FIds of X and by

using Lemma 3.1, we obtain that ω̃ is an (inf, sup)-HFId of X . �

For any BFS B = 〈ζ, ξ〉 on Y, define the HFS H〈B〉 on Y by

H〈B〉(x) = {t ∈ [0, 1] | −ζ2 (x) ≤ t ≤ 1+ξ
2 (x)} for all x ∈ Y.

Theorem 3.12. Let B = 〈ζ, ξ〉 be a BFS in X . The followings are equivalent.

(1) B is a BFId of X .
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(2) H〈B〉 is an (inf, sup)-HFId of X .
(3) H〈B〉 is an IvFId of X .

Proof. It follows from Theorem 3.2 and Lemmas 3.1 and 3.3. �

4. Conclusions

In present paper, we have introduced an (inf, sup)-HFId, which is one of genaral concepts of an

IvFId, in BCK/BCI-algebras, and investigated its some important properties. As important study

results, characterizations of (inf, sup)-HFIds have been discussed by sets, FSs, NFSs, PFSs, HFSs,

IvFSs and BFSs. Also, we use concepts of (inf, sup)-HFIds and IvFIds to study characterizations of

Ids, FIds, AFIds, NFIds, PFIds and BFIds.

In our future study of BCK/BCI-algebras and other algebras, the following objectives considered:

• to get more results of HFSs in the meaning of the infimum and supremum of its images,

• to define neutrosophic sets in BCK/BCI-algebras and related structures by means of HFSs in

the meaning of the infimum and supremum of its images,

• to define (inf, sup)-type of HFSs baded on subalgebras, H-ideals and p-ideals of BCK/BCI-

algebras,

• to introduce (inf, sup)-HFIds in UP-algebras, BE-algebras, semigroups and LA-semigroups.
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