International Journal of Analysis and Applications International Jourrual of Analy sis Journal of t nalysis and Applications

On Weakly S-2-Absorbing Submodules

Govindarajulu Narayanan Sudharshana*
Department of Mathematics, Annamalai university, Chidambaram 608001, Tamil Nadu, India
*Corresponding author: sudharshanasss3@gmail.com

Abstract

Let R be a commutative ring with identity and let M be a unitary R-module. In this paper, we introduce the notion of weakly S-2-absorbing submodule. Suppose that S is a multiplicatively closed subset of R. A submodule P of M with $\left(P:_{R} M\right) \cap S=\emptyset$ is said to be a weakly S-2-absorbing submodule if there exists an element $s \in S$ such that whenever $a, b \in R$ and $m \in M$ with $0 \neq a b m \in P$, then $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$. We give the characterizations, properties and examples of weakly S-2-absorbing submodules.

1. Introduction

Throughout this paper, R denotes a commutative ring with non zero identity and M is an R module. Prime ideals and submodules have vital role in ring and module theory. Of course a proper submodule P of M is called prime if $a m \in P$ for $a \in R$ and $m \in M$ implies $a \in\left(P:_{R} M\right)$ or $m \in P$ where $\left(P:_{R} M\right)=\{r \in R: r M \subseteq P\}$. Several generalizations of these concepts have been studied extensively by many authors [9], [13], [6], [16], [3], [11], [14], [5].

In 2007, Atani and Farzalipour introduced the concept of weakly prime submodules as a generalization of prime submodules. A proper submodule P of M is defined as weakly prime if for $a \in R$ and $m \in M$, whenever for $0 \neq a m \in P$ implies $a \in\left(P:_{R} M\right)$ or $m \in P$ as in [5].

A new kind of generalization of prime submodule has been introduced and studied by Sengelen sevim et. al. in 2019 in [14]. For a multiplicatively closed subset S of R, that is, S satisfies the following conditions: (i) $1 \in S$ and (ii) $s_{1} s_{2} \in S$ for each $s_{1}, s_{2} \in S$, a proper submodule P of an R-module M with $\left(P:_{R} M\right) \cap S=\emptyset$ is called an S-prime submodule if there exists $s \in S$ such that for $a \in R$ and $m \in M$, if $a m \in P$ then either $s a \in\left(P:_{R} M\right)$ or $s m \in P$. In particular an ideal $/$ of R is called

Received: Apr. 5, 2022.
2010 Mathematics Subject Classification. 06F25.
Key words and phrases. weakly S-prime; S-2-absorbing submodule; weakly S-2-absorbing submodule.
as S-prime ideal if I is an S-prime submodule of an R-module R, [10].
After that, the concept of weakly S-prime submodule was introduced as a generalization of S-prime submodules in [11]. Here, for a multiplicatively closed subset S of R, they called a submodule P of an R-module M with $\left(P:_{R} M\right) \cap S=\emptyset$ a weakly S-prime submodule if there exists $s \in S$ such that for $a \in R$ and $m \in M$, if $0 \neq a m \in P$ then either $s a \in\left(P:_{R} M\right)$ or $s m \in P$. In particular, a proper ideal I of R disjoint with S is said to be weakly S-prime if there exists $s \in S$ such that for $a, b \in R$ and $0 \neq a b \in I$ then either $s a \in I$ or $s b \in I[3]$.

One of the important generalizations of prime submodule is the concept of 2 -absorbing submodule. In 2011, Darani and Soheilnia [6] introduced the concepts of 2-absorbing and weakly 2-absorbing submodules of modules over commutative rings with identities. A proper submodule P of a module M over a commutative ring R with identity is said be a 2 -absorbing submodule (weakly 2-absorbing submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in P(0 \neq a b m \in P)$, then $a b M \subseteq P$ or $a m \in P$ or $b m \in P$. Predictably, a proper ideal I of R is 2 -absorbing ideal if and only if I is a 2-absorbing submodule of R-module R.

Recently, the concept of S-2-absorbing submodules was introduced in [16] which is a generalization of S-prime submodules and 2-absorbing submodules. A submodule P of M is said to be an S-2absorbing submodule if $\left(P:_{R} M\right) \cap S=\emptyset$ and there exists a fixed $s \in S$ such that for $a, b \in R$ and $m \in M$, if $a b m \in P$ then either $s a b \in\left(P:_{R} M\right)$ or $s a m \in P$ or $s b m \in P$. In particular, an ideal I of R is an S-2-absorbing ideal if I is an S-2-absorbing submodule of R-module R.

Our objective in this paper is to define and study the concept of weakly S-2-absorbing submodule as an extension of the above concepts. A submodule P of M is said to be a weakly S-2-absorbing submodule if $(P: R M) \cap S=\emptyset$ and there exists an element $s \in S$ such that for $a, b \in R$ and $m \in M$, if $0 \neq a b m \in P$ then either $s a b \in\left(P:_{R} M\right)$ or $s a m \in P$ or $s b m \in P$. In this case, we say that P is associated to s. In particular, an ideal I of R is a weakly S-2-absorbing ideal if I is a weakly S-2-absorbing submodule of R-module R.

Some characterizations of weakly S-2-absorbing submodules are obtained. Besides, we investigate relationships between S-2-absorbing submodule and weakly S-2-absorbing submodule and also between weakly S-prime and weakly S-2-absorbing submodules of modules over commutative rings.

2. Characterizations of weakly S-2-absorbing submodules

We start with the definitions and relationships of the main concepts of the paper.
Definition 2.1. Let S be a multiplicatively closed subset of R. A submodule P of an R-module M is called a weakly S-2-absorbing submodule if $\left(P:_{R} M\right) \cap S=\emptyset$ and there exists an element $s \in S$ such that, whenever $a, b \in R$ and $m \in M, 0 \neq a b m \in P$ implies $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$. In this case, we say that P is associated to s. In particular, an ideal I of R is a weakly S-2-absorbing ideal if I is a weakly S-2-absorbing submodule of R-module R

Example 2.1. Consider the Z-module $M=Z \times Z_{6}$ and let $P=2 Z \times<\overline{3}>$. Then P is a weakly S-2-absorbing submodule of M where $S=\left\{2^{n}: n \in \mathbb{N} \cup\{0\}\right\}$. Indeed, let $(0, \overline{0}) \neq r_{1} r_{2}\left(r^{\prime}, m\right) \in P$ for $r_{1}, r_{2}, r^{\prime} \in Z$ and $m \in Z_{6}$ such that $2 r_{1} r_{2} \notin(P: M)=6 Z$. Then $r_{1} r_{2} m \in<\overline{3}>$ with $r_{1}, r_{2} \notin 3 Z$ and so $m \in<\overline{3}>$ also $r^{\prime} \in 2 Z$. Thus, $2 r_{1}\left(r^{\prime}, m\right) \in P$ as needed.

Example 2.2. Consider the submodule $P=<6>$ of the Z-module Z and the multiplicatively closed subset $S=\left\{5^{n}: n \in \mathbb{N} \cup\{0\}\right\}$. Then P is a weakly S-2-absorbing submodule.

It is clear that every S-2-absorbing submodule is a weakly S - 2 -absorbing submodule. Since the zero submodule is (by definition) a weakly S-2-absorbing submodule of any R-module, hence the converse is not true in general and the following example shows this.

Example 2.3. Consider $R=Z, M=Z / 30 Z, P=0$ and $S=Z-\{0\}$. Then $2.3(5+30 Z)=0 \in P$ while $1.2 .3 \notin(P: M), 1.2(5+30 Z) \notin P$ and $1.3(5+30 Z) \notin P$. Therefore P is not S - 2 -absorbing while it is weakly S-2-absorbing.

Every weakly 2-absorbing submodule P of an R-module M satisfying $(P: M) \cap S=\emptyset$ is a weakly S-2-absorbing submodule of M and the two concepts coincide if $S \subseteq U(R)$ where $U(R)$ denotes the set of units in R. The following example shows that the converse need not be true.

Example 2.4. Suppose that $M=Z \times Z$ is an $R=Z \times Z$-module and $P=p Z \times\{0\}$ is a submodule of M where p is prime. Then P is weakly S-2-absorbing submodule of M where $S=Z-\{0\} \times\{0\}$. Indeed, let $(0,0) \neq\left(r_{1}, r_{2}\right)\left(r_{3}, r_{4}\right)\left(m_{1}, m_{2}\right) \in P$ for $\left(r_{1}, r_{2}\right),\left(r_{3}, r_{4}\right) \in Z \times Z$ and $\left(m_{1}, m_{2}\right) \in M$ such that $s\left(r_{1}, r_{2}\right)\left(r_{3}, r_{4}\right) \notin(P: M)=0$. Then either r_{1} or r_{3} or m_{1} must be p and either r_{2} or r_{4} or m_{2} must be 0 . Thus $s\left(p, r_{2}\right)\left(m_{1}, m_{2}\right) \in P$ as needed.

On the other hand, P is not a weakly 2 -absorbing submodule since $(0,0) \neq(p, 1)(1,0)(1,1) \in P$ but neither $(p, 1)(1,0) \in(P: M)$ nor $(p, 1)(1,1) \in P$ nor $(1,0)(1,1) \in P$. Hence P is not weakly 2-absorbing.

Lemma 2.1. Let S be a multiplicatively closed subset of R and P be a submodule of M. If P is weakly S-prime, then there exists an element $s \in S$ of P such that $0 \neq a b m \in P$ for all $a, b \in R$ and $m \in M$ implies $s b M \subseteq P$ whenever sam $\notin P$.

Proof. Let $a, b \in R$ and $m \in M$. Assume that $0 \neq a b m \in P$. Then $0 \neq b(a m) \in P$. Since P is weakly S-prime, there exists $s \in S$ of P such that $s b \in(P: M)$ or sam $\in P$. Hence if sam $\notin P$, then we get $s b M \subseteq P$.

Proposition 2.1. Let S be a multiplicatively closed subset of R and P be a submodule of M. If P is weakly S-prime, then it is weakly S-2-absorbing.

Proof. Let $a, b \in R$ and $m \in M$ be such that $0 \neq a b m \in P$. Since P is weakly S-prime, there exists $s \in S$ of P such that $s a \in(P: M)$ or $s b m \in P$. If $s b m \in P$, then we are done. Suppose
sbm $\notin P$, then by Lemma2.1, we get $s a M \subseteq P$ and consequently $s a b M \subseteq P$. Hence P is weakly S-2-absorbing.

The converse of the previous proposition need not be true, is illustrated in the following example.
Example 2.5. Suppose that $M=Z \times Z$ is an $R=Z \times Z$-module and $P=2 Z \times\{0\}$ is a submodule of M. Then P is weakly S-2-absorbing where $S=(2 Z+1) \times\{0\}$. Indeed, let $(0,0) \neq\left(r_{1}, r_{2}\right)\left(r_{3}, r_{4}\right)\left(m_{1}, m_{2}\right) \in P$ for $\left(r_{1}, r_{2}\right),\left(r_{3}, r_{4}\right) \in Z \times Z$ and $\left(m_{1}, m_{2}\right) \in M$ such that $s\left(r_{1}, r_{2}\right)\left(r_{3}, r_{4}\right) \notin(P: M)=0$. Then either r_{1} or r_{3} or m_{1} must be in $2 Z$. Without loss of generality, assume that $r_{1} \in 2 Z$. Then $s\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in 2 Z \times\{0\}$ as needed. On the other hand, we have $(0,0) \neq(2,0)(1,1) \in P$. Now neither $s(2,0) \in(P: M)$ nor $s(1,1) \in P$. Hence P is not weakly S-prime.

Let R be a ring and $S \subseteq R$ a multiplicatively closed subset of R. The saturation S^{*} of S is defined as $S^{*}=\left\{r \in R: \frac{r}{1}\right.$ is a unit of $\left.S^{-1} R\right\}$. Note that S^{*} is a multiplicatively closed subset containing S.

Proposition 2.2. If M is an R-module and S is a mltiplicatively closed subset of R. Then the following statements hold.
(i) Suppose that $S_{1} \subseteq S_{2}$ are multiplicatively closed subsets of R. If P is a weakly $S_{1}-2$-absorbing submodule and $(P: M) \cap S_{2}=\emptyset$, then P is a weakly S_{2}-2-absorbing submodule.
(ii) A submodule P of M is a weakly S-2-absorbing submodule if and only if it is a weakly $S^{*}-2-$ absorbing submodule.
(iii) If P is a weakly S-2-absorbing submodule of M, then $S^{-1} P$ is a weakly 2-absorbing submodule of $S^{-1} M$.

Proof. (i): It is clear.
(ii):Let P be weakly S-2-absorbing. Suppose $(P: M) \cap S^{*} \neq \emptyset$. Then we have $t \in(P: M) \cap S^{*}$ and this implies that $\frac{t}{1} \cdot \frac{a}{s}=1$ for some $a \in R$ and $s \in S$ as $\frac{t}{1}$ is a unit of $S^{-1} R$. Thus $t a=s \in S$ implies ta t S and so $(P: M) \cap S \neq \emptyset$ which is a contradiction. Hence $(P: M) \cap S^{*}=\emptyset$. By (i), P is a weakly $S^{*}-2$-absorbing submodule as $S \subseteq S^{*}$.

Conversely, let $a, b \in R$ and $m \in M$ such that $0 \neq a b m \in P$. Since P is weakly $S^{*}-2$-absorbing, there exists $s^{\prime \prime} \in S^{*}$ of P such that $s^{\prime \prime} a b \in(P: M)$ or $s^{\prime \prime} a m \in P$ or $s^{\prime \prime} b m \in P$. Since $s^{\prime \prime} \in S^{*}$, we have $\frac{s^{\prime \prime}}{1} \cdot \frac{t}{s}=1$ for some $t \in R, s \in S$. Then $s^{\prime \prime} t=s \in S$ and so $s^{\prime \prime} t \in S$. Then $\operatorname{sab} \in(P: M)$ or $s a m \in P$ or $s b m \in P$. Thus P is weakly S-2-absorbing.
(iii) Let $\frac{a}{s_{1}}, \frac{b}{s_{2}} \in S^{-1} R$ and $\frac{m}{s_{3}} \in S^{-1} M$ be such that $\frac{0_{M}}{S} \neq \frac{a}{s_{1}} \frac{b}{s_{2}} \frac{m}{s_{3}} \in S^{-1} P$. Then we get $0_{M} \neq \operatorname{sabm} \in P$ for some $s \in S$. By assumption, there exists $s_{4} \in S$ of P such that $s_{4}(s a) b \in$ $(P: M)$ or $s_{4}(s a) m \in P$ or $s_{4} b m \in P$. Then $\frac{a}{s_{1}} \frac{b}{s_{2}}=\frac{s_{4} s}{s_{4} s} \frac{a b}{s_{1} s_{2}} \in S^{-1}(P: M) \subseteq\left(S^{-1} P: S^{-1} M\right)$ or $\frac{a}{s_{1}} \frac{m}{s_{3}}=\frac{s_{4} s}{s_{4} s} \frac{a m}{s_{1} s_{3}} \in S^{-1} P$ or $\frac{b}{s_{2}} \frac{m}{s_{3}}=\frac{s_{4}}{s_{4}} \frac{b m}{s_{2} s_{3}} \in S^{-1} P$. Hence $S^{-1} P$ is weakly 2 -absorbing submodule of $S^{-1} M$.
The converse of (iii) in the above proposition need not be true is shown by the following example.

Example 2.6. Consider the Z-module $M=Q^{3}$ and $S=Z-\{0\}$. Let $P=\left\{\left(r_{1}, r_{2}, 0\right): r_{1}, r_{2} \in Z\right\}$. Note that $(P: M)=0$ and $(P: M) \cap S=\emptyset$. If $a=2, b=3$ and $m=\left(\frac{1}{2}, \frac{1}{3}, 0\right)$, then $(0,0,0) \neq$ $2.3\left(\frac{1}{2}, \frac{1}{3}, 0\right)=(3,2,0) \in P$. If we take $s=5 \in S$, then clearly 5.2.3 $\notin(P: M), 5.2\left(\frac{1}{2}, \frac{1}{3}, 0\right) \notin P$, $5.3\left(\frac{1}{2}, \frac{1}{3}, 0\right) \notin P$. Thus P is not weakly S-2-absorbing. From the fact that $S^{-1} M$ is a vectorspace over the field $S^{-1} Z$ that is Q and the proper subspace $S^{-1} P$ is 2 -absorbing [16], we have $S^{-1} P$ is a weakly 2-absorbing submodule by [6].

Proposition 2.3. Let S be a multiplicatively closed subset of R and M be an R-module. Then the intersection of two weakly S-prime submodule is a weakly S-2-absorbing submodule.

Proof. Let P_{1}, P_{2} be two weakly S-prime submodules of M and $P=P_{1} \cap P_{2}$. Let $a, b \in R$ and $m \in M$ be such that $0 \neq a b m \in P$. Since P_{1} is weakly S-prime and $0 \neq a(b m) \in P_{1}$, there exists $s_{1} \in S$ of P_{1} such that $s_{1} a \in\left(P_{1}: M\right)$ or $s_{1} b m \in P_{1}$. Again as P_{2} is weakly S-prime and $0 \neq$ bam $\in P_{2}$ there exists $s_{2} \in S$ of P_{2} such that $s_{2} b \in\left(P_{2}: M\right)$ or $s_{2} a m \in P_{2}$. Now consider the following four cases.
Case 1: $s_{1} a \in\left(P_{1}: M\right)$ and $s_{1} b m \notin P_{1}$

$$
s_{2} b \in\left(P_{2}: M\right) \text { and } s_{2} a m \notin P_{2} .
$$

Now, put $s=s_{1} s_{2} \in S$. Then $s a b \in\left(P_{1}: M\right)$ and $s a b \in\left(P_{2}: M\right)$ and so $s a b M \subseteq P_{1} \cap P_{2}=P$. Hence $s a b \in(P: M)$.
Case 2: $\quad s_{1} a \in\left(P_{1}: M\right)$ and $s_{1} b m \notin P_{1}$

$$
s_{2} a m \in P_{2} \text { and } s_{2} b \notin\left(P_{2}: M\right) .
$$

Then $s_{1} a m \in s_{1} a M \subseteq P_{1}$ and $s_{2} a m \in P_{2}$ implies that $s a m \in P$ where $s=s_{1} s_{2} \in S$.
Case 3: $\quad s_{1} b m \in P_{1}$ and $s_{1} a \notin\left(P_{1}: M\right)$

$$
s_{2} a m \notin P_{2} \text { and } s_{2} b \in\left(P_{2}: M\right)
$$

Then clearly $s b m \in P$ where $s=s_{1} s_{2} \in S$.
Case 4: $s_{1} b m \in P_{1}$ and $s_{1} a \notin\left(P_{1}: M\right)$
$s_{2} a m \in P_{2}$ and $s_{2} b \notin\left(P_{2}: M\right)$
As P_{1} is weakly S-prime and $0 \neq a b m \in P_{1}$ and also $s_{1} a m \notin P_{1}$ gives that $s_{1} b M \subseteq P_{1}$ by Lemma 2.1. For the same reason, we get $s_{2} a M \subseteq P_{2}$. Then clearly $s a b \in(P: M)$ where $s=s_{1} s_{2} \in S$. Hence P is weakly S-2-absorbing.

The following result provides some condition under which a weakly S-2-absorbing submodule is S-2absorbing.

Theorem 2.1. Let S be a multiplicatively closed subset of R and P be a weakly S-2-absorbing submodule of M. If P is not S-2-absorbing, then $(P: M)^{2} P=0$.

Proof. By our assmption, there exists $s \in S$ of P such that, whenever $x, y \in R$ and $m \in M$, $0 \neq x y m \in P$ implies sxy $\in(P: M)$ or $s x m \in P$ or sym $\in P$. Suppose $(P: M)^{2} P \neq 0$, we claim that P is S-2-absorbing. Let $a, b \in R$ and $m \in M$ be such that $a b m \in P$. If $a b m \neq 0$, then
$s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$. So assume that $a b m=0$.
Now, first we assume that $a b P \neq 0$. Then $a b p_{0} \neq 0$ for some $p_{0} \in P$ implies $0 \neq a b p_{0}=$ $a b\left(m+p_{0}\right) \in P$. Then $s a b \in(P: M)$ or $s a\left(m+p_{0}\right) \in P$ or $s b\left(m+p_{0}\right) \in P$ by our assumption. Hence $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$. Hence we may assume that $a b P=0$.

If $a(P: M) m \neq 0$, then $a q_{0} m \neq 0$ for some $q_{0} \in(P: M)$. Then $0 \neq a q_{0} m=a\left(b+q_{0}\right) m \in P$. Then, we get $s a\left(b+q_{0}\right) \in(P: M)$ or $\operatorname{sam} \in P$ or $s\left(b+q_{0}\right) m \in P$. Hence $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$. So we can assume that $a(P: M) m=0$. In the same manner, we can assume that $b(P: M) m=0$. Since $(P: M)^{2} P \neq 0$, there exists $x_{0}, y_{0} \in(P: M)$ and $m_{0} \in P$ with $x_{0} y_{0} m_{0} \neq 0$.

If $a y_{0} m_{0} \neq 0$, then $0 \neq a y_{0} m_{0}=a\left(b+y_{0}\right)\left(m+m_{0}\right) \in P$ since $a b m=0, a b m_{0} \in a b P=0$ and $a y_{0} m=a m y_{0} \in \operatorname{am}(P: M)=0$. Hence, by our assumption sa $\left(b+y_{0}\right) \in(P: M)$ or sa $\left(m+m_{0}\right) \in P$ or $s\left(b+y_{0}\right)\left(m+m_{0}\right) \in P$ and so $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$. So we can assume that $a y_{0} m_{0}=0$. In the same manner, we can assume that $x_{0} y_{0} m=0$ and $x_{0} b m_{0}=0$.

Since $x_{0} y_{0} m_{0} \neq 0$, we have $0 \neq x_{0} y_{0} m_{0}=\left(a+x_{0}\right)\left(b+y_{0}\right)\left(m+m_{0}\right) \in P$ since $a b m=0$, $a b m_{0} \in a b P=0$ and $a y_{0} m=a m y_{0} \in a m(P: M)=0$. Then, $s\left(a+x_{0}\right)\left(b+y_{0}\right) \in(P: M)$ or $s\left(a+x_{0}\right)\left(m+m_{0}\right) \in P$ or $s\left(b+y_{0}\right)\left(m+m_{0}\right) \in P$. Hence $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$. Hence P is S-2-absorbing.

Recall that an R-module M is said to be a multiplication module if for each submodule N of M, $N=I M$ for some ideal I of R. If N_{1}, N_{2} are two submodules of M, then $N_{1}=A M$ and $N_{2}=B M$ for some ideals A, B of R. The product of N_{1} and N_{2} is defined as $N_{1} N_{2}=A B M$ [4]. Also note that this product is independent of the presentations of submodules N_{1} and N_{2} of M [4, Theorem 3.4]. A submodule N of an R-module M is called a nilpotent submodule if $(N: M)^{k} N=0$ for some positive integer k [1].

Corollary 2.1. Let S be a multiplicatively closed subset of R and P be a submodule of M. Assume that P is a weakly S-2-absorbing submodule of M that is not S-2-absorbing, then

1, P is nilpotent.
2, If M is a multiplication module, then $P^{3}=0$.

Proof. 1. Immediate from the definition of nilpotent submodule and by Theorem 2.1.
2. By Theorem 2.1, $(P: M)^{2} P=0$. Then $(P: M)^{3} M=(P: M)^{2}(P: M) M=0$. Thus $P^{3}=0$.

If N is a proper submodule of a non-zero R-module M. Then the M-radical of N, denoted by $M-\operatorname{rad} N$ is defined as the intersection of all prime submodules of M containing N [12], [8]. If A is an ideal of the ring R then the M-radical of A (considered as a submodule of the R-module R) is denoted by \sqrt{A} and consists of all elements r of R such that $r^{n} \in A$ for some positive integer n [8]. Also it is shown in [8, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad} N=(\sqrt{(N: M)}) M$.

Proposition 2.4. Assume that M is a faithful multiplication R-module, S is a multiplicatively closed subset of R and P is a submodule of M. Let P be a weakly S-2-absorbing submodule of M. If P is not S-2-absorbing, then $P \subseteq M$-rad0.

Proof. Suppose P is not S-2-absorbing. By Theorem 2.1, $(P: M)^{2} P=0$. Since $(P: M)^{2}(P$: $M) M \subseteq(P: M)^{2} P$, we have $(P: M)^{3} \subseteq\left((P: M)^{2} P: M\right)=(0: M)=0$. Let $a \in(P: M)$, then $a^{3}=0$ and so $a \in \sqrt{0}$. Thus $(P: M) \subseteq \sqrt{0}$. Hence $P=(P: M) M \subseteq \sqrt{0} M=M$-rad0.

Proposition 2.5. If S is a multiplicatively closed subset of R and P is a submodule of a cyclic faithful R-module M, then P is a weakly S-2-absorbing submodule of M if and only if $(P: M)$ is a weakly S-2-absorbing ideal of R.

Proof. Let P be a weakly S-2-absorbing submodule of M. Assume that $M=R m$ for some $m \in M$ and let $0 \neq a b c \in(P: M)$ for some $a, b, c \in R$. Then $a b c m \in P$. If $a b c m \neq 0$, then their exists an element $s \in S$ of P such that $s a b \in(P: M)$ or $s a c m \in P$ or $s b c m \in P$. If $s a b \in(P: M)$, then we are done. If $s a c m \in P$, then $s a c \in(P: m)=(P: M)$ as M is cyclic. Likewise, if $s b c m \in P$, then $s b c \in(P: M)$. Then, assume that $a b c m=0$, we get $a b c \in(0: m)=(0: M)$. As M is faithful, we have $a b c=0$, a contradiction. Hence $(P: M)$ is a weakly S-2-absorbing ideal of R.

Conversely, let $0 \neq a b m^{\prime} \in P$ for some $a, b \in R$ and $m^{\prime} \in M$. Then $m^{\prime}=c m$ for some $c \in R$ and we get $0 \neq a b c m \in P$. This implies $a b c \in(P: m)=(P: M)$. If $a b c \neq 0$, then there exists an element $s^{\prime} \in S$ of $(P: M)$ such that $s^{\prime} a b \in(P: M)$ or $s^{\prime} b c \in(P: M)$ or $s^{\prime} a c \in(P: M)$. If $s^{\prime} a b \in(P: M)$, then we are done. If $s^{\prime} b c \in(P: M)$, then $s^{\prime} b c \in(P: m)$ and so $s^{\prime} b m^{\prime} \in P$. Likewise if $s^{\prime} a c \in(P: M)$, then $s^{\prime} a m^{\prime} \in P$. Now, assume that $a b c=0$, then $a b c m=0 . m=0$, a contradiction. Hence P is weakly S-2-absorbing.

Proposition 2.6. If S is a multiplicatively closed subset of R and P is a submodule of a cyclic R module M, then P is an S-2-absorbing submodule of M if and only if $(P: M)$ is an S-2-absorbing ideal of R.

After recalling the concepts of triple-zero in various papers like [9], [7], we give the following result which is an analogue of [9, Theorem 3.10].

Theorem 2.2. Let S be a multiplicatively closed subset of R and let P be a weakly S-2-absorbing submodule of M. If $a, b \in R, m \in M$ with $a b m=0$ and $s a b \notin(P: M)$, sam $\notin P, s b m \notin P$ for any $s \in S$, then
(1) $a b P=a(P: M) m=b(P: M) m=0$
(2) $a(P: M) P=b(P: M) P=(P: M)^{2} m=0$

Proof. (1). If $a b P \neq 0$, then for some $p \in P, a b p \neq 0$. Since $0 \neq a b p=a b(m+p) \in P$, then by assumption there exists $s \in S$ of P such that $s a b \in(P: M)$ or $s a(m+p) \in P$ or $s b(m+p) \in P$.

Hence sab $\in(P: M)$ or sam $\in P$ or sbm $\in P$, which is not possible by our assumption. Hence $a b P=0$.

If $a(P: M) m \neq 0$, then for some $r \in(P: M)$, arm $\neq 0$. Since $0 \neq \operatorname{arm}=a(r+b) m \in P$, then there exists $s \in S$ of P such that $s a(r+b) \in(P: M)$ or $s a m \in P$ or $s(r+b) m \in P$. That is $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$, which is not possible by our assumption. Thus $a(P: M) m=0$. The similar argument prove that $b(P: M) m=0$.
(2). Assume that $a(P: M) P \neq 0$. Then for some $r \in(P: M), p \in P, 0 \neq \operatorname{arp} \in P$. As $0 \neq \operatorname{arp}=a(b+r)(m+p)$. By (1), we get $0 \neq a(b+r)(m+p) \in P$, then there exists $s \in S$ of P such that $s a(b+r) \in(P: M)$ or $s a(m+p) \in P$ or $s(b+r)(m+p) \in P$. Hence $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$, a contradiction by our assumption. Hence $a(P: M) P=0$.

Now, if $(P: M)^{2} m \neq 0$, then for some $r_{1}, r_{2} \in(P: M), 0 \neq r_{1} r_{2} m \in P$. Since by (1), $0 \neq r_{1} r_{2} m=\left(a+r_{1}\right)\left(b+r_{2}\right) m \in P$, then there exists $s \in S$ of P such that $s\left(a+r_{1}\right)\left(b+r_{2}\right) \in(P: M)$ or $s\left(a+r_{1}\right) m \in P$ or $s\left(b+r_{2}\right) m \in P$ and so $s a b \in(P: M)$ or $s a m \in P$ or $s b m \in P$, a contradiction by our assumption. Hence $(P: M)^{2} m=0$.

We recall that if N is a submodule of an R-module M and A is an ideal of R, then the residual of N by A is the set $(N: M A)=\{m \in M: A m \subseteq N\}$. It is clear that $(N: M A)$ is a submodule of M containing N. More generally, for any subset $B \subseteq R,\left(N:_{M} B\right)$ is a submodule of M containing N.

Proposition 2.7. Let S be a multiplicatively closed subset of R. For a submodule P of an R-module M with $(P: M) \cap S=\emptyset$, the following assertions are equivalent.
(1) P is a weakly S-2-absorbing submodule of M.
(2) For any $a, b \in R$, there exists $s \in S$ such that, if $\operatorname{sabM} \nsubseteq P$, then $(P: a b)=(0: a b)$ or $(P: a b) \subseteq(P: s a)$ or $(P: a b) \subseteq(P: s b)$
(3) For any $a, b \in R$ and for any submodule K of M, there exists $s \in S$ such that, if $0 \neq a b K \subseteq P$ then $s a b \in(P: M)$ or $s a K \subseteq P$ or $s b K \subseteq P$.

Proof. (1) $\Longrightarrow(2)$ Let $a, b \in R$. Let $m \in(P: a b)$. If $a b m=0$, then clearly $m \in(0: a b)$. If $a b m \neq 0$, that is if $0 \neq a b m \in P$, then by (1), there exist $s \in S$ of P such that $s a b \in(P: M)$ or sam $\in P$ or $s b m \in P$. Clearly, if $s a b M \nsubseteq P$, we conclude that either $s a m \in P$ or $s b m \in P$. As $(0: a b) \subseteq(P: a b)$, we get $(P: a b)=(0: a b)$ or $(P: a b) \subseteq(P: s a)$ or $(P: a b) \subseteq(P: s b)$.
$(2) \Longrightarrow$ (3) Let $a, b \in R$ and K be a submodule of M such that $0 \neq a b K \subseteq P$ and, for the element $s \in S$ of (2), we have to claim that $s a b \in(P: M)$ or $s a K \subseteq P$ or $s b K \subseteq P$. If $s a b \in(P: M)$, then there is nothing to prove. Suppose $s a b \notin(P: M)$. As $a b K \subseteq P$, we have $K \subseteq(P: a b)$ and by (2), we have $K \subseteq(0: a b)$ or $K \subseteq(P: s a)$ or $K \subseteq(P: s b)$. If $K \subseteq(0: a b)$, then $a b K=0$, a contradiction. If $K \subseteq(P: s a)$, then saK $\subseteq P$ as required.
(3) \Longrightarrow (1) Let $a, b \in R$ and $m \in M$ with $0 \neq a b m \in P$. Clearly $a b<m>\subseteq P$. If
$a b<m>\neq 0$, by (3), sab $\in(P: M)$ or $s a m \in s a<m>\subseteq P$ or $s b m \in s b<m>\subseteq P$. If $a b<m>=0$, then $a b m \in a b<m>=0$, a contradiction.

Theorem 2.3. Let S be a multiplicatively closed subset of R and P be a submodule of an R-module M. If P is a weakly S-2-absorbing submodule of M. Then
(1) There exists an $s \in S$ such that for any $a, b \in R$, if $a b K \subseteq P$ and $0 \neq 2 a b K$ for some submodule K of M, then sab $\in(P: M)$ or $s a K \subseteq P$ or $s b K \subseteq P$.
(2) There exists an $s \in S$ such that for an ideal I of R and a submodule K of M, if al $K \subseteq P$ and $0 \neq 4$ al K, where $a \in R$, then sal $\in(P: M)$ or $s a K \subseteq P$ or $s l K \subseteq P$.
(3) There exists an $s \in S$ such that for all ideals I, J of R and submodule K of M, if $0 \neq I J K \subseteq P$ and $0 \neq 8(I J+(I+J)(P: M))(K+P)$, then $s I J \subseteq(P: M)$ or $s I K \subseteq P$ or $s J K \subseteq P$. In particular this holds if the group $(M,+)$ has no elements of order 2 .

Proof. (1) By our assmption, there exists $s \in S$ of P such that, whenever $x, y \in R$ and $m \in M$, $0 \neq x y m \in P$ implies sxy $\in(P: M)$ or $s x m \in P$ or sym $\in P$. Let $a, b \in R$ such that $a b K \subseteq P$ and $0 \neq 2 a b K$ for some submodule K of M. Now, we will show that sab $\in(P: M)$ or saK $\subseteq P$ or $s b K \subseteq P$. Suppose $s a b \notin(P: M)$. Then proving that $s a K \subseteq P$ or $s b K \subseteq P$ is enough. Let k be an arbitrary element of K. As $a b k \in a b K \subseteq P$, if $a b k \neq 0$, then $\operatorname{sab} \in(P: M)$ or sak $\in P$ or $s b k \in P$. Thus we have $k \in(P: s a)$ or $k \in(P: s b)$ since $s a b \notin(P: M)$. Hence saK $\subseteq P$ or $s b K \subseteq P$.

If $a b k=0$. Since $0 \neq 2 a b K$, for some $k_{1} \in K$, we get $0 \neq 2 a b k_{1}$ and clearly $0 \neq a b k_{1} \in P$. Then we get $s a k_{1} \in P$ or $s b k_{1} \in P$ since $\operatorname{sab} \notin(P: M)$. Put $k_{2}=k+k_{1}$ and so $0 \neq a b k_{2} \in P$. Then sak $_{2} \in P$ or $s b k_{2} \in P$ since $\operatorname{sab} \notin(P: M)$. This leads to the following cases.
Case 1: $s a k_{1} \in P$ and $s b k_{1} \in P$
Since $s a k_{2} \in P$ or $s b k_{2} \in P$, we have sak $\in P$ or $s b k \in P$. Thus saK $\in P$ or $\operatorname{sbK} \in P$.
Case 2: $\operatorname{sak}_{1} \in P$ and $s b k_{1} \notin P$
Suppose sak $\notin P$ and sbk $\notin P$. Then sak $=\operatorname{sak}_{1}+$ sak $\notin P$ and so sbk $\in P$. Hence $s a\left(k_{2}+k_{1}\right) \notin P$ and similarly $s b\left(k_{2}+k_{1}\right) \notin P$. As P is weakly S-2-absorbing and $s a b \notin(P: M)$, hence $a b\left(k_{2}+k_{1}\right)=0$. But $a b\left(k_{2}+k_{1}\right)=a b\left(k_{1}+k+k_{1}\right)=2 a b k_{1}$, a contradiction as $2 a b k_{1} \neq 0$. Thus sak $\in P$ or $s b k \in P$ and so sak $\subseteq P$ or $s b K \subseteq P$.
Case 3: $s a k_{1} \notin P$ and $s b k_{1} \in P$
The proof is same as that of Case 2.
(2) By our assmption, there exists $s \in S$ of P such that, whenever $x, y \in R$ and $m \in M$, $0 \neq x y m \in P$ implies $s x y \in(P: M)$ or $s x m \in P$ or $s y m \in P$. Let l be an ideal of R and K be a submodule of M such that $a l K \subseteq P$ and $0 \neq 4 a l K$, where $a \in R$. We have to prove that sal $\in(P: M)$ or saK $\subseteq P$ or slK $\subseteq P$. Suppose sal $\nsubseteq(P: M)$, for some $i \in I$ we have sai $\notin(P: M)$. Let us first prove that there exists $b \in I$ such that $0 \neq 4 a b K$ and $\operatorname{sab} \notin(P: M)$.

Since $0 \neq 4 a l K$, for some $i^{\prime} \in I, 0 \neq 4 a i^{\prime} K$. Suppose sai $\notin(P: M)$ or $0 \neq 4 a i K$, if we put $b=i^{\prime}$, we get $s a b \notin(P: M)$ and $0 \neq 4 a b K$ and if we put $b=i$, we get $0 \neq 4 a b K$ and
sab $\notin(P: M)$. From the above, clearly by putting $b=i^{\prime}$ or $b=i$, we get the result. Hence assume that sai' $\in(P: M)$ and $4 a i K=0$. Hence $0 \neq 4 a\left(i+i^{\prime}\right) K \subseteq P$ and $s a\left(i+i^{\prime}\right) \notin(P: M)$. Thus we find $b \in I$ such that $0 \neq 4 a b K$ and $s a b \notin(P: M)$.

As $0 \neq 4 a b K$, we get $0 \neq 2 a b K$ and by (1), since $a b K \subseteq a l K \subseteq P$ and $s a b \notin(P: M)$, we get saK $\subseteq P$ or $s b K \subseteq P$. If sa $K \subseteq P$, there we are done. Thus assume that sa $K \nsubseteq P$ and so $s b K \subseteq P$.

Now to exhibit that sal $\in(P: M)$ or $s l K \subseteq P$. Let $i \prime \in I$. If 2ai" $K \neq 0$, then by (1), sai" $\in(P: M)$ or si" $K \subseteq P$ since saK $\nsubseteq P$. Thus we get $i^{\prime \prime} \in\left((P: M)\right.$: sa) or $i^{\prime \prime} \in(P: s K)$. Therefore $I \subseteq((P: M): s a)$ or $I \subseteq(P: s K)$. Then we are done.

If 2ai" $K=0$, then clearly $0 \neq 2 a\left(b+i^{\prime \prime}\right) K$ and $a\left(b+i^{\prime \prime}\right) K \subseteq P$, by (1) sa($\left.b+i^{\prime \prime}\right) \in(P: M)$ or $s(b+i \prime) K \subseteq P$ since $s a K \nsubseteq P,(b+i \prime) \in(P: s K)$ or $(b+i ") \in((P: M): s a)$.
(i): If $\left(b+i^{\prime \prime}\right) \in(P: s K)$, then si" $K \subseteq P$ as $s b K \subseteq P$. Hence $i \prime \in(P: s K)$.
(ii): Now assume $\left(b+i^{\prime \prime}\right) \in((P: M): s a)$ and $\left(b+i^{\prime \prime}\right) \notin(P: s K)$. Consider $0 \neq 4 a b K=$ $2 a\left(b+i^{\prime \prime}+b\right) K$ and $a\left(b+i^{\prime \prime}+b\right) K \subseteq P$. By (1), sa($\left.b+i^{\prime \prime}+b\right) \in(P: M)$ or $s\left(b+i^{\prime \prime}+b\right) K \subseteq P$ since saK $\nsubseteq P$. As sab $\notin(P: M)$, we have $s a\left(b+i^{\prime \prime}+b\right) \notin(P: M)$. Then we have $s\left(b+i^{\prime \prime}+b\right) K \subseteq P$. Since $\left(b+i^{\prime \prime}\right) \notin(P: s K)$, we have $s\left(b+i^{\prime \prime}+b\right) K \nsubseteq P$. Therefore $\left(b+i^{\prime \prime}\right) \in(P: s K)$. Since $s b K \subseteq P$, we have si" $K \subseteq P$ and so $i^{\prime \prime} \in(P: s K)$. Consequently $I \subseteq((P: M): s a)$ or $I \subseteq(P: s K)$ and hence as sal $\nsubseteq(P: M)$, we get $s l K \subseteq P$.
(3) Let I, J be the ideals of R and K be a submodule of M such that $0 \neq I J K \subseteq P$ and $0 \neq 8(I J+(I+J)(P: M))(K+P)$. Since $0 \neq 8(I J+(I+J)(P: M))(K+P)=8 I J K+8 I(P:$ $M) K+8 J(P: M) K+8 I J P+8 I(P: M) P+8 J(P: M) P$. As a result, one of the types listed below has been satisfied.
Type 1: $0 \neq 8 / J K$. Then for some $j \in J, 0 \neq 8 j / K$ and so $0 \neq 4 j / K$. As $j I K \subseteq P$, by (2), there exists $s \in S$ such that $s j \subseteq(P: M)$ or $s / K \subseteq P$ or $s j K \subseteq P$. If $s l K \subseteq P$, then we are done and so assume that $s l K \nsubseteq P$ that is $s j \subseteq(P: M)$ or $s j K \subseteq P$. We claim that $s I J \subseteq(P: M)$ or $s J K \subseteq P$. Let $j^{\prime} \in J$ be an arbitrary element. If $0 \neq 4 j^{\prime} I K$, by $(2), s j^{\prime} I \subseteq(P: M)$ or $s j^{\prime} K \subseteq P$ since $s l K \nsubseteq P$. Then $j^{\prime} \in((P: M): s l)$ or $j^{\prime} \in(P: s K)$. Hence we get the result.

Now let $4 j^{\prime} I K=0$. As $0 \neq 4\left(j+j^{\prime}\right) / K \subseteq P$, by $(2), s\left(j+j^{\prime}\right) I \subseteq(P: M)$ or $s\left(j+j^{\prime}\right) K \subseteq P$ since $s I K \nsubseteq P$. Hence we get $s\left(j+j^{\prime}\right) I \subseteq(P: M)$ or $s\left(j+j^{\prime}\right) K \subseteq P$. Thereby we get the four cases.
Case 1: $s j I \subseteq(P: M)$ and $s\left(j+j^{\prime}\right) I \subseteq(P: M)$.
Hence we get $s j^{\prime} l \subseteq(P: M)$, that is $s I J \subseteq(P: M)$
Case 2: $s j K \subseteq P$ and $s\left(j+j^{\prime}\right) K \subseteq P$
Hence we get $s j^{\prime} K \subseteq P$, that is $s J K \subseteq P$
Case 3: $s j I \subseteq(P: M)$ and $s j K \nsubseteq P$.

$$
s\left(j+j^{\prime}\right) K \subseteq P \text { and } s\left(j+j^{\prime}\right) I \nsubseteq(P: M)
$$

This can be represented as $j \in((P: M): s l)$ and $j \notin(P: s K), j+j^{\prime} \in(P: s K)$ and
$j+j^{\prime} \notin((P: M): s l)$. Hence $j+j^{\prime}+j \notin((P: M): s l)$ and $j+j^{\prime}+j \notin(P: s K)$. Now consider $0 \neq 8 j I K=4\left(j+j^{\prime}+j\right) I K$ and by $(2), s\left(j+j^{\prime}+j\right) I \subseteq(P: M)$ or $s\left(j+j^{\prime}+j\right) K \subseteq P$ since $s I K \nsubseteq P$. Hence we get $j+j^{\prime}+j \in((P: M): s l)$ or $j+j^{\prime}+j \in(P: s K)$ and this is not possible. Therefore, since $j \in((P: M): s l)$ or $j \in(P: s K)$ and $j+j^{\prime} \in(P: s K)$ or $j+j^{\prime} \in((P: M): s l)$, there must be any one of the following holds.
(i) $j \in(P: s K)$ and $j+j^{\prime} \in(P: s K)$ and $j+j^{\prime} \notin((P: M): s l)$, then $j^{\prime} \in(P: s K)$.
(ii) $j \in((P: M): s l)$ and $j \notin(P: s K)$ and $j+j^{\prime} \in((P: M): s l)$, then $j^{\prime} \in((P: M): s l)$.

Case 4: $s\left(j+j^{\prime}\right) I \subseteq(P: M)$ and $s\left(j+j^{\prime}\right) K \nsubseteq P$
$s j K \subseteq P$ and $s j l \nsubseteq(P: M)$.
Similar to the above case, we have $j^{\prime} \in((P: M): s l)$ or $j^{\prime} \in(P: s K)$. Thus slJ $\subseteq(P: M)$ or $s J K \subseteq P$.
Type 2: If $0 \neq 8 / J P$ and $8 / J K=0$, then $0 \neq 8 / J(K+P) \subseteq P$ and by Type 1 , s $J \subseteq(P: M)$ or $s J(K+P) \subseteq P$ or $s l(K+P) \subseteq P$ and so $s l J \subseteq(P: M)$ or $s J K \subseteq P$ or $s l K \subseteq P$.
Type 3: If $0 \neq 8 J(P: M) K$ and $8 I J K=0$, then $0 \neq 8 J(P: M) K=8 J(I+(P: M)) K$ and so by Type $1, s J(I+(P: M)) \subseteq(P: M)$ or $s J K \subseteq P$ or $s(I+(P: M)) K \subseteq P$. Hence $s I J \subseteq(P: M)$ or $s J K \subseteq P$ or $s l K \subseteq P$. Likewise if $0 \neq 8 I(P: M) K$, we get the result.
Type 4: If $0 \neq 8 J(P: M) P$ and $8 / J K=8 / J P=8 J(P: M) K=8 I(P: M) K=0$. Then $0 \neq 8 J(P: M) P=8 J(I+(P: M))(K+P)$ and by Type $1, s J(I+(P: M)) \subseteq(P: M)$ or $s J(K+P) \subseteq P$ or $s(I+(P: M))(K+P) \subseteq P$. Hence $s l J \subseteq(P: M)$ or $s J K \subseteq P$ or $s l K \subseteq P$. Likewise if $0 \neq 8 I(P: M) P$, we have the result.

To prove the particular case, let $(M,+)$ be a group having no subgroups of order 2 . We have to show that $0 \neq 8 / J K$. If this happens, We get the result by Type 1 . Suppose $8 / J K=0$. Let $0 \neq a \in I J K$. As $8 a=0$, so the group $(M,+)$ has a subgroup of order 2,4 or 8 , which is a contradiction.

Corollary 2.2. Let S be a multiplicatively closed subset of R and I be a weakly S-2-absorbing ideal of R.
(1) There exists $s \in S$ such that for any $a, b \in R$ and for any ideal A of R, if $a b A \subseteq I$ and $0 \neq 2 a b A$, then $s a b \in 1$ or $s a A \subseteq 1$ or $s b A \subseteq 1$.
(2) There exists $s \in S$ such that for any $a \in R$, ideals A, B of R, if $a A B \subseteq 1$ and $0 \neq 4 a A B$, then sa $A \subseteq I$ or $s a B \subseteq 1$ or $s A B \subseteq 1$.
(3) There exists $s \in S$ such that for any ideals A, B, C of R, if $0 \neq A B C \subseteq 1$ and $0 \neq 8(A B(C+$ $\left.I)+A C(B+I)+B C(A+I)+A I(B+C)+B I(A+C)+C I(A+B)+I^{2}(A+B+C)\right)$, then $s A B \subseteq I$ or $s B C \subseteq I$ or $s A C \subseteq I$. In particular, this happens when the group $(R,+)$ has no elements of order 2.

Proposition 2.8. Let $\phi: M_{1} \rightarrow M_{2}$ be a module homomorphism where M_{1} and M_{2} are R-modules and S be a multiplicatively closed subset of R. Then the following holds.

1. If ϕ is a monomorphism and K is a weakly S-2-absorbing submodule of M_{2} with $\left(\phi^{-1}(K)\right.$:
$\left.M_{1}\right) \cap S=\emptyset$, then $\phi^{-1}(K)$ is a weakly S-2-absorbing submodule of M_{1}.
2. If ϕ is an epimorphism and P is a weakly S-2-absorbing submodule of M_{1} containing kerф, then $\phi(P)$ is a weakly S-2-absorbing submodule of M_{2}.

Proof. 1. Let $a, b \in R$ and $m_{1} \in M_{1}$ be such that $0 \neq a b m_{1} \in \phi^{-1}(K)$. Then $0 \neq \phi\left(a b m_{1}\right)=$ $a b \phi\left(m_{1}\right) \in K$ as ϕ is a monomorphism. since K is weakly S-2-absorbing, there exists $s \in S$ such that $\operatorname{sab} \in\left(K: M_{2}\right)$ or $\operatorname{sa\phi }\left(m_{1}\right) \in K$ or $\operatorname{sb\phi }\left(m_{1}\right) \in K$. If $\operatorname{sab} \in\left(K: M_{2}\right)$, then $\operatorname{sab} \in\left(\phi^{-1}(K): M_{1}\right)$ since $\left(K: M_{2}\right) \subseteq\left(\phi^{-1}(K): M_{1}\right)$ and if $s a \phi\left(m_{1}\right) \in K$ or $s b \phi\left(m_{1}\right) \in K$, we have $\phi\left(s a m_{1}\right) \in K$ implies $s a m_{1} \in \phi^{-1}(K)$ or $\phi\left(s b m_{1}\right) \in K$ implies $s b m_{1} \in \phi^{-1}(K)$. Hence $\phi^{-1}(K)$ is a weakly S-2-absorbing submodule of M_{1}.
2. First observe that $\left(\phi(P): M_{2}\right) \cap S=\emptyset$. Indeed, assume that $s^{\prime} \in\left(\phi(P): M_{2}\right) \cap S$. Then $\phi\left(s^{\prime} M_{1}\right)=s^{\prime} \phi\left(M_{1}\right)=s^{\prime} M_{2} \subseteq \phi(P)$ and so $s^{\prime} M_{1} \subseteq P$ as ker $\phi \subseteq P$. This shows that $s^{\prime} \in\left(P: M_{1}\right)$ and so $\left(P: M_{1}\right) \cap S \neq \emptyset$, a contradiction occurs since P is a weakly S-2-absorbing submodule of M_{1}. Now, let $a, b \in R$ and $m_{2} \in M_{2}$ be such that $0 \neq a b m_{2} \in \phi(P)$. As we can write $m_{2}=\phi\left(m_{1}\right)$ for some $m_{1} \in M_{1}$ and so $0 \neq a b m_{2}=a b\left(\phi\left(m_{1}\right)\right)=\phi\left(a b m_{1}\right) \in \phi(P)$. Since $\operatorname{ker} \phi \subseteq P$, we have $0 \neq a b m_{1} \in P$. Then there exists $s \in S$ such that $s a b \in\left(P: M_{1}\right)$ or $s a m_{1} \in P$ or $s b m_{1} \in P$. Consequently we get $s a b \in\left(\phi(P): M_{2}\right)$ or $\phi\left(s a m_{1}\right)=\operatorname{sa\phi }\left(m_{1}\right)=\operatorname{sam}_{2} \in \phi(P)$ or $\phi\left(s b m_{1}\right)=s b \phi\left(m_{1}\right)=s b m_{2} \in \phi(P)$. Hence $\phi(P)$ is weakly S-2-absorbing submodule of M_{2}.

Corollary 2.3. Let S be a multiplicatively closed subset of R. P_{1} and P_{2} are two submodules of M with $P_{2} \subseteq P_{1}$.

1. If K is a weakly S-2-absorbing submodule of M with $\left(K: P_{1}\right) \cap S=\emptyset$, then $K \cap P_{1}$ is a weakly S-2-absorbing submodule of P_{1}.
2. If P_{1} is a weakly S-2-absorbing submodule of M, then P_{1} / P_{2} is a weakly S-2-absorbing submodule of M / P_{2}.
3. If P_{1} / P_{2} is a weakly S-2-absorbing submodule of M / P_{2} and P_{2} is a weakly S-2-absorbing submodule of M, then P_{1} is a weakly $S-2$-absorbing submodule of M.

Proof. 1. Consider the injection $i: P_{1} \rightarrow M$ defined by $i\left(p_{1}\right)=p_{1}$ for all $p_{1} \in P_{1}$. We have to show that $\left(i^{-1}(K): P_{1}\right) \cap S=\emptyset$. Indeed, if $s \in\left(i^{-1}(K): P_{1}\right) \cap S$, then $s P_{1} \subseteq i^{-1}(K)$. As $i^{-1}(K)=K \cap P_{1}$, we have $s P_{1} \subseteq K \cap P_{1} \subseteq K$ and so $s \in\left(K: P_{1}\right) \cap S$, a contradiction as K is weakly S-2-absorbing. Thus by Proposition 2.8(1), we conclude the result.
2. Consider the canonical epimorphism $\pi: M \rightarrow M / P_{2}$ defined by $\pi(m)=m+P_{2}$. Then $\pi\left(P_{1}\right)=P_{1} / P_{2}$ is a weakly S-2-absorbing submodule of M / P_{2} by Proposition 2.8(2).
3. Let $a, b \in R$ and $m \in M$ be such that $0 \neq a b m \in P_{1}$. Then $a b\left(m+P_{2}\right)=a b m+P_{2} \in$ P_{1} / P_{2}. If $a b\left(m+P_{2}\right) \neq P_{2}$, then there exists $s_{1} \in S$ of P_{1} / P_{2} implies $s_{1} a b \in\left(P_{1} / P_{2}: M / P_{2}\right)$ or $s_{1} a\left(m+P_{2}\right) \in P_{1} / P_{2}$ or $s_{1} b\left(m+P_{2}\right) \in P_{1} / P_{2}$. Hence $s_{1} a b \in\left(P_{1}: M\right)$ or $s_{1} a m \in P_{1}$ or $s_{1} b m \in P_{1}$. If $a b m \in P_{2}$, then by assumption, there exists $s_{2} \in S$ of P_{2} such that $s_{2} a b \in\left(P_{2}: M\right) \subseteq\left(P_{1}: M\right)$ or
$s_{2} a m \in P_{2} \subseteq P_{1}$ or $s_{2} b m \in P_{2} \subseteq P_{1}$. It follows that P_{1} is a weakly S-2-absorbing submodule of M associated with $s=s_{1} s_{2} \in S$.
We need to recall the following Lemma for the next result.

Lemma 2.2. [2] For an ideal lof a ring R and a submodule N of a finitely generated faithful multiplication R-module M, the following hold.

1. $\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$.
2. If I is finitely generated faithful multiplication, then
(a) $(I N: M I)=N$.
(b) Whenever $N \subseteq I M$, then $(J N: M I)=J\left(N:_{M} I\right)$ for any ideal J of R.

Proposition 2.9. Let I be a finitely generated faithful multiplication ideal of a ring R, S be a multiplicatively closed subset of R and P be a submodule of a finitely generated faithful multiplication cyclic R-module M.

1. If IP is a weakly S-2-absorbing submodule of M and $(P: M) \cap S=\emptyset$, then either I is a weakly S-2-absorbing ideal of R or P is a weakly S-2-absorbing submodule of M.
2. P is a weakly S-2-absorbing submodule of IM if and only if $\left(P:_{M} I\right)$ is a weakly S-2-absorbing submodule of M.

Proof. (1) Suppose $P=M$, we get $I=I\left(P:_{R} M\right)=\left(I P:_{R} M\right)$ by Lemma 2.2. Since $I P$ is a weakly S-2-absorbing submodule of M, by Proposition 2.5 , I is a weakly S-2-absorbing ideal of R. Now, suppose P is a proper submodule of M. By Lemma 2.2, $\left(I P:_{M} I\right)=P$ and so $(P: M)=\left(\left(I P:_{M} I\right):_{R} M\right)=\left(I\left(P:_{R} M\right):_{M} I\right)$. Let $a, b \in R$ and $m \in M$ be such that $0 \neq a b m \in P$. Since I is faithful, then $\left(0:_{M} I\right)=A n n_{R}(I) M=0[2]$, and so $0 \neq a b / m \subseteq I P$. By Proposition 2.7, there exists $s \in S$ of $I P$ such that $s a b \in(I P: M)$ or $s a l m \subseteq I P$ or $s b I m \subseteq I P$. If $s a b \in(I P: M)$, then $s a b \in(P: M)$. If $s a l m \subseteq I P$, then $s a m \in(I P: I)=P$. Likewise if $s b / m \subseteq I P$, then $s b m \in P$. Hence P is a weakly S-2-absorbing submodule of M.
(2) Suppose P is a weakly S-2-absorbing submodule of $I M$. Then $\left(P:_{R} I M\right) \cap S=\left(\left(P:_{M}\right.\right.$ I) $\left.:_{R} M\right) \cap S=\emptyset$. Let $a, b \in R$ and $m \in M$ be such that $0 \neq a b m \in\left(P:_{M} I\right)$. If ablm=0, then $a b m \in\left(0:_{M} I\right)=A n n_{R}(I) M=0$, a contradiction. Hence $0 \neq a b I m \subseteq P$. By Proposition 2.7, there exists $s \in S$ of P such that $s a b \in(P: I M)$ or $s a l m \subseteq P$ or $s b / m \subseteq P$. If $s a b \in\left(P:_{R} / M\right)$, then $\operatorname{sab} \in((P: M I): R M)$. If salm $\subseteq P$, then $\operatorname{sam} \in(P: I)$ and similarly if $s b / m \subseteq P$, we get $s b m \in(P: I)$ as required.

Conversely, suppose $\left(P:_{M} I\right)$ is a weakly S-2-absorbing submodule of M. Then clearly $\left(\left(P:_{M}\right.\right.$ I) $\left.:_{R} M\right) \cap S=\left(P:_{R} I M\right) \cap S=\emptyset$. Let $a, b \in R$ and $x \in I M$ be such that $0 \neq a b x \in P$. Clearly $a b<x>\subseteq P$. Since $x \in I M$, by Lemma 2.2, $a b\left(<x>:_{M} I\right)=\left(a b<x>:_{M} I\right) \subseteq\left(P:_{M} I\right)$. If $a b\left(<x>:_{M} I\right)=0$, then since $a b x \in\left(a b I x:_{M} I\right)$ and $I x \subseteq I M$, by Lemma 2.2, we have $a b x \in a b(I x: M I) \subseteq a b\left(<x>:_{M} I\right)=0$, a contradiction. So we have $0 \neq a b\left(<x>:_{M} I\right) \subseteq$
$\left(P:_{M} I\right)$. By Proposition 2.7, there exists $s^{\prime} \in S$ of $\left(P:_{M} I\right)$ such that $s^{\prime} a b \in\left(\left(P:_{M} I\right):_{R} M\right)$ or $s^{\prime} a\left(<x>:_{M} I\right) \subseteq\left(P:_{M} I\right)$ or $s^{\prime} b\left(<x>:_{M} I\right) \subseteq\left(P:_{M} I\right)$. If $s^{\prime} a b \in\left(\left(P:_{M} I\right):_{R} M\right)$, then $s^{\prime} a b \in\left(P:_{R} \mid M\right)$. If $s^{\prime} a\left(<x>:_{M} I\right) \subseteq\left(P:_{M} I\right)$, then $\mid s^{\prime} a\left(<x>:_{M} I\right) \subseteq P$. Since $s^{\prime} a x \in s^{\prime} a<x>=s^{\prime} a(I<x>: M I)=s^{\prime} a l\left(<x>:_{M} I\right) \subseteq P$ by Lemma 2.2. Likewise if $s^{\prime} b\left(<x>:_{M} I\right) \subseteq\left(P:_{M} I\right)$, then $s^{\prime} b x \in P$. Hence P is a weakly S-2-absorbing submodule of $I M$.

Acknowledgment: The author thanks Prof. Dr. P. Dheena, Professor, Department of Mathematics, Annamalai University, for suggesting the problem and going through the proof.
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] M.M. Ali, Idempotent and Nilpotent Submodules of Multiplication Modules, Commun. Algebra. 36 (2008), 4620-4642. https://doi.org/10.1080/00927870802186805.
[2] M.M. Ali, Residual Submodules of Multiplication Modules, Beitr. Algebra Geom. 46 (2005), 405-422.
[3] F.A.A. Almahdi, E.M. Bouba, M. Tamekkante, On Weakly S-Prime Ideals of Commutative Rings, An. Univ. Ovidius Const. - Ser. Mat. 29 (2021), 173-186. https://doi.org/10.2478/auom-2021-0024.
[4] R. Ameri, On the Prime Submodules of Multiplication Modules, Int. J. Math. Math. Sci. 2003 (2003), 1715-1724. https://doi.org/10.1155/s0161171203202180.
[5] S.E. Atani, F. Farzalipour, On Weakly Prime Submodules, Tamkang J. Math. 38 (2007), 247-252. https://doi. org/10.5556/j.tkjm.38.2007.77.
[6] A.Y. Darani, F. Soheilnia, 2-Absorbing and Weakly 2-Absorbing Submodules, Thai J. Math. 9 (2011), 577-584.
[7] A.Y. Darani, F. Soheilnia, U. Tekir, G. Ulucak, On Weakly 2-Absorbing Primary Submodules of Modules Over Commutative Rings, J. Korean Math. Soc. 54 (2017), 1505-1519. https://doi.org/10.4134/JKMS.J160544.
[8] Z.A. El-Bast, P.P. Smith, Multiplication Modules, Commun. Algebra. 16 (1988), 755-779. https://doi.org/10. 1080/00927878808823601.
[9] N.J. Groenewald, On Weakly Prime and Weakly 2-absorbing Modules over Noncommutative Rings, Kyungpook Math. J. 61 (2021), 33-48. https://doi.org/10.5666/KMJ.2021.61.1.33.
[10] A. Hamed, A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2019), 533-542. https: //doi.org/10.1007/s13366-019-00476-5.
[11] H.A. Khashan, E.Y. Celikel, On Weakly S-Prime Submodules, (2021). https://doi.org/10.48550/ARXIV. 2110. 14639.
[12] R.L. McCasland, M.E. Moore, On Radicals of Submodules of Finitely Generated Modules, Can. Math. Bull. 29 (1986), 37-39. https://doi.org/10.4153/CMB-1986-006-7.
[13] S. Moradi, A. Azizi, Weakly 2-Absorbing Submodules of Modules, Turk. J. Math. 40 (2016), 350-364.
[14] E. Sengelen Sevim, T. Arabaci, U. Tekir, On S-prime submodles, Turkish Journal of Mathematics 43.2(2019),10361046.
[15] P.F. Smith, Some Remarks on Multiplication Modules, Arch. Math. 50 (1988), 223-235. https://doi.org/10. 1007/BF01187738.
[16] G. Ulucak, Ü. Tekir, S. Koç, On S-2-Absorbing Submodules and Vn-Regular Modules, An. Univ. Ovidius Const. Ser. Mat. 28 (2020), 239-257. https://doi.org/10.2478/auom-2020-0030.

