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Abstract. Let R be a commutative ring with identity and let M be a unitary R-module. In this paper,

we introduce the notion of weakly S-2-absorbing submodule. Suppose that S is a multiplicatively

closed subset of R. A submodule P of M with (P :R M)∩ S = ∅ is said to be a weakly S-2-absorbing

submodule if there exists an element s ∈ S such that whenever a, b ∈ R andm ∈ M with 0 6= abm ∈ P ,
then sab ∈ (P : M) or sam ∈ P or sbm ∈ P . We give the characterizations, properties and examples

of weakly S-2-absorbing submodules.

1. Introduction

Throughout this paper, R denotes a commutative ring with non zero identity andM is an R module.

Prime ideals and submodules have vital role in ring and module theory. Of course a proper submodule

P of M is called prime if am ∈ P for a ∈ R and m ∈ M implies a ∈ (P :R M) or m ∈ P where

(P :R M) = {r ∈ R : rM ⊆ P}. Several generalizations of these concepts have been studied exten-

sively by many authors [9], [13], [6], [16], [3], [11], [14], [5].

In 2007, Atani and Farzalipour introduced the concept of weakly prime submodules as a general-

ization of prime submodules. A proper submodule P of M is defined as weakly prime if for a ∈ R and

m ∈ M, whenever for 0 6= am ∈ P implies a ∈ (P :R M) or m ∈ P as in [5].

A new kind of generalization of prime submodule has been introduced and studied by Sengelen sevim

et. al. in 2019 in [14]. For a multiplicatively closed subset S of R, that is, S satisfies the following

conditions: (i) 1 ∈ S and (i i) s1s2 ∈ S for each s1, s2 ∈ S, a proper submodule P of an R-module

M with (P :R M) ∩ S = ∅ is called an S-prime submodule if there exists s ∈ S such that for a ∈ R
and m ∈ M, if am ∈ P then either sa ∈ (P :R M) or sm ∈ P . In particular an ideal I of R is called
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as S-prime ideal if I is an S-prime submodule of an R-module R, [10].

After that, the concept of weakly S-prime submodule was introduced as a generalization of S-prime

submodules in [11]. Here, for a multiplicatively closed subset S of R, they called a submodule P of

an R-module M with (P :R M) ∩ S = ∅ a weakly S-prime submodule if there exists s ∈ S such that

for a ∈ R and m ∈ M, if 0 6= am ∈ P then either sa ∈ (P :R M) or sm ∈ P . In particular, a proper

ideal I of R disjoint with S is said to be weakly S-prime if there exists s ∈ S such that for a, b ∈ R
and 0 6= ab ∈ I then either sa ∈ I or sb ∈ I [3].

One of the important generalizations of prime submodule is the concept of 2-absorbing submod-

ule. In 2011, Darani and Soheilnia [6] introduced the concepts of 2-absorbing and weakly 2-absorbing

submodules of modules over commutative rings with identities. A proper submodule P of a module

M over a commutative ring R with identity is said be a 2-absorbing submodule (weakly 2-absorbing

submodule) of M if whenever a, b ∈ R and m ∈ M with abm ∈ P (0 6= abm ∈ P ), then abM ⊆ P

or am ∈ P or bm ∈ P . Predictably, a proper ideal I of R is 2-absorbing ideal if and only if I is a

2-absorbing submodule of R-module R.

Recently, the concept of S-2-absorbing submodules was introduced in [16] which is a generalization

of S-prime submodules and 2-absorbing submodules. A submodule P of M is said to be an S-2-

absorbing submodule if (P :R M) ∩ S = ∅ and there exists a fixed s ∈ S such that for a, b ∈ R and

m ∈ M, if abm ∈ P then either sab ∈ (P :R M) or sam ∈ P or sbm ∈ P . In particular, an ideal I of

R is an S-2-absorbing ideal if I is an S-2-absorbing submodule of R-module R.

Our objective in this paper is to define and study the concept of weakly S-2-absorbing submodule

as an extension of the above concepts. A submodule P of M is said to be a weakly S-2-absorbing

submodule if (P :R M)∩S = ∅ and there exists an element s ∈ S such that for a, b ∈ R and m ∈ M,

if 0 6= abm ∈ P then either sab ∈ (P :R M) or sam ∈ P or sbm ∈ P . In this case, we say that

P is associated to s. In particular, an ideal I of R is a weakly S-2-absorbing ideal if I is a weakly

S-2-absorbing submodule of R-module R.

Some characterizations of weakly S-2-absorbing submodules are obtained. Besides, we investigate

relationships between S-2-absorbing submodule and weakly S-2-absorbing submodule and also between

weakly S-prime and weakly S-2-absorbing submodules of modules over commutative rings.

2. Characterizations of weakly S-2-absorbing submodules

We start with the definitions and relationships of the main concepts of the paper.

Definition 2.1. Let S be a multiplicatively closed subset of R. A submodule P of an R-module M is

called a weakly S-2-absorbing submodule if (P :R M)∩S = ∅ and there exists an element s ∈ S such

that, whenever a, b ∈ R and m ∈ M, 0 6= abm ∈ P implies sab ∈ (P : M) or sam ∈ P or sbm ∈ P .
In this case, we say that P is associated to s. In particular, an ideal I of R is a weakly S-2-absorbing

ideal if I is a weakly S-2-absorbing submodule of R-module R
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Example 2.1. Consider the Z-module M = Z × Z6 and let P = 2Z× < 3̄ >. Then P is a weakly

S-2-absorbing submodule of M where S = {2n : n ∈ N ∪ {0}}. Indeed, let (0, 0̄) 6= r1r2(r
′, m) ∈ P

for r1,r2,r ′ ∈ Z and m ∈ Z6 such that 2r1r2 /∈ (P : M) = 6Z. Then r1r2m ∈< 3̄ > with r1, r2 /∈ 3Z

and so m ∈< 3̄ > also r ′ ∈ 2Z. Thus, 2r1(r
′, m) ∈ P as needed.

Example 2.2. Consider the submodule P =< 6 > of the Z-module Z and the multiplicatively closed

subset S = {5n : n ∈ N ∪ {0}}. Then P is a weakly S-2-absorbing submodule.

It is clear that every S-2-absorbing submodule is a weakly S-2-absorbing submodule. Since the zero

submodule is (by definition) a weakly S-2-absorbing submodule of any R-module, hence the converse

is not true in general and the following example shows this.

Example 2.3. Consider R = Z, M = Z/30Z, P = 0 and S = Z − {0}. Then 2.3(5 + 30Z) = 0 ∈ P
while 1.2.3 /∈ (P : M), 1.2(5 + 30Z) /∈ P and 1.3(5 + 30Z) /∈ P . Therefore P is not S-2-absorbing

while it is weakly S-2-absorbing.

Every weakly 2-absorbing submodule P of an R-module M satisfying (P : M) ∩ S = ∅ is a weakly

S-2-absorbing submodule of M and the two concepts coincide if S ⊆ U(R) where U(R) denotes the

set of units in R. The following example shows that the converse need not be true.

Example 2.4. Suppose that M = Z ×Z is an R = Z ×Z-module and P = pZ × {0} is a submodule

of M where p is prime. Then P is weakly S-2-absorbing submodule of M where S = Z − {0} × {0}.
Indeed, let (0, 0) 6= (r1, r2)(r3, r4)(m1, m2) ∈ P for (r1, r2), (r3, r4) ∈ Z × Z and (m1, m2) ∈ M such

that s(r1, r2)(r3, r4) /∈ (P : M) = 0. Then either r1 or r3 or m1 must be p and either r2 or r4 or m2

must be 0. Thus s(p, r2)(m1, m2) ∈ P as needed.

On the other hand, P is not a weakly 2-absorbing submodule since (0, 0) 6= (p, 1)(1, 0)(1, 1) ∈ P
but neither (p, 1)(1, 0) ∈ (P : M) nor (p, 1)(1, 1) ∈ P nor (1, 0)(1, 1) ∈ P . Hence P is not weakly

2-absorbing.

Lemma 2.1. Let S be a multiplicatively closed subset of R and P be a submodule of M. If P is

weakly S-prime, then there exists an element s ∈ S of P such that 0 6= abm ∈ P for all a, b ∈ R and

m ∈ M implies sbM ⊆ P whenever sam /∈ P .

Proof. Let a, b ∈ R and m ∈ M. Assume that 0 6= abm ∈ P . Then 0 6= b(am) ∈ P . Since P is

weakly S-prime, there exists s ∈ S of P such that sb ∈ (P : M) or sam ∈ P . Hence if sam /∈ P , then
we get sbM ⊆ P .

Proposition 2.1. Let S be a multiplicatively closed subset of R and P be a submodule of M. If P is

weakly S-prime, then it is weakly S-2-absorbing.

Proof. Let a, b ∈ R and m ∈ M be such that 0 6= abm ∈ P . Since P is weakly S-prime, there

exists s ∈ S of P such that sa ∈ (P : M) or sbm ∈ P . If sbm ∈ P , then we are done. Suppose
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sbm /∈ P , then by Lemma2.1, we get saM ⊆ P and consequently sabM ⊆ P . Hence P is weakly

S-2-absorbing.

The converse of the previous proposition need not be true, is illustrated in the following example.

Example 2.5. Suppose that M = Z × Z is an R = Z × Z-module and P = 2Z × {0} is a

submodule of M. Then P is weakly S-2-absorbing where S = (2Z + 1) × {0}. Indeed, let

(0, 0) 6= (r1, r2)(r3, r4)(m1, m2) ∈ P for (r1, r2), (r3, r4) ∈ Z × Z and (m1, m2) ∈ M such that

s(r1, r2)(r3, r4) /∈ (P : M) = 0. Then either r1 or r3 or m1 must be in 2Z. Without loss of generality,

assume that r1 ∈ 2Z. Then s(r1, r2)(m1, m2) ∈ 2Z × {0} as needed. On the other hand, we have

(0, 0) 6= (2, 0)(1, 1) ∈ P . Now neither s(2, 0) ∈ (P : M) nor s(1, 1) ∈ P . Hence P is not weakly

S-prime.

Let R be a ring and S ⊆ R a multiplicatively closed subset of R. The saturation S∗ of S is defined

as S∗={r ∈ R: r1 is a unit of S−1R }. Note that S∗ is a multiplicatively closed subset containing S.

Proposition 2.2. IfM is an R-module and S is a mltiplicatively closed subset of R. Then the following

statements hold.

(i) Suppose that S1 ⊆ S2 are multiplicatively closed subsets of R. If P is a weakly S1-2-absorbing

submodule and (P : M) ∩ S2 = ∅, then P is a weakly S2-2-absorbing submodule.

(ii) A submodule P of M is a weakly S-2-absorbing submodule if and only if it is a weakly S∗-2-

absorbing submodule.

(iii) If P is a weakly S-2-absorbing submodule of M, then S−1P is a weakly 2-absorbing submodule

of S−1M.

Proof. (i): It is clear.

(ii):Let P be weakly S-2-absorbing. Suppose (P : M)∩S∗ 6= ∅. Then we have t ∈ (P : M)∩S∗

and this implies that t1 .
a
s = 1 for some a ∈ R and s ∈ S as t1 is a unit of S−1R. Thus ta = s ∈ S

implies ta ∈ S and so (P : M) ∩ S 6= ∅ which is a contradiction. Hence (P : M) ∩ S∗ = ∅. By (i), P

is a weakly S∗-2-absorbing submodule as S ⊆ S∗.
Conversely, let a, b ∈ R and m ∈ M such that 0 6= abm ∈ P . Since P is weakly S∗-2-absorbing,

there exists s” ∈ S∗ of P such that s”ab ∈ (P : M) or s”am ∈ P or s”bm ∈ P . Since s” ∈ S∗, we
have s”1 .

t
s = 1 for some t ∈ R, s ∈ S. Then s”t = s ∈ S and so s”t ∈ S. Then sab ∈ (P : M) or

sam ∈ P or sbm ∈ P . Thus P is weakly S-2-absorbing.

(iii) Let as1 ,
b
s2
∈ S−1R and ms3 ∈ S

−1M be such that 0MS 6=
a
s1
b
s2
m
s3
∈ S−1P . Then we get

0M 6= sabm ∈ P for some s ∈ S. By assumption, there exists s4 ∈ S of P such that s4(sa)b ∈
(P : M) or s4(sa)m ∈ P or s4bm ∈ P . Then a

s1
b
s2

= s4s
s4s

ab
s1s2
∈ S−1(P : M) ⊆ (S−1P : S−1M) or

a
s1
m
s3

= s4s
s4s
am
s1s3
∈ S−1P or bs2

m
s3

= s4
s4
bm
s2s3
∈ S−1P . Hence S−1P is weakly 2-absorbing submodule of

S−1M.

The converse of (iii) in the above proposition need not be true is shown by the following example.
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Example 2.6. Consider the Z-module M = Q3 and S = Z − {0}. Let P = {(r1, r2, 0) : r1, r2 ∈ Z}.
Note that (P : M) = 0 and (P : M) ∩ S = ∅. If a = 2, b = 3 and m = (12 ,

1
3 , 0), then (0, 0, 0) 6=

2.3(12 ,
1
3 , 0) = (3, 2, 0) ∈ P . If we take s = 5 ∈ S, then clearly 5.2.3 /∈ (P : M), 5.2(12 ,

1
3 , 0) /∈ P ,

5.3(12 ,
1
3 , 0) /∈ P . Thus P is not weakly S-2-absorbing. From the fact that S−1M is a vectorspace

over the field S−1Z that is Q and the proper subspace S−1P is 2-absorbing [16], we have S−1P is a

weakly 2-absorbing submodule by [6].

Proposition 2.3. Let S be a multiplicatively closed subset of R and M be an R-module. Then the

intersection of two weakly S-prime submodule is a weakly S-2-absorbing submodule.

Proof. Let P1, P2 be two weakly S-prime submodules of M and P = P1 ∩ P2. Let a, b ∈ R
and m ∈ M be such that 0 6= abm ∈ P . Since P1 is weakly S-prime and 0 6= a(bm) ∈ P1, there
exists s1 ∈ S of P1 such that s1a ∈ (P1 : M) or s1bm ∈ P1. Again as P2 is weakly S-prime and

0 6= bam ∈ P2 there exists s2 ∈ S of P2 such that s2b ∈ (P2 : M) or s2am ∈ P2. Now consider the

following four cases.

Case 1: s1a ∈ (P1 : M) and s1bm /∈ P1
s2b ∈ (P2 : M) and s2am /∈ P2.

Now, put s = s1s2 ∈ S. Then sab ∈ (P1 : M) and sab ∈ (P2 : M) and so sabM ⊆ P1 ∩ P2 = P .

Hence sab ∈ (P : M).

Case 2: s1a ∈ (P1 : M) and s1bm /∈ P1
s2am ∈ P2 and s2b /∈ (P2 : M).

Then s1am ∈ s1aM ⊆ P1 and s2am ∈ P2 implies that sam ∈ P where s = s1s2 ∈ S.
Case 3: s1bm ∈ P1 and s1a /∈ (P1 : M)

s2am /∈ P2 and s2b ∈ (P2 : M)

Then clearly sbm ∈ P where s = s1s2 ∈ S.
Case 4: s1bm ∈ P1 and s1a /∈ (P1 : M)

s2am ∈ P2 and s2b /∈ (P2 : M)

As P1 is weakly S-prime and 0 6= abm ∈ P1 and also s1am /∈ P1 gives that s1bM ⊆ P1 by Lemma 2.1.

For the same reason, we get s2aM ⊆ P2. Then clearly sab ∈ (P : M) where s = s1s2 ∈ S. Hence P
is weakly S-2-absorbing.

The following result provides some condition under which a weakly S-2-absorbing submodule is S-2-

absorbing.

Theorem 2.1. Let S be a multiplicatively closed subset of R and P be a weakly S-2-absorbing

submodule of M. If P is not S-2-absorbing, then (P : M)2P = 0.

Proof. By our assmption, there exists s ∈ S of P such that, whenever x , y ∈ R and m ∈ M,

0 6= xym ∈ P implies sxy ∈ (P : M) or sxm ∈ P or sym ∈ P . Suppose (P : M)2P 6= 0, we

claim that P is S-2-absorbing. Let a, b ∈ R and m ∈ M be such that abm ∈ P . If abm 6= 0, then
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sab ∈ (P : M) or sam ∈ P or sbm ∈ P . So assume that abm = 0.

Now, first we assume that abP 6= 0. Then abp0 6= 0 for some p0 ∈ P implies 0 6= abp0 =

ab(m + p0) ∈ P . Then sab ∈ (P : M) or sa(m + p0) ∈ P or sb(m + p0) ∈ P by our assumption.

Hence sab ∈ (P : M) or sam ∈ P or sbm ∈ P . Hence we may assume that abP = 0.

If a(P : M)m 6= 0, then aq0m 6= 0 for some q0 ∈ (P : M). Then 0 6= aq0m = a(b+q0)m ∈ P .
Then, we get sa(b+q0) ∈ (P : M) or sam ∈ P or s(b+q0)m ∈ P . Hence sab ∈ (P : M) or sam ∈ P
or sbm ∈ P . So we can assume that a(P : M)m = 0. In the same manner, we can assume that

b(P : M)m = 0. Since (P : M)2P 6= 0, there exists x0, y0 ∈ (P : M) and m0 ∈ P with x0y0m0 6= 0.

If ay0m0 6= 0, then 0 6= ay0m0 = a(b+y0)(m+m0) ∈ P since abm = 0, abm0 ∈ abP = 0 and

ay0m = amy0 ∈ am(P : M) = 0. Hence, by our assumption sa(b+ y0) ∈ (P : M) or sa(m+m0) ∈ P
or s(b + y0)(m + m0) ∈ P and so sab ∈ (P : M) or sam ∈ P or sbm ∈ P . So we can assume that

ay0m0 = 0. In the same manner, we can assume that x0y0m = 0 and x0bm0 = 0.

Since x0y0m0 6= 0, we have 0 6= x0y0m0 = (a + x0)(b + y0)(m + m0) ∈ P since abm = 0,

abm0 ∈ abP = 0 and ay0m = amy0 ∈ am(P : M) = 0. Then, s(a + x0)(b + y0) ∈ (P : M) or

s(a + x0)(m + m0) ∈ P or s(b + y0)(m + m0) ∈ P . Hence sab ∈ (P : M) or sam ∈ P or sbm ∈ P .
Hence P is S-2-absorbing.

Recall that an R-module M is said to be a multiplication module if for each submodule N of M,

N = IM for some ideal I of R. If N1, N2 are two submodules of M, then N1 = AM and N2 = BM

for some ideals A, B of R. The product of N1 and N2 is defined as N1N2 = ABM [4]. Also note that

this product is independent of the presentations of submodules N1 and N2 of M [4, Theorem 3.4]. A

submodule N of an R-module M is called a nilpotent submodule if (N : M)kN = 0 for some positive

integer k [1].

Corollary 2.1. Let S be a multiplicatively closed subset of R and P be a submodule of M. Assume

that P is a weakly S-2-absorbing submodule of M that is not S-2-absorbing, then

1, P is nilpotent.

2, If M is a multiplication module, then P 3 = 0.

Proof. 1. Immediate from the definition of nilpotent submodule and by Theorem 2.1.

2. By Theorem 2.1, (P : M)2P = 0. Then (P : M)3M = (P : M)2(P : M)M = 0. Thus

P 3 = 0.

If N is a proper submodule of a non-zero R-module M. Then the M-radical of N, denoted by

M-radN is defined as the intersection of all prime submodules of M containing N [12], [8]. If A is an

ideal of the ring R then the M-radical of A (considered as a submodule of the R-module R) is denoted

by
√
A and consists of all elements r of R such that rn ∈ A for some positive integer n [8]. Also it

is shown in [8, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then

M-radN = (
√

(N : M))M.
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Proposition 2.4. Assume that M is a faithful multiplication R-module, S is a multiplicatively closed

subset of R and P is a submodule of M. Let P be a weakly S-2-absorbing submodule of M. If P is

not S-2-absorbing, then P ⊆ M-rad0.

Proof. Suppose P is not S-2-absorbing. By Theorem 2.1, (P : M)2P = 0. Since (P : M)2(P :

M)M ⊆ (P : M)2P , we have (P : M)3 ⊆ ((P : M)2P : M) = (0 : M) = 0. Let a ∈ (P : M), then

a3 = 0 and so a ∈
√

0. Thus (P : M) ⊆
√

0. Hence P = (P : M)M ⊆
√

0M = M-rad0.

Proposition 2.5. If S is a multiplicatively closed subset of R and P is a submodule of a cyclic faithful

R-module M, then P is a weakly S-2-absorbing submodule of M if and only if (P : M) is a weakly

S-2-absorbing ideal of R.

Proof. Let P be a weakly S-2-absorbing submodule of M. Assume that M = Rm for some m ∈ M
and let 0 6= abc ∈ (P : M) for some a, b, c ∈ R. Then abcm ∈ P . If abcm 6= 0, then their exists an

element s ∈ S of P such that sab ∈ (P : M) or sacm ∈ P or sbcm ∈ P . If sab ∈ (P : M), then we

are done. If sacm ∈ P , then sac ∈ (P : m) = (P : M) as M is cyclic. Likewise, if sbcm ∈ P , then
sbc ∈ (P : M). Then, assume that abcm = 0, we get abc ∈ (0 : m) = (0 : M). As M is faithful, we

have abc = 0, a contradiction. Hence (P : M) is a weakly S-2-absorbing ideal of R.

Conversely, let 0 6= abm′ ∈ P for some a, b ∈ R and m′ ∈ M. Then m′ = cm for some c ∈ R
and we get 0 6= abcm ∈ P . This implies abc ∈ (P : m) = (P : M). If abc 6= 0, then there exists

an element s ′ ∈ S of (P : M) such that s ′ab ∈ (P : M) or s ′bc ∈ (P : M) or s ′ac ∈ (P : M).

If s ′ab ∈ (P : M), then we are done. If s ′bc ∈ (P : M), then s ′bc ∈ (P : m) and so s ′bm′ ∈ P .
Likewise if s ′ac ∈ (P : M), then s ′am′ ∈ P . Now, assume that abc = 0, then abcm = 0.m = 0, a

contradiction. Hence P is weakly S-2-absorbing.

Proposition 2.6. If S is a multiplicatively closed subset of R and P is a submodule of a cyclic R-

module M, then P is an S-2-absorbing submodule of M if and only if (P : M) is an S-2-absorbing

ideal of R.

After recalling the concepts of triple-zero in various papers like [9], [7], we give the following result

which is an analogue of [9, Theorem 3.10].

Theorem 2.2. Let S be a multiplicatively closed subset of R and let P be a weakly S-2-absorbing

submodule of M. If a, b ∈ R, m ∈ M with abm = 0 and sab /∈ (P : M), sam /∈ P , sbm /∈ P for any

s ∈ S, then
(1) abP = a(P : M)m = b(P : M)m = 0

(2) a(P : M)P = b(P : M)P = (P : M)2m = 0

Proof. (1). If abP 6= 0, then for some p ∈ P , abp 6= 0. Since 0 6= abp = ab(m + p) ∈ P , then by

assumption there exists s ∈ S of P such that sab ∈ (P : M) or sa(m + p) ∈ P or sb(m + p) ∈ P .
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Hence sab ∈ (P : M) or sam ∈ P or sbm ∈ P , which is not possible by our assumption. Hence

abP = 0.

If a(P : M)m 6= 0, then for some r ∈ (P : M), arm 6= 0. Since 0 6= arm = a(r + b)m ∈ P ,
then there exists s ∈ S of P such that sa(r + b) ∈ (P : M) or sam ∈ P or s(r + b)m ∈ P .

That is sab ∈ (P : M) or sam ∈ P or sbm ∈ P , which is not possible by our assumption. Thus

a(P : M)m = 0. The similar argument prove that b(P : M)m = 0.

(2). Assume that a(P : M)P 6= 0. Then for some r ∈ (P : M), p ∈ P , 0 6= arp ∈ P . As

0 6= arp = a(b + r)(m + p). By (1), we get 0 6= a(b + r)(m + p) ∈ P , then there exists s ∈ S of P

such that sa(b + r) ∈ (P : M) or sa(m + p) ∈ P or s(b + r)(m + p) ∈ P . Hence sab ∈ (P : M) or

sam ∈ P or sbm ∈ P , a contradiction by our assumption. Hence a(P : M)P = 0.

Now, if (P : M)2m 6= 0, then for some r1, r2 ∈ (P : M), 0 6= r1r2m ∈ P . Since by (1),

0 6= r1r2m = (a+ r1)(b+ r2)m ∈ P , then there exists s ∈ S of P such that s(a+ r1)(b+ r2) ∈ (P : M)

or s(a+ r1)m ∈ P or s(b+ r2)m ∈ P and so sab ∈ (P : M) or sam ∈ P or sbm ∈ P , a contradiction

by our assumption. Hence (P : M)2m = 0.

We recall that if N is a submodule of an R-module M and A is an ideal of R, then the residual of

N by A is the set (N :M A) = {m ∈ M : Am ⊆ N}. It is clear that (N :M A) is a submodule of M

containing N. More generally, for any subset B ⊆ R, (N :M B) is a submodule of M containing N.

Proposition 2.7. Let S be a multiplicatively closed subset of R. For a submodule P of an R-module

M with (P : M) ∩ S = ∅, the following assertions are equivalent.

(1) P is a weakly S-2-absorbing submodule of M.

(2) For any a, b ∈ R, there exists s ∈ S such that, if sabM * P , then (P : ab) = (0 : ab) or

(P : ab) ⊆ (P : sa) or (P : ab) ⊆ (P : sb)

(3) For any a, b ∈ R and for any submodule K of M, there exists s ∈ S such that, if 0 6= abK ⊆ P
then sab ∈ (P : M) or saK ⊆ P or sbK ⊆ P .

Proof. (1) =⇒ (2) Let a, b ∈ R. Let m ∈ (P : ab). If abm = 0, then clearly m ∈ (0 : ab). If

abm 6= 0, that is if 0 6= abm ∈ P , then by (1), there exist s ∈ S of P such that sab ∈ (P : M) or

sam ∈ P or sbm ∈ P . Clearly, if sabM * P , we conclude that either sam ∈ P or sbm ∈ P . As

(0 : ab) ⊆ (P : ab), we get (P : ab) = (0 : ab) or (P : ab) ⊆ (P : sa) or (P : ab) ⊆ (P : sb).

(2) =⇒ (3) Let a, b ∈ R and K be a submodule of M such that 0 6= abK ⊆ P and, for the

element s ∈ S of (2), we have to claim that sab ∈ (P : M) or saK ⊆ P or sbK ⊆ P . If sab ∈ (P : M),

then there is nothing to prove. Suppose sab /∈ (P : M). As abK ⊆ P , we have K ⊆ (P : ab) and

by (2), we have K ⊆ (0 : ab) or K ⊆ (P : sa) or K ⊆ (P : sb). If K ⊆ (0 : ab), then abK = 0, a

contradiction. If K ⊆ (P : sa), then saK ⊆ P as required.

(3) =⇒ (1) Let a, b ∈ R and m ∈ M with 0 6= abm ∈ P . Clearly ab < m >⊆ P . If
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ab < m > 6= 0, by (3), sab ∈ (P : M) or sam ∈ sa < m >⊆ P or sbm ∈ sb < m >⊆ P . If

ab < m >= 0, then abm ∈ ab < m >= 0, a contradiction.

Theorem 2.3. Let S be a multiplicatively closed subset of R and P be a submodule of an R-module

M. If P is a weakly S-2-absorbing submodule of M. Then

(1) There exists an s ∈ S such that for any a, b ∈ R, if abK ⊆ P and 0 6= 2abK for some

submodule K of M, then sab ∈ (P : M) or saK ⊆ P or sbK ⊆ P .
(2) There exists an s ∈ S such that for an ideal I of R and a submodule K of M, if aIK ⊆ P and

0 6= 4aIK, where a ∈ R, then saI ∈ (P : M) or saK ⊆ P or sIK ⊆ P .
(3) There exists an s ∈ S such that for all ideals I, J of R and submodule K of M, if 0 6= IJK ⊆ P

and 0 6= 8(IJ + (I + J)(P : M))(K + P ), then sIJ ⊆ (P : M) or sIK ⊆ P or sJK ⊆ P . In particular

this holds if the group (M,+) has no elements of order 2.

Proof. (1) By our assmption, there exists s ∈ S of P such that, whenever x , y ∈ R and m ∈ M,

0 6= xym ∈ P implies sxy ∈ (P : M) or sxm ∈ P or sym ∈ P . Let a, b ∈ R such that abK ⊆ P

and 0 6= 2abK for some submodule K of M. Now, we will show that sab ∈ (P : M) or saK ⊆ P or

sbK ⊆ P . Suppose sab /∈ (P : M). Then proving that saK ⊆ P or sbK ⊆ P is enough. Let k be an

arbitrary element of K. As abk ∈ abK ⊆ P , if abk 6= 0, then sab ∈ (P : M) or sak ∈ P or sbk ∈ P .
Thus we have k ∈ (P : sa) or k ∈ (P : sb) since sab /∈ (P : M). Hence saK ⊆ P or sbK ⊆ P .

If abk = 0. Since 0 6= 2abK, for some k1 ∈ K, we get 0 6= 2abk1 and clearly 0 6= abk1 ∈ P .
Then we get sak1 ∈ P or sbk1 ∈ P since sab /∈ (P : M). Put k2 = k + k1 and so 0 6= abk2 ∈ P .
Then sak2 ∈ P or sbk2 ∈ P since sab /∈ (P : M). This leads to the following cases.

Case 1: sak1 ∈ P and sbk1 ∈ P
Since sak2 ∈ P or sbk2 ∈ P , we have sak ∈ P or sbk ∈ P . Thus saK ∈ P or sbK ∈ P .

Case 2: sak1 ∈ P and sbk1 /∈ P
Suppose sak /∈ P and sbk /∈ P . Then sak2 = sak1 + sak /∈ P and so sbk2 ∈ P . Hence

sa(k2 + k1) /∈ P and similarly sb(k2 + k1) /∈ P . As P is weakly S-2-absorbing and sab /∈ (P : M),

hence ab(k2 + k1) = 0. But ab(k2 + k1) = ab(k1 + k + k1) = 2abk1, a contradiction as 2abk1 6= 0.

Thus sak ∈ P or sbk ∈ P and so saK ⊆ P or sbK ⊆ P .
Case 3: sak1 /∈ P and sbk1 ∈ P

The proof is same as that of Case 2.

(2) By our assmption, there exists s ∈ S of P such that, whenever x , y ∈ R and m ∈ M,

0 6= xym ∈ P implies sxy ∈ (P : M) or sxm ∈ P or sym ∈ P . Let I be an ideal of R and K

be a submodule of M such that aIK ⊆ P and 0 6= 4aIK, where a ∈ R. We have to prove that

saI ∈ (P : M) or saK ⊆ P or sIK ⊆ P . Suppose saI * (P : M), for some i ∈ I we have

sai /∈ (P : M). Let us first prove that there exists b ∈ I such that 0 6= 4abK and sab /∈ (P : M).

Since 0 6= 4aIK, for some i ′ ∈ I, 0 6= 4ai ′K. Suppose sai ′ /∈ (P : M) or 0 6= 4aiK, if

we put b = i ′, we get sab /∈ (P : M) and 0 6= 4abK and if we put b = i , we get 0 6= 4abK and
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sab /∈ (P : M). From the above, clearly by putting b = i ′ or b = i , we get the result. Hence assume

that sai ′ ∈ (P : M) and 4aiK = 0. Hence 0 6= 4a(i + i ′)K ⊆ P and sa(i + i ′) /∈ (P : M). Thus we

find b ∈ I such that 0 6= 4abK and sab /∈ (P : M).

As 0 6= 4abK, we get 0 6= 2abK and by (1), since abK ⊆ aIK ⊆ P and sab /∈ (P : M), we

get saK ⊆ P or sbK ⊆ P . If saK ⊆ P , there we are done. Thus assume that saK * P and so

sbK ⊆ P .
Now to exhibit that saI ∈ (P : M) or sIK ⊆ P . Let i” ∈ I. If 2ai”K 6= 0, then by (1),

sai” ∈ (P : M) or si”K ⊆ P since saK * P . Thus we get i” ∈ ((P : M) : sa) or i” ∈ (P : sK).

Therefore I ⊆ ((P : M) : sa) or I ⊆ (P : sK). Then we are done.

If 2ai”K = 0, then clearly 0 6= 2a(b+ i”)K and a(b+ i”)K ⊆ P , by (1) sa(b+ i”) ∈ (P : M)

or s(b + i”)K ⊆ P since saK * P , (b + i”) ∈ (P : sK) or (b + i”) ∈ ((P : M) : sa).

(i): If (b + i”) ∈ (P : sK), then si”K ⊆ P as sbK ⊆ P . Hence i” ∈ (P : sK).

(ii): Now assume (b + i”) ∈ ((P : M) : sa) and (b + i”) /∈ (P : sK). Consider 0 6= 4abK =

2a(b+ i”+b)K and a(b+ i”+b)K ⊆ P . By (1), sa(b+ i”+b) ∈ (P : M) or s(b+ i”+b)K ⊆ P since

saK * P . As sab /∈ (P : M), we have sa(b+ i” + b) /∈ (P : M). Then we have s(b+ i” + b)K ⊆ P .
Since (b + i”) /∈ (P : sK), we have s(b + i” + b)K * P . Therefore (b + i”) ∈ (P : sK). Since

sbK ⊆ P , we have si”K ⊆ P and so i” ∈ (P : sK). Consequently I ⊆ ((P : M) : sa) or I ⊆ (P : sK)

and hence as saI * (P : M), we get sIK ⊆ P .
(3) Let I, J be the ideals of R and K be a submodule of M such that 0 6= IJK ⊆ P and

0 6= 8(IJ + (I + J)(P : M))(K + P ). Since 0 6= 8(IJ + (I + J)(P : M))(K + P ) = 8IJK + 8I(P :

M)K + 8J(P : M)K + 8IJP + 8I(P : M)P + 8J(P : M)P . As a result, one of the types listed below

has been satisfied.

Type 1: 0 6= 8IJK. Then for some j ∈ J, 0 6= 8j IK and so 0 6= 4j IK. As j IK ⊆ P , by (2), there

exists s ∈ S such that sjI ⊆ (P : M) or sIK ⊆ P or sjK ⊆ P . If sIK ⊆ P , then we are done

and so assume that sIK * P that is sjI ⊆ (P : M) or sjK ⊆ P . We claim that sIJ ⊆ (P : M) or

sJK ⊆ P . Let j ′ ∈ J be an arbitrary element. If 0 6= 4j ′IK, by (2), sj ′I ⊆ (P : M) or sj ′K ⊆ P since

sIK * P .Then j ′ ∈ ((P : M) : sI) or j ′ ∈ (P : sK). Hence we get the result.

Now let 4j ′IK = 0. As 0 6= 4(j + j ′)IK ⊆ P , by (2), s(j + j ′)I ⊆ (P : M) or s(j + j ′)K ⊆ P since

sIK * P . Hence we get s(j + j ′)I ⊆ (P : M) or s(j + j ′)K ⊆ P . Thereby we get the four cases.

Case 1: sjI ⊆ (P : M) and s(j + j ′)I ⊆ (P : M).

Hence we get sj ′I ⊆ (P : M), that is sIJ ⊆ (P : M)

Case 2: sjK ⊆ P and s(j + j ′)K ⊆ P
Hence we get sj ′K ⊆ P , that is sJK ⊆ P
Case 3: sjI ⊆ (P : M) and sjK * P .

s(j + j ′)K ⊆ P and s(j + j ′)I * (P : M).

This can be represented as j ∈ ((P : M) : sI) and j /∈ (P : sK), j + j ′ ∈ (P : sK) and
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j + j ′ /∈ ((P : M) : sI). Hence j + j ′ + j /∈ ((P : M) : sI) and j + j ′ + j /∈ (P : sK). Now consider

0 6= 8j IK = 4(j + j ′+ j)IK and by (2), s(j + j ′+ j)I ⊆ (P : M) or s(j + j ′+ j)K ⊆ P since sIK * P .
Hence we get j + j ′ + j ∈ ((P : M) : sI) or j + j ′ + j ∈ (P : sK) and this is not possible. Therefore,

since j ∈ ((P : M) : sI) or j ∈ (P : sK) and j + j ′ ∈ (P : sK) or j + j ′ ∈ ((P : M) : sI), there must

be any one of the following holds.

(i) j ∈ (P : sK) and j + j ′ ∈ (P : sK) and j + j ′ /∈ ((P : M) : sI), then j ′ ∈ (P : sK).

(ii) j ∈ ((P : M) : sI) and j /∈ (P : sK) and j + j ′ ∈ ((P : M) : sI), then j ′ ∈ ((P : M) : sI).

Case 4: s(j + j ′)I ⊆ (P : M) and s(j + j ′)K * P
sjK ⊆ P and sjI * (P : M).

Similar to the above case, we have j ′ ∈ ((P : M) : sI) or j ′ ∈ (P : sK). Thus sIJ ⊆ (P : M) or

sJK ⊆ P .
Type 2: If 0 6= 8IJP and 8IJK = 0, then 0 6= 8IJ(K + P ) ⊆ P and by Type 1, sIJ ⊆ (P : M) or

sJ(K + P ) ⊆ P or sI(K + P ) ⊆ P and so sIJ ⊆ (P : M) or sJK ⊆ P or sIK ⊆ P .
Type 3: If 0 6= 8J(P : M)K and 8IJK = 0, then 0 6= 8J(P : M)K = 8J(I + (P : M))K and so by

Type 1, sJ(I + (P : M)) ⊆ (P : M) or sJK ⊆ P or s(I + (P : M))K ⊆ P . Hence sIJ ⊆ (P : M) or

sJK ⊆ P or sIK ⊆ P . Likewise if 0 6= 8I(P : M)K, we get the result.

Type 4: If 0 6= 8J(P : M)P and 8IJK = 8IJP = 8J(P : M)K = 8I(P : M)K = 0. Then

0 6= 8J(P : M)P = 8J(I + (P : M))(K + P ) and by Type 1, sJ(I + (P : M)) ⊆ (P : M) or

sJ(K + P ) ⊆ P or s(I + (P : M))(K + P ) ⊆ P . Hence sIJ ⊆ (P : M) or sJK ⊆ P or sIK ⊆ P .

Likewise if 0 6= 8I(P : M)P , we have the result.

To prove the particular case, let (M,+) be a group having no subgroups of order 2. We have to show

that 0 6= 8IJK. If this happens, We get the result by Type 1. Suppose 8IJK = 0. Let 0 6= a ∈ IJK.
As 8a = 0, so the group (M,+) has a subgroup of order 2, 4 or 8, which is a contradiction.

Corollary 2.2. Let S be a multiplicatively closed subset of R and I be a weakly S-2-absorbing ideal

of R.

(1) There exists s ∈ S such that for any a, b ∈ R and for any ideal A of R, if abA ⊆ I and

0 6= 2abA, then sab ∈ I or saA ⊆ I or sbA ⊆ I.
(2) There exists s ∈ S such that for any a ∈ R, ideals A, B of R, if aAB ⊆ I and 0 6= 4aAB, then

saA ⊆ I or saB ⊆ I or sAB ⊆ I.
(3) There exists s ∈ S such that for any ideals A, B, C of R, if 0 6= ABC ⊆ I and 0 6= 8(AB(C +

I) +AC(B+ I) +BC(A+ I) +AI(B+C) +BI(A+C) +CI(A+B) + I2(A+B+C)), then sAB ⊆ I
or sBC ⊆ I or sAC ⊆ I. In particular, this happens when the group (R,+) has no elements of order

2.

Proposition 2.8. Let φ : M1 → M2 be a module homomorphism where M1 and M2 are R-modules

and S be a multiplicatively closed subset of R. Then the following holds.

1. If φ is a monomorphism and K is a weakly S-2-absorbing submodule of M2 with (φ−1(K) :
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M1) ∩ S = ∅, then φ−1(K) is a weakly S-2-absorbing submodule of M1.

2. If φ is an epimorphism and P is a weakly S-2-absorbing submodule of M1 containing kerφ, then

φ(P ) is a weakly S-2-absorbing submodule of M2.

Proof. 1. Let a, b ∈ R and m1 ∈ M1 be such that 0 6= abm1 ∈ φ−1(K). Then 0 6= φ(abm1) =

abφ(m1) ∈ K as φ is a monomorphism. since K is weakly S-2-absorbing, there exists s ∈ S such that

sab ∈ (K : M2) or saφ(m1) ∈ K or sbφ(m1) ∈ K. If sab ∈ (K : M2), then sab ∈ (φ−1(K) : M1)

since (K : M2) ⊆ (φ−1(K) : M1) and if saφ(m1) ∈ K or sbφ(m1) ∈ K, we have φ(sam1) ∈ K implies

sam1 ∈ φ−1(K) or φ(sbm1) ∈ K implies sbm1 ∈ φ−1(K). Hence φ−1(K) is a weakly S-2-absorbing

submodule of M1.

2. First observe that (φ(P ) : M2) ∩ S = ∅. Indeed, assume that s ′ ∈ (φ(P ) : M2) ∩ S.
Then φ(s ′M1) = s ′φ(M1) = s ′M2 ⊆ φ(P ) and so s ′M1 ⊆ P as kerφ ⊆ P . This shows that

s ′ ∈ (P : M1) and so (P : M1) ∩ S 6= ∅, a contradiction occurs since P is a weakly S-2-absorbing

submodule of M1. Now, let a, b ∈ R and m2 ∈ M2 be such that 0 6= abm2 ∈ φ(P ). As we can

write m2 = φ(m1) for some m1 ∈ M1 and so 0 6= abm2 = ab(φ(m1)) = φ(abm1) ∈ φ(P ). Since

kerφ ⊆ P , we have 0 6= abm1 ∈ P . Then there exists s ∈ S such that sab ∈ (P : M1) or sam1 ∈ P
or sbm1 ∈ P . Consequently we get sab ∈ (φ(P ) : M2) or φ(sam1) = saφ(m1) = sam2 ∈ φ(P ) or

φ(sbm1) = sbφ(m1) = sbm2 ∈ φ(P ). Hence φ(P ) is weakly S-2-absorbing submodule of M2.

Corollary 2.3. Let S be a multiplicatively closed subset of R. P1 and P2 are two submodules of M

with P2 ⊆ P1.
1. If K is a weakly S-2-absorbing submodule of M with (K : P1) ∩ S = ∅, then K ∩ P1 is a weakly

S-2-absorbing submodule of P1.

2. If P1 is a weakly S-2-absorbing submodule ofM, then P1/P2 is a weakly S-2-absorbing submodule

of M/P2.

3. If P1/P2 is a weakly S-2-absorbing submodule of M/P2 and P2 is a weakly S-2-absorbing

submodule of M, then P1 is a weakly S-2-absorbing submodule of M.

Proof. 1. Consider the injection i : P1 → M defined by i(p1) = p1 for all p1 ∈ P1. We have

to show that (i−1(K) : P1) ∩ S = ∅. Indeed, if s ∈ (i−1(K) : P1) ∩ S, then sP1 ⊆ i−1(K). As

i−1(K) = K ∩P1, we have sP1 ⊆ K ∩P1 ⊆ K and so s ∈ (K : P1)∩S, a contradiction as K is weakly

S-2-absorbing. Thus by Proposition 2.8(1), we conclude the result.

2. Consider the canonical epimorphism π : M → M/P2 defined by π(m) = m + P2. Then

π(P1) = P1/P2 is a weakly S-2-absorbing submodule of M/P2 by Proposition 2.8(2).

3. Let a, b ∈ R and m ∈ M be such that 0 6= abm ∈ P1. Then ab(m + P2) = abm + P2 ∈
P1/P2. If ab(m + P2) 6= P2, then there exists s1 ∈ S of P1/P2 implies s1ab ∈ (P1/P2 : M/P2) or

s1a(m + P2) ∈ P1/P2 or s1b(m + P2) ∈ P1/P2. Hence s1ab ∈ (P1 : M) or s1am ∈ P1 or s1bm ∈ P1.
If abm ∈ P2, then by assumption, there exists s2 ∈ S of P2 such that s2ab ∈ (P2 : M) ⊆ (P1 : M) or
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s2am ∈ P2 ⊆ P1 or s2bm ∈ P2 ⊆ P1. It follows that P1 is a weakly S-2-absorbing submodule of M

associated with s = s1s2 ∈ S.
We need to recall the following Lemma for the next result.

Lemma 2.2. [2] For an ideal Iof a ring R and a submodule N of a finitely generated faithful multi-

plication R-module M, the following hold.

1. (IN :R M) = I(N :R M).

2. If I is finitely generated faithful multiplication, then

(a) (IN :M I) = N.

(b) Whenever N ⊆ IM, then (JN :M I) = J(N :M I) for any ideal J of R.

Proposition 2.9. Let I be a finitely generated faithful multiplication ideal of a ring R, S be a mul-

tiplicatively closed subset of R and P be a submodule of a finitely generated faithful multiplication

cyclic R-module M.

1. If IP is a weakly S-2-absorbing submodule of M and (P : M) ∩ S = ∅, then either I is a weakly

S-2-absorbing ideal of R or P is a weakly S-2-absorbing submodule of M.

2. P is a weakly S-2-absorbing submodule of IM if and only if (P :M I) is a weakly S-2-absorbing

submodule of M.

Proof. (1) Suppose P = M, we get I = I(P :R M) = (IP :R M) by Lemma 2.2. Since IP

is a weakly S-2-absorbing submodule of M, by Proposition 2.5, I is a weakly S-2-absorbing ideal

of R. Now, suppose P is a proper submodule of M. By Lemma 2.2, (IP :M I) = P and so

(P : M) = ((IP :M I) :R M) = (I(P :R M) :M I). Let a, b ∈ R and m ∈ M be such that

0 6= abm ∈ P . Since I is faithful, then (0 :M I) = AnnR(I)M = 0 [2], and so 0 6= abIm ⊆ IP . By

Proposition 2.7, there exists s ∈ S of IP such that sab ∈ (IP : M) or saIm ⊆ IP or sbIm ⊆ IP .

If sab ∈ (IP : M), then sab ∈ (P : M). If saIm ⊆ IP , then sam ∈ (IP : I) = P . Likewise if

sbIm ⊆ IP , then sbm ∈ P . Hence P is a weakly S-2-absorbing submodule of M.

(2) Suppose P is a weakly S-2-absorbing submodule of IM. Then (P :R IM) ∩ S = ((P :M

I) :R M) ∩ S = ∅. Let a, b ∈ R and m ∈ M be such that 0 6= abm ∈ (P :M I). If abIm = 0,

then abm ∈ (0 :M I) = AnnR(I)M = 0, a contradiction. Hence 0 6= abIm ⊆ P . By Proposition 2.7,

there exists s ∈ S of P such that sab ∈ (P : IM) or saIm ⊆ P or sbIm ⊆ P . If sab ∈ (P :R IM),

then sab ∈ ((P :M I) :R M). If saIm ⊆ P , then sam ∈ (P : I) and similarly if sbIm ⊆ P , we get

sbm ∈ (P : I) as required.

Conversely, suppose (P :M I) is a weakly S-2-absorbing submodule of M. Then clearly ((P :M

I) :R M) ∩ S = (P :R IM) ∩ S = ∅. Let a, b ∈ R and x ∈ IM be such that 0 6= abx ∈ P . Clearly

ab < x >⊆ P . Since x ∈ IM, by Lemma 2.2, ab(< x >:M I) = (ab < x >:M I) ⊆ (P :M I).

If ab(< x >:M I) = 0, then since abx ∈ (abIx :M I) and Ix ⊆ IM, by Lemma 2.2, we have

abx ∈ ab(Ix :M I) ⊆ ab(< x >:M I) = 0, a contradiction. So we have 0 6= ab(< x >:M I) ⊆
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(P :M I). By Proposition 2.7, there exists s ′ ∈ S of (P :M I) such that s ′ab ∈ ((P :M I) :R M)

or s ′a(< x >:M I) ⊆ (P :M I) or s ′b(< x >:M I) ⊆ (P :M I). If s ′ab ∈ ((P :M I) :R M),

then s ′ab ∈ (P :R IM). If s ′a(< x >:M I) ⊆ (P :M I), then Is ′a(< x >:M I) ⊆ P . Since

s ′ax ∈ s ′a < x >= s ′a(I < x >:M I) = s ′aI(< x >:M I) ⊆ P by Lemma 2.2. Likewise if

s ′b(< x >:M I) ⊆ (P :M I), then s ′bx ∈ P . Hence P is a weakly S-2-absorbing submodule of IM.
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