International Journal of Analysis and Applications

On Weakly S-2-Absorbing Submodules

Govindarajulu Narayanan Sudharshana*

Department of Mathematics, Annamalai university, Chidambaram 608001, Tamil Nadu, India

* Corresponding author: sudharshanasss3@gmail.com

Abstract. Let *R* be a commutative ring with identity and let *M* be a unitary *R*-module. In this paper, we introduce the notion of weakly *S*-2-absorbing submodule. Suppose that *S* is a multiplicatively closed subset of *R*. A submodule *P* of *M* with $(P :_R M) \cap S = \emptyset$ is said to be a weakly *S*-2-absorbing submodule if there exists an element $s \in S$ such that whenever $a, b \in R$ and $m \in M$ with $0 \neq abm \in P$, then $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$. We give the characterizations, properties and examples of weakly *S*-2-absorbing submodules.

1. Introduction

Throughout this paper, R denotes a commutative ring with non zero identity and M is an R module. Prime ideals and submodules have vital role in ring and module theory. Of course a proper submodule P of M is called prime if $am \in P$ for $a \in R$ and $m \in M$ implies $a \in (P :_R M)$ or $m \in P$ where $(P :_R M) = \{r \in R : rM \subseteq P\}$. Several generalizations of these concepts have been studied extensively by many authors [9], [13], [6], [16], [3], [11], [14], [5].

In 2007, Atani and Farzalipour introduced the concept of weakly prime submodules as a generalization of prime submodules. A proper submodule P of M is defined as weakly prime if for $a \in R$ and $m \in M$, whenever for $0 \neq am \in P$ implies $a \in (P :_R M)$ or $m \in P$ as in [5].

A new kind of generalization of prime submodule has been introduced and studied by Sengelen sevim et. al. in 2019 in [14]. For a multiplicatively closed subset *S* of *R*, that is, *S* satisfies the following conditions: (*i*) $1 \in S$ and (*ii*) $s_1s_2 \in S$ for each s_1 , $s_2 \in S$, a proper submodule *P* of an *R*-module *M* with ($P :_R M$) $\cap S = \emptyset$ is called an *S*-prime submodule if there exists $s \in S$ such that for $a \in R$ and $m \in M$, if $am \in P$ then either $sa \in (P :_R M)$ or $sm \in P$. In particular an ideal *I* of *R* is called

Received: Apr. 5, 2022.

²⁰¹⁰ Mathematics Subject Classification. 06F25.

Key words and phrases. weakly S-prime; S-2-absorbing submodule; weakly S-2-absorbing submodule.

as S-prime ideal if I is an S-prime submodule of an R-module R, [10].

After that, the concept of weakly S-prime submodule was introduced as a generalization of S-prime submodules in [11]. Here, for a multiplicatively closed subset S of R, they called a submodule P of an R-module M with $(P :_R M) \cap S = \emptyset$ a weakly S-prime submodule if there exists $s \in S$ such that for $a \in R$ and $m \in M$, if $0 \neq am \in P$ then either $sa \in (P :_R M)$ or $sm \in P$. In particular, a proper ideal I of R disjoint with S is said to be weakly S-prime if there exists $s \in S$ such that for $a, b \in R$ and $0 \neq ab \in I$ then either $sa \in I$ or $sb \in I$ [3].

One of the important generalizations of prime submodule is the concept of 2-absorbing submodule. In 2011, Darani and Soheilnia [6] introduced the concepts of 2-absorbing and weakly 2-absorbing submodules of modules over commutative rings with identities. A proper submodule P of a module M over a commutative ring R with identity is said be a 2-absorbing submodule (weakly 2-absorbing submodule) of M if whenever $a, b \in R$ and $m \in M$ with $abm \in P(0 \neq abm \in P)$, then $abM \subseteq P$ or $am \in P$ or $bm \in P$. Predictably, a proper ideal I of R is 2-absorbing ideal if and only if I is a 2-absorbing submodule of R-module R.

Recently, the concept of S-2-absorbing submodules was introduced in [16] which is a generalization of S-prime submodules and 2-absorbing submodules. A submodule P of M is said to be an S-2absorbing submodule if $(P :_R M) \cap S = \emptyset$ and there exists a fixed $s \in S$ such that for $a, b \in R$ and $m \in M$, if $abm \in P$ then either $sab \in (P :_R M)$ or $sam \in P$ or $sbm \in P$. In particular, an ideal I of R is an S-2-absorbing ideal if I is an S-2-absorbing submodule of R-module R.

Our objective in this paper is to define and study the concept of weakly S-2-absorbing submodule as an extension of the above concepts. A submodule P of M is said to be a weakly S-2-absorbing submodule if $(P :_R M) \cap S = \emptyset$ and there exists an element $s \in S$ such that for $a, b \in R$ and $m \in M$, if $0 \neq abm \in P$ then either $sab \in (P :_R M)$ or $sam \in P$ or $sbm \in P$. In this case, we say that P is associated to s. In particular, an ideal I of R is a weakly S-2-absorbing ideal if I is a weakly S-2-absorbing submodule of R-module R.

Some characterizations of weakly *S*-2-absorbing submodules are obtained. Besides, we investigate relationships between *S*-2-absorbing submodule and weakly *S*-2-absorbing submodule and also between weakly *S*-prime and weakly *S*-2-absorbing submodules of modules over commutative rings.

2. Characterizations of weakly S-2-absorbing submodules

We start with the definitions and relationships of the main concepts of the paper.

Definition 2.1. Let *S* be a multiplicatively closed subset of *R*. A submodule *P* of an *R*-module *M* is called a weakly *S*-2-absorbing submodule if $(P :_R M) \cap S = \emptyset$ and there exists an element $s \in S$ such that, whenever $a, b \in R$ and $m \in M, 0 \neq abm \in P$ implies $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$. In this case, we say that *P* is associated to *s*. In particular, an ideal *I* of *R* is a weakly *S*-2-absorbing submodule of *R*-module *R*

Example 2.1. Consider the Z-module $M = Z \times Z_6$ and let $P = 2Z \times \langle \bar{3} \rangle$. Then P is a weakly S-2-absorbing submodule of M where $S = \{2^n : n \in \mathbb{N} \cup \{0\}\}$. Indeed, let $(0,\bar{0}) \neq r_1r_2(r',m) \in P$ for $r_1,r_2,r' \in Z$ and $m \in Z_6$ such that $2r_1r_2 \notin (P : M) = 6Z$. Then $r_1r_2m \in \langle \bar{3} \rangle$ with $r_1, r_2 \notin 3Z$ and so $m \in \langle \bar{3} \rangle$ also $r' \in 2Z$. Thus, $2r_1(r',m) \in P$ as needed.

Example 2.2. Consider the submodule P = < 6 > of the Z-module Z and the multiplicatively closed subset $S = \{5^n : n \in \mathbb{N} \cup \{0\}\}$. Then P is a weakly S-2-absorbing submodule.

It is clear that every S-2-absorbing submodule is a weakly S-2-absorbing submodule. Since the zero submodule is (by definition) a weakly S-2-absorbing submodule of any *R*-module, hence the converse is not true in general and the following example shows this.

Example 2.3. Consider R = Z, M = Z/30Z, P = 0 and $S = Z - \{0\}$. Then $2.3(5 + 30Z) = 0 \in P$ while $1.2.3 \notin (P : M)$, $1.2(5 + 30Z) \notin P$ and $1.3(5 + 30Z) \notin P$. Therefore P is not S-2-absorbing while it is weakly S-2-absorbing.

Every weakly 2-absorbing submodule P of an R-module M satisfying $(P : M) \cap S = \emptyset$ is a weakly S-2-absorbing submodule of M and the two concepts coincide if $S \subseteq U(R)$ where U(R) denotes the set of units in R. The following example shows that the converse need not be true.

Example 2.4. Suppose that $M = Z \times Z$ is an $R = Z \times Z$ -module and $P = pZ \times \{0\}$ is a submodule of M where p is prime. Then P is weakly S-2-absorbing submodule of M where $S = Z - \{0\} \times \{0\}$. Indeed, let $(0,0) \neq (r_1, r_2)(r_3, r_4)(m_1, m_2) \in P$ for (r_1, r_2) , $(r_3, r_4) \in Z \times Z$ and $(m_1, m_2) \in M$ such that $s(r_1, r_2)(r_3, r_4) \notin (P : M) = 0$. Then either r_1 or r_3 or m_1 must be p and either r_2 or r_4 or m_2 must be 0. Thus $s(p, r_2)(m_1, m_2) \in P$ as needed.

On the other hand, P is not a weakly 2-absorbing submodule since $(0,0) \neq (p,1)(1,0)(1,1) \in P$ but neither $(p,1)(1,0) \in (P:M)$ nor $(p,1)(1,1) \in P$ nor $(1,0)(1,1) \in P$. Hence P is not weakly 2-absorbing.

Lemma 2.1. Let *S* be a multiplicatively closed subset of *R* and *P* be a submodule of *M*. If *P* is weakly *S*-prime, then there exists an element $s \in S$ of *P* such that $0 \neq abm \in P$ for all $a, b \in R$ and $m \in M$ implies $sbM \subseteq P$ whenever $sam \notin P$.

Proof. Let $a, b \in R$ and $m \in M$. Assume that $0 \neq abm \in P$. Then $0 \neq b(am) \in P$. Since P is weakly S-prime, there exists $s \in S$ of P such that $sb \in (P : M)$ or $sam \in P$. Hence if $sam \notin P$, then we get $sbM \subseteq P$.

Proposition 2.1. Let *S* be a multiplicatively closed subset of *R* and *P* be a submodule of *M*. If *P* is weakly *S*-prime, then it is weakly *S*-2-absorbing.

Proof. Let $a, b \in R$ and $m \in M$ be such that $0 \neq abm \in P$. Since P is weakly S-prime, there exists $s \in S$ of P such that $sa \in (P : M)$ or $sbm \in P$. If $sbm \in P$, then we are done. Suppose

 $sbm \notin P$, then by Lemma2.1, we get $saM \subseteq P$ and consequently $sabM \subseteq P$. Hence P is weakly S-2-absorbing.

The converse of the previous proposition need not be true, is illustrated in the following example.

Example 2.5. Suppose that $M = Z \times Z$ is an $R = Z \times Z$ -module and $P = 2Z \times \{0\}$ is a submodule of M. Then P is weakly S-2-absorbing where $S = (2Z + 1) \times \{0\}$. Indeed, let $(0,0) \neq (r_1,r_2)(r_3,r_4)(m_1,m_2) \in P$ for $(r_1,r_2), (r_3,r_4) \in Z \times Z$ and $(m_1,m_2) \in M$ such that $s(r_1,r_2)(r_3,r_4) \notin (P:M) = 0$. Then either r_1 or r_3 or m_1 must be in 2Z. Without loss of generality, assume that $r_1 \in 2Z$. Then $s(r_1,r_2)(m_1,m_2) \in 2Z \times \{0\}$ as needed. On the other hand, we have $(0,0) \neq (2,0)(1,1) \in P$. Now neither $s(2,0) \in (P:M)$ nor $s(1,1) \in P$. Hence P is not weakly S-prime.

Let *R* be a ring and $S \subseteq R$ a multiplicatively closed subset of *R*. The saturation S^* of *S* is defined as $S^* = \{r \in R: \frac{r}{1} \text{ is a unit of } S^{-1}R \}$. Note that S^* is a multiplicatively closed subset containing *S*.

Proposition 2.2. If *M* is an *R*-module and *S* is a mltiplicatively closed subset of *R*. Then the following statements hold.

(i) Suppose that $S_1 \subseteq S_2$ are multiplicatively closed subsets of R. If P is a weakly S_1 -2-absorbing submodule and $(P : M) \cap S_2 = \emptyset$, then P is a weakly S_2 -2-absorbing submodule.

(ii) A submodule P of M is a weakly S-2-absorbing submodule if and only if it is a weakly S*-2absorbing submodule.

(iii) If P is a weakly S-2-absorbing submodule of M, then $S^{-1}P$ is a weakly 2-absorbing submodule of $S^{-1}M$.

Proof. (i): It is clear.

(ii):Let *P* be weakly *S*-2-absorbing. Suppose $(P : M) \cap S^* \neq \emptyset$. Then we have $t \in (P : M) \cap S^*$ and this implies that $\frac{t}{1} \cdot \frac{a}{s} = 1$ for some $a \in R$ and $s \in S$ as $\frac{t}{1}$ is a unit of $S^{-1}R$. Thus $ta = s \in S$ implies $ta \in S$ and so $(P : M) \cap S \neq \emptyset$ which is a contradiction. Hence $(P : M) \cap S^* = \emptyset$. By (i), *P* is a weakly *S**-2-absorbing submodule as $S \subseteq S^*$.

Conversely, let $a, b \in R$ and $m \in M$ such that $0 \neq abm \in P$. Since P is weakly S^* -2-absorbing, there exists $s'' \in S^*$ of P such that $s'' ab \in (P : M)$ or $s'' am \in P$ or $s'' bm \in P$. Since $s'' \in S^*$, we have $\frac{s''}{1} \cdot \frac{t}{s} = 1$ for some $t \in R$, $s \in S$. Then $s'' t = s \in S$ and so $s'' t \in S$. Then $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$. Thus P is weakly S-2-absorbing.

(iii) Let $\frac{a}{s_1}$, $\frac{b}{s_2} \in S^{-1}R$ and $\frac{m}{s_3} \in S^{-1}M$ be such that $\frac{0_M}{S} \neq \frac{a}{s_1}\frac{b}{s_2}\frac{m}{s_3} \in S^{-1}P$. Then we get $0_M \neq sabm \in P$ for some $s \in S$. By assumption, there exists $s_4 \in S$ of P such that $s_4(s_a)b \in (P:M)$ or $s_4(s_a)m \in P$ or $s_4bm \in P$. Then $\frac{a}{s_1}\frac{b}{s_2} = \frac{s_4s}{s_4s}\frac{ab}{s_1s_2} \in S^{-1}(P:M) \subseteq (S^{-1}P:S^{-1}M)$ or $\frac{a}{s_1}\frac{m}{s_3} = \frac{s_4s}{s_4s}\frac{am}{s_1s_3} \in S^{-1}P$ or $\frac{b}{s_2}\frac{m}{s_3} = \frac{s_4}{s_4}\frac{bm}{s_2s_3} \in S^{-1}P$. Hence $S^{-1}P$ is weakly 2-absorbing submodule of $S^{-1}M$.

The converse of (iii) in the above proposition need not be true is shown by the following example.

Example 2.6. Consider the Z-module $M = Q^3$ and $S = Z - \{0\}$. Let $P = \{(r_1, r_2, 0) : r_1, r_2 \in Z\}$. Note that (P : M) = 0 and $(P : M) \cap S = \emptyset$. If a = 2, b = 3 and $m = (\frac{1}{2}, \frac{1}{3}, 0)$, then $(0, 0, 0) \neq 2.3(\frac{1}{2}, \frac{1}{3}, 0) = (3, 2, 0) \in P$. If we take $s = 5 \in S$, then clearly $5.2.3 \notin (P : M)$, $5.2(\frac{1}{2}, \frac{1}{3}, 0) \notin P$, $5.3(\frac{1}{2}, \frac{1}{3}, 0) \notin P$. Thus P is not weakly S-2-absorbing. From the fact that $S^{-1}M$ is a vectorspace over the field $S^{-1}Z$ that is Q and the proper subspace $S^{-1}P$ is 2-absorbing [16], we have $S^{-1}P$ is a weakly 2-absorbing submodule by [6].

Proposition 2.3. Let *S* be a multiplicatively closed subset of *R* and *M* be an *R*-module. Then the intersection of two weakly *S*-prime submodule is a weakly *S*-2-absorbing submodule.

Proof. Let P_1 , P_2 be two weakly S-prime submodules of M and $P = P_1 \cap P_2$. Let $a, b \in R$ and $m \in M$ be such that $0 \neq abm \in P$. Since P_1 is weakly S-prime and $0 \neq a(bm) \in P_1$, there exists $s_1 \in S$ of P_1 such that $s_1a \in (P_1 : M)$ or $s_1bm \in P_1$. Again as P_2 is weakly S-prime and $0 \neq bam \in P_2$ there exists $s_2 \in S$ of P_2 such that $s_2b \in (P_2 : M)$ or $s_2am \in P_2$. Now consider the following four cases.

Case 1: $s_1 a \in (P_1 : M)$ and $s_1 bm \notin P_1$

 $s_2b \in (P_2 : M)$ and $s_2am \notin P_2$.

Now, put $s = s_1 s_2 \in S$. Then $sab \in (P_1 : M)$ and $sab \in (P_2 : M)$ and so $sabM \subseteq P_1 \cap P_2 = P$. Hence $sab \in (P : M)$.

Case 2: $s_1 a \in (P_1 : M)$ and $s_1 bm \notin P_1$ $s_2 am \in P_2$ and $s_2 b \notin (P_2 : M)$.

Then $s_1 am \in s_1 aM \subseteq P_1$ and $s_2 am \in P_2$ implies that $sam \in P$ where $s = s_1 s_2 \in S$.

Case 3: $s_1 bm \in P_1$ and $s_1 a \notin (P_1 : M)$

 $s_2am \notin P_2$ and $s_2b \in (P_2:M)$

Then clearly $sbm \in P$ where $s = s_1s_2 \in S$.

Case 4: $s_1 bm \in P_1$ and $s_1 a \notin (P_1 : M)$ $s_2 am \in P_2$ and $s_2 b \notin (P_2 : M)$

As P_1 is weakly S-prime and $0 \neq abm \in P_1$ and also $s_1am \notin P_1$ gives that $s_1bM \subseteq P_1$ by Lemma 2.1. For the same reason, we get $s_2aM \subseteq P_2$. Then clearly $sab \in (P : M)$ where $s = s_1s_2 \in S$. Hence P is weakly S-2-absorbing.

The following result provides some condition under which a weakly S-2-absorbing submodule is S-2-absorbing.

Theorem 2.1. Let *S* be a multiplicatively closed subset of *R* and *P* be a weakly *S*-2-absorbing submodule of *M*. If *P* is not *S*-2-absorbing, then $(P : M)^2 P = 0$.

Proof. By our assmption, there exists $s \in S$ of P such that, whenever $x, y \in R$ and $m \in M$, $0 \neq xym \in P$ implies $sxy \in (P : M)$ or $sxm \in P$ or $sym \in P$. Suppose $(P : M)^2P \neq 0$, we claim that P is S-2-absorbing. Let $a, b \in R$ and $m \in M$ be such that $abm \in P$. If $abm \neq 0$, then $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$. So assume that abm = 0.

Now, first we assume that $abP \neq 0$. Then $abp_0 \neq 0$ for some $p_0 \in P$ implies $0 \neq abp_0 = ab(m + p_0) \in P$. Then $sab \in (P : M)$ or $sa(m + p_0) \in P$ or $sb(m + p_0) \in P$ by our assumption. Hence $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$. Hence we may assume that abP = 0.

If $a(P:M)m \neq 0$, then $aq_0m \neq 0$ for some $q_0 \in (P:M)$. Then $0 \neq aq_0m = a(b+q_0)m \in P$. Then, we get $sa(b+q_0) \in (P:M)$ or $sam \in P$ or $s(b+q_0)m \in P$. Hence $sab \in (P:M)$ or $sam \in P$ or $sbm \in P$. So we can assume that a(P:M)m = 0. In the same manner, we can assume that b(P:M)m = 0. Since $(P:M)^2P \neq 0$, there exists $x_0, y_0 \in (P:M)$ and $m_0 \in P$ with $x_0y_0m_0 \neq 0$.

If $ay_0m_0 \neq 0$, then $0 \neq ay_0m_0 = a(b+y_0)(m+m_0) \in P$ since abm = 0, $abm_0 \in abP = 0$ and $ay_0m = amy_0 \in am(P:M) = 0$. Hence, by our assumption $sa(b+y_0) \in (P:M)$ or $sa(m+m_0) \in P$ or $s(b+y_0)(m+m_0) \in P$ and so $sab \in (P:M)$ or $sam \in P$ or $sbm \in P$. So we can assume that $ay_0m_0 = 0$. In the same manner, we can assume that $x_0y_0m = 0$ and $x_0bm_0 = 0$.

Since $x_0y_0m_0 \neq 0$, we have $0 \neq x_0y_0m_0 = (a + x_0)(b + y_0)(m + m_0) \in P$ since abm = 0, $abm_0 \in abP = 0$ and $ay_0m = amy_0 \in am(P : M) = 0$. Then, $s(a + x_0)(b + y_0) \in (P : M)$ or $s(a + x_0)(m + m_0) \in P$ or $s(b + y_0)(m + m_0) \in P$. Hence $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$. Hence P is S-2-absorbing.

Recall that an *R*-module *M* is said to be a multiplication module if for each submodule *N* of *M*, N = IM for some ideal *I* of *R*. If N_1 , N_2 are two submodules of *M*, then $N_1 = AM$ and $N_2 = BM$ for some ideals *A*, *B* of *R*. The product of N_1 and N_2 is defined as $N_1N_2 = ABM$ [4]. Also note that this product is independent of the presentations of submodules N_1 and N_2 of *M* [4, Theorem 3.4]. A submodule *N* of an *R*-module *M* is called a nilpotent submodule if $(N : M)^k N = 0$ for some positive integer *k* [1].

Corollary 2.1. Let *S* be a multiplicatively closed subset of *R* and *P* be a submodule of *M*. Assume that *P* is a weakly *S*-2-absorbing submodule of *M* that is not *S*-2-absorbing, then

- 1, P is nilpotent.
- 2, If M is a multiplication module, then $P^3 = 0$.

Proof. 1. Immediate from the definition of nilpotent submodule and by Theorem 2.1.

2. By Theorem 2.1, $(P : M)^2 P = 0$. Then $(P : M)^3 M = (P : M)^2 (P : M) M = 0$. Thus $P^3 = 0$.

If *N* is a proper submodule of a non-zero *R*-module *M*. Then the *M*-radical of *N*, denoted by *M*-rad*N* is defined as the intersection of all prime submodules of *M* containing *N* [12], [8]. If *A* is an ideal of the ring *R* then the *M*-radical of *A* (considered as a submodule of the *R*-module *R*) is denoted by \sqrt{A} and consists of all elements *r* of *R* such that $r^n \in A$ for some positive integer *n* [8]. Also it is shown in [8, Theorem 2.12] that if *N* is a proper submodule of a multiplication *R*-module *M*, then M-rad $N = (\sqrt{(N:M)})M$.

Proposition 2.4. Assume that M is a faithful multiplication R-module, S is a multiplicatively closed subset of R and P is a submodule of M. Let P be a weakly S-2-absorbing submodule of M. If P is not S-2-absorbing, then $P \subseteq M$ -rad0.

Proof. Suppose *P* is not *S*-2-absorbing. By Theorem 2.1, $(P : M)^2 P = 0$. Since $(P : M)^2 (P : M)M \subseteq (P : M)^2 P$, we have $(P : M)^3 \subseteq ((P : M)^2 P : M) = (0 : M) = 0$. Let $a \in (P : M)$, then $a^3 = 0$ and so $a \in \sqrt{0}$. Thus $(P : M) \subseteq \sqrt{0}$. Hence $P = (P : M)M \subseteq \sqrt{0}M = M$ -rad0.

Proposition 2.5. If S is a multiplicatively closed subset of R and P is a submodule of a cyclic faithful R-module M, then P is a weakly S-2-absorbing submodule of M if and only if (P : M) is a weakly S-2-absorbing ideal of R.

Proof. Let *P* be a weakly *S*-2-absorbing submodule of *M*. Assume that M = Rm for some $m \in M$ and let $0 \neq abc \in (P : M)$ for some *a*, *b*, $c \in R$. Then $abcm \in P$. If $abcm \neq 0$, then their exists an element $s \in S$ of *P* such that $sab \in (P : M)$ or $sacm \in P$ or $sbcm \in P$. If $sab \in (P : M)$, then we are done. If $sacm \in P$, then $sac \in (P : m) = (P : M)$ as *M* is cyclic. Likewise, if $sbcm \in P$, then $sbc \in (P : M)$. Then, assume that abcm = 0, we get $abc \in (0 : m) = (0 : M)$. As *M* is faithful, we have abc = 0, a contradiction. Hence (P : M) is a weakly *S*-2-absorbing ideal of *R*.

Conversely, let $0 \neq abm' \in P$ for some $a, b \in R$ and $m' \in M$. Then m' = cm for some $c \in R$ and we get $0 \neq abcm \in P$. This implies $abc \in (P : m) = (P : M)$. If $abc \neq 0$, then there exists an element $s' \in S$ of (P : M) such that $s'ab \in (P : M)$ or $s'bc \in (P : M)$ or $s'ac \in (P : M)$. If $s'ab \in (P : M)$, then we are done. If $s'bc \in (P : M)$, then $s'bc \in (P : m)$ and so $s'bm' \in P$. Likewise if $s'ac \in (P : M)$, then $s'am' \in P$. Now, assume that abc = 0, then abcm = 0.m = 0, a contradiction. Hence P is weakly S-2-absorbing.

Proposition 2.6. If S is a multiplicatively closed subset of R and P is a submodule of a cyclic R-module M, then P is an S-2-absorbing submodule of M if and only if (P : M) is an S-2-absorbing ideal of R.

After recalling the concepts of triple-zero in various papers like [9], [7], we give the following result which is an analogue of [9, Theorem 3.10].

Theorem 2.2. Let *S* be a multiplicatively closed subset of *R* and let *P* be a weakly *S*-2-absorbing submodule of *M*. If $a, b \in R, m \in M$ with abm = 0 and $sab \notin (P : M)$, $sam \notin P$, $sbm \notin P$ for any $s \in S$, then

(1) abP = a(P:M)m = b(P:M)m = 0

(2) $a(P:M)P = b(P:M)P = (P:M)^2m = 0$

Proof. (1). If $abP \neq 0$, then for some $p \in P$, $abp \neq 0$. Since $0 \neq abp = ab(m+p) \in P$, then by assumption there exists $s \in S$ of P such that $sab \in (P : M)$ or $sa(m+p) \in P$ or $sb(m+p) \in P$.

Hence $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$, which is not possible by our assumption. Hence abP = 0.

If $a(P:M)m \neq 0$, then for some $r \in (P:M)$, $arm \neq 0$. Since $0 \neq arm = a(r+b)m \in P$, then there exists $s \in S$ of P such that $sa(r+b) \in (P:M)$ or $sam \in P$ or $s(r+b)m \in P$. That is $sab \in (P:M)$ or $sam \in P$ or $sbm \in P$, which is not possible by our assumption. Thus a(P:M)m = 0. The similar argument prove that b(P:M)m = 0.

(2). Assume that $a(P : M)P \neq 0$. Then for some $r \in (P : M)$, $p \in P$, $0 \neq arp \in P$. As $0 \neq arp = a(b+r)(m+p)$. By (1), we get $0 \neq a(b+r)(m+p) \in P$, then there exists $s \in S$ of P such that $sa(b+r) \in (P : M)$ or $sa(m+p) \in P$ or $s(b+r)(m+p) \in P$. Hence $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$, a contradiction by our assumption. Hence a(P : M)P = 0.

Now, if $(P : M)^2 m \neq 0$, then for some $r_1, r_2 \in (P : M), 0 \neq r_1r_2m \in P$. Since by (1), $0 \neq r_1r_2m = (a+r_1)(b+r_2)m \in P$, then there exists $s \in S$ of P such that $s(a+r_1)(b+r_2) \in (P : M)$ or $s(a+r_1)m \in P$ or $s(b+r_2)m \in P$ and so $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$, a contradiction by our assumption. Hence $(P : M)^2m = 0$.

We recall that if N is a submodule of an R-module M and A is an ideal of R, then the residual of N by A is the set $(N :_M A) = \{m \in M : Am \subseteq N\}$. It is clear that $(N :_M A)$ is a submodule of M containing N. More generally, for any subset $B \subseteq R$, $(N :_M B)$ is a submodule of M containing N.

Proposition 2.7. Let *S* be a multiplicatively closed subset of *R*. For a submodule *P* of an *R*-module *M* with $(P : M) \cap S = \emptyset$, the following assertions are equivalent.

(1) P is a weakly S-2-absorbing submodule of M.

(2) For any $a, b \in R$, there exists $s \in S$ such that, if $sabM \nsubseteq P$, then (P : ab) = (0 : ab) or $(P : ab) \subseteq (P : sa)$ or $(P : ab) \subseteq (P : sb)$

(3) For any $a, b \in R$ and for any submodule K of M, there exists $s \in S$ such that, if $0 \neq abK \subseteq P$ then $sab \in (P : M)$ or $saK \subseteq P$ or $sbK \subseteq P$.

Proof. (1) \implies (2) Let $a, b \in R$. Let $m \in (P : ab)$. If abm = 0, then clearly $m \in (0 : ab)$. If $abm \neq 0$, that is if $0 \neq abm \in P$, then by (1), there exist $s \in S$ of P such that $sab \in (P : M)$ or $sam \in P$ or $sbm \in P$. Clearly, if $sabM \notin P$, we conclude that either $sam \in P$ or $sbm \in P$. As $(0 : ab) \subseteq (P : ab)$, we get (P : ab) = (0 : ab) or $(P : ab) \subseteq (P : ab) \subseteq (P : sb)$.

(2) \implies (3) Let $a, b \in R$ and K be a submodule of M such that $0 \neq abK \subseteq P$ and, for the element $s \in S$ of (2), we have to claim that $sab \in (P : M)$ or $saK \subseteq P$ or $sbK \subseteq P$. If $sab \in (P : M)$, then there is nothing to prove. Suppose $sab \notin (P : M)$. As $abK \subseteq P$, we have $K \subseteq (P : ab)$ and by (2), we have $K \subseteq (0 : ab)$ or $K \subseteq (P : sa)$ or $K \subseteq (P : sb)$. If $K \subseteq (0 : ab)$, then abK = 0, a contradiction. If $K \subseteq (P : sa)$, then $saK \subseteq P$ as required.

(3) \implies (1) Let a, $b \in R$ and $m \in M$ with $0 \neq abm \in P$. Clearly $ab < m \geq P$. If

 $ab < m > \neq 0$, by (3), $sab \in (P : M)$ or $sam \in sa < m > \subseteq P$ or $sbm \in sb < m > \subseteq P$. If ab < m > = 0, then $abm \in ab < m > = 0$, a contradiction.

Theorem 2.3. Let S be a multiplicatively closed subset of R and P be a submodule of an R-module M. If P is a weakly S-2-absorbing submodule of M. Then

(1) There exists an $s \in S$ such that for any $a, b \in R$, if $abK \subseteq P$ and $0 \neq 2abK$ for some submodule K of M, then $sab \in (P : M)$ or $saK \subseteq P$ or $sbK \subseteq P$.

(2) There exists an $s \in S$ such that for an ideal I of R and a submodule K of M, if $aIK \subseteq P$ and $0 \neq 4aIK$, where $a \in R$, then $saI \in (P : M)$ or $saK \subseteq P$ or $sIK \subseteq P$.

(3) There exists an $s \in S$ such that for all ideals I, J of R and submodule K of M, if $0 \neq IJK \subseteq P$ and $0 \neq 8(IJ + (I + J)(P : M))(K + P)$, then $sIJ \subseteq (P : M)$ or $sIK \subseteq P$ or $sJK \subseteq P$. In particular this holds if the group (M, +) has no elements of order 2.

Proof. (1) By our assmption, there exists $s \in S$ of P such that, whenever $x, y \in R$ and $m \in M$, $0 \neq xym \in P$ implies $sxy \in (P : M)$ or $sxm \in P$ or $sym \in P$. Let $a, b \in R$ such that $abK \subseteq P$ and $0 \neq 2abK$ for some submodule K of M. Now, we will show that $sab \in (P : M)$ or $saK \subseteq P$ or $sbK \subseteq P$. Suppose $sab \notin (P : M)$. Then proving that $saK \subseteq P$ or $sbK \subseteq P$ is enough. Let k be an arbitrary element of K. As $abk \in abK \subseteq P$, if $abk \neq 0$, then $sab \in (P : M)$ or $sak \in P$ or $sbk \in P$. Thus we have $k \in (P : sa)$ or $k \in (P : sb)$ since $sab \notin (P : M)$. Hence $saK \subseteq P$ or $sbK \subseteq P$.

If abk = 0. Since $0 \neq 2abK$, for some $k_1 \in K$, we get $0 \neq 2abk_1$ and clearly $0 \neq abk_1 \in P$. Then we get $sak_1 \in P$ or $sbk_1 \in P$ since $sab \notin (P : M)$. Put $k_2 = k + k_1$ and so $0 \neq abk_2 \in P$. Then $sak_2 \in P$ or $sbk_2 \in P$ since $sab \notin (P : M)$. This leads to the following cases. Case 1: $sak_1 \in P$ and $sbk_1 \in P$

Since $sak_2 \in P$ or $sbk_2 \in P$, we have $sak \in P$ or $sbk \in P$. Thus $saK \in P$ or $sbK \in P$. Case 2: $sak_1 \in P$ and $sbk_1 \notin P$

Suppose $sak \notin P$ and $sbk \notin P$. Then $sak_2 = sak_1 + sak \notin P$ and so $sbk_2 \in P$. Hence $sa(k_2 + k_1) \notin P$ and similarly $sb(k_2 + k_1) \notin P$. As P is weakly S-2-absorbing and $sab \notin (P : M)$, hence $ab(k_2 + k_1) = 0$. But $ab(k_2 + k_1) = ab(k_1 + k + k_1) = 2abk_1$, a contradiction as $2abk_1 \neq 0$. Thus $sak \in P$ or $sbk \in P$ and so $saK \subseteq P$ or $sbK \subseteq P$. Case 3: $sak_1 \notin P$ and $sbk_1 \in P$

The proof is same as that of Case 2.

(2) By our assmption, there exists $s \in S$ of P such that, whenever $x, y \in R$ and $m \in M$, $0 \neq xym \in P$ implies $sxy \in (P : M)$ or $sxm \in P$ or $sym \in P$. Let I be an ideal of R and Kbe a submodule of M such that $aIK \subseteq P$ and $0 \neq 4aIK$, where $a \in R$. We have to prove that $saI \in (P : M)$ or $saK \subseteq P$ or $sIK \subseteq P$. Suppose $saI \nsubseteq (P : M)$, for some $i \in I$ we have $sai \notin (P : M)$. Let us first prove that there exists $b \in I$ such that $0 \neq 4abK$ and $sab \notin (P : M)$.

Since $0 \neq 4aIK$, for some $i' \in I$, $0 \neq 4ai'K$. Suppose $sai' \notin (P : M)$ or $0 \neq 4aiK$, if we put b = i', we get $sab \notin (P : M)$ and $0 \neq 4abK$ and if we put b = i, we get $0 \neq 4abK$ and

 $sab \notin (P:M)$. From the above, clearly by putting b = i' or b = i, we get the result. Hence assume that $sai' \in (P:M)$ and 4aiK = 0. Hence $0 \neq 4a(i + i')K \subseteq P$ and $sa(i + i') \notin (P:M)$. Thus we find $b \in I$ such that $0 \neq 4abK$ and $sab \notin (P:M)$.

As $0 \neq 4abK$, we get $0 \neq 2abK$ and by (1), since $abK \subseteq aIK \subseteq P$ and $sab \notin (P : M)$, we get $saK \subseteq P$ or $sbK \subseteq P$. If $saK \subseteq P$, there we are done. Thus assume that $saK \nsubseteq P$ and so $sbK \subseteq P$.

Now to exhibit that $sal \in (P : M)$ or $sIK \subseteq P$. Let $i'' \in I$. If $2ai''K \neq 0$, then by (1), $sai'' \in (P : M)$ or $si''K \subseteq P$ since $saK \notin P$. Thus we get $i'' \in ((P : M) : sa)$ or $i'' \in (P : sK)$. Therefore $I \subseteq ((P : M) : sa)$ or $I \subseteq (P : sK)$. Then we are done.

If 2ai'' K = 0, then clearly $0 \neq 2a(b+i'')K$ and $a(b+i'')K \subseteq P$, by (1) $sa(b+i'') \in (P:M)$ or $s(b+i'')K \subseteq P$ since $saK \notin P$, $(b+i'') \in (P:sK)$ or $(b+i'') \in ((P:M):sa)$.

(i): If $(b + i^{"}) \in (P : sK)$, then $si^{"}K \subseteq P$ as $sbK \subseteq P$. Hence $i^{"} \in (P : sK)$.

(ii): Now assume $(b + i^n) \in ((P : M) : sa)$ and $(b + i^n) \notin (P : sK)$. Consider $0 \neq 4abK = 2a(b+i^n+b)K$ and $a(b+i^n+b)K \subseteq P$. By (1), $sa(b+i^n+b) \in (P : M)$ or $s(b+i^n+b)K \subseteq P$ since $saK \nsubseteq P$. As $sab \notin (P : M)$, we have $sa(b+i^n+b) \notin (P : M)$. Then we have $s(b+i^n+b)K \subseteq P$. Since $(b+i^n) \notin (P : sK)$, we have $s(b+i^n+b)K \nsubseteq P$. Therefore $(b+i^n) \in (P : sK)$. Since $sbK \subseteq P$, we have $si^n K \subseteq P$ and so $i^n \in (P : sK)$. Consequently $I \subseteq ((P : M) : sa)$ or $I \subseteq (P : sK)$ and hence as $sal \nsubseteq (P : M)$, we get $sIK \subseteq P$.

(3) Let *I*, *J* be the ideals of *R* and *K* be a submodule of *M* such that $0 \neq IJK \subseteq P$ and $0 \neq 8(IJ + (I + J)(P : M))(K + P)$. Since $0 \neq 8(IJ + (I + J)(P : M))(K + P) = 8IJK + 8I(P : M)K + 8J(P : M)K + 8IJP + 8I(P : M)P + 8J(P : M)P$. As a result, one of the types listed below has been satisfied.

Type 1: $0 \neq 8IJK$. Then for some $j \in J$, $0 \neq 8jIK$ and so $0 \neq 4jIK$. As $jIK \subseteq P$, by (2), there exists $s \in S$ such that $sjI \subseteq (P : M)$ or $sIK \subseteq P$ or $sjK \subseteq P$. If $sIK \subseteq P$, then we are done and so assume that $sIK \nsubseteq P$ that is $sjI \subseteq (P : M)$ or $sjK \subseteq P$. We claim that $sIJ \subseteq (P : M)$ or $sJK \subseteq P$. Let $j' \in J$ be an arbitrary element. If $0 \neq 4j'IK$, by (2), $sj'I \subseteq (P : M)$ or $sj'K \subseteq P$ since $sIK \nsubseteq P$. Then $j' \in ((P : M) : sI)$ or $j' \in (P : sK)$. Hence we get the result.

Now let 4j'IK = 0. As $0 \neq 4(j+j')IK \subseteq P$, by (2), $s(j+j')I \subseteq (P:M)$ or $s(j+j')K \subseteq P$ since $sIK \nsubseteq P$. Hence we get $s(j+j')I \subseteq (P:M)$ or $s(j+j')K \subseteq P$. Thereby we get the four cases. Case 1: $sjI \subseteq (P:M)$ and $s(j+j')I \subseteq (P:M)$.

Hence we get $sj'I \subseteq (P:M)$, that is $sIJ \subseteq (P:M)$

Case 2: $sjK \subseteq P$ and $s(j+j')K \subseteq P$

Hence we get $sj'K \subseteq P$, that is $sJK \subseteq P$

Case 3: $sjI \subseteq (P : M)$ and $sjK \not\subseteq P$.

 $s(j+j')K \subseteq P$ and $s(j+j')I \nsubseteq (P:M)$.

This can be represented as $j \in ((P : M) : sI)$ and $j \notin (P : sK)$, $j + j' \in (P : sK)$ and

 $j + j' \notin ((P : M) : sI)$. Hence $j + j' + j \notin ((P : M) : sI)$ and $j + j' + j \notin (P : sK)$. Now consider $0 \neq 8jIK = 4(j + j' + j)IK$ and by (2), $s(j + j' + j)I \subseteq (P : M)$ or $s(j + j' + j)K \subseteq P$ since $sIK \notin P$. Hence we get $j + j' + j \in ((P : M) : sI)$ or $j + j' + j \in (P : sK)$ and this is not possible. Therefore, since $j \in ((P : M) : sI)$ or $j \in (P : sK)$ and $j + j' \in (P : sK)$ or $j + j' \in ((P : M) : sI)$, there must be any one of the following holds.

(i) $j \in (P : sK)$ and $j + j' \in (P : sK)$ and $j + j' \notin ((P : M) : sI)$, then $j' \in (P : sK)$.

(ii) $j \in ((P : M) : sI)$ and $j \notin (P : sK)$ and $j + j' \in ((P : M) : sI)$, then $j' \in ((P : M) : sI)$.

Case 4: $s(j + j')I \subseteq (P : M)$ and $s(j + j')K \nsubseteq P$

 $sjK \subseteq P$ and $sjI \nsubseteq (P:M)$.

Similar to the above case, we have $j' \in ((P : M) : sI)$ or $j' \in (P : sK)$. Thus $sIJ \subseteq (P : M)$ or $sJK \subseteq P$.

Type 2: If $0 \neq 8IJP$ and 8IJK = 0, then $0 \neq 8IJ(K + P) \subseteq P$ and by Type 1, $sIJ \subseteq (P : M)$ or $sJ(K + P) \subseteq P$ or $sI(K + P) \subseteq P$ and so $sIJ \subseteq (P : M)$ or $sJK \subseteq P$ or $sIK \subseteq P$.

Type 3: If $0 \neq 8J(P:M)K$ and 8IJK = 0, then $0 \neq 8J(P:M)K = 8J(I + (P:M))K$ and so by Type 1, $sJ(I + (P:M)) \subseteq (P:M)$ or $sJK \subseteq P$ or $s(I + (P:M))K \subseteq P$. Hence $sIJ \subseteq (P:M)$ or $sJK \subseteq P$ or $sIK \subseteq P$. Likewise if $0 \neq 8I(P:M)K$, we get the result.

Type 4: If $0 \neq 8J(P : M)P$ and 8IJK = 8IJP = 8J(P : M)K = 8I(P : M)K = 0. Then $0 \neq 8J(P : M)P = 8J(I + (P : M))(K + P)$ and by Type 1, $sJ(I + (P : M)) \subseteq (P : M)$ or $sJ(K + P) \subseteq P$ or $s(I + (P : M))(K + P) \subseteq P$. Hence $sIJ \subseteq (P : M)$ or $sJK \subseteq P$ or $sIK \subseteq P$. Likewise if $0 \neq 8I(P : M)P$, we have the result.

To prove the particular case, let (M, +) be a group having no subgroups of order 2. We have to show that $0 \neq 8IJK$. If this happens, We get the result by Type 1. Suppose 8IJK = 0. Let $0 \neq a \in IJK$. As 8a = 0, so the group (M, +) has a subgroup of order 2, 4 or 8, which is a contradiction.

Corollary 2.2. Let *S* be a multiplicatively closed subset of *R* and *I* be a weakly *S*-2-absorbing ideal of *R*.

(1) There exists $s \in S$ such that for any $a, b \in R$ and for any ideal A of R, if $abA \subseteq I$ and $0 \neq 2abA$, then $sab \in I$ or $saA \subseteq I$ or $sbA \subseteq I$.

(2) There exists $s \in S$ such that for any $a \in R$, ideals A, B of R, if $aAB \subseteq I$ and $0 \neq 4aAB$, then $saA \subseteq I$ or $saB \subseteq I$ or $sAB \subseteq I$.

(3) There exists $s \in S$ such that for any ideals A, B, C of R, if $0 \neq ABC \subseteq I$ and $0 \neq 8(AB(C + I) + AC(B + I) + BC(A + I) + AI(B + C) + BI(A + C) + CI(A + B) + I^2(A + B + C))$, then $sAB \subseteq I$ or $sBC \subseteq I$ or $sAC \subseteq I$. In particular, this happens when the group (R, +) has no elements of order 2.

Proposition 2.8. Let $\phi: M_1 \to M_2$ be a module homomorphism where M_1 and M_2 are *R*-modules and *S* be a multiplicatively closed subset of *R*. Then the following holds.

1. If ϕ is a monomorphism and K is a weakly S-2-absorbing submodule of M_2 with $(\phi^{-1}(K))$:

 M_1) $\cap S = \emptyset$, then $\phi^{-1}(K)$ is a weakly S-2-absorbing submodule of M_1 .

2. If ϕ is an epimorphism and P is a weakly S-2-absorbing submodule of M₁ containing ker ϕ , then $\phi(P)$ is a weakly S-2-absorbing submodule of M₂.

Proof. 1. Let $a, b \in R$ and $m_1 \in M_1$ be such that $0 \neq abm_1 \in \phi^{-1}(K)$. Then $0 \neq \phi(abm_1) = ab\phi(m_1) \in K$ as ϕ is a monomorphism. since K is weakly S-2-absorbing, there exists $s \in S$ such that $sab \in (K : M_2)$ or $sa\phi(m_1) \in K$ or $sb\phi(m_1) \in K$. If $sab \in (K : M_2)$, then $sab \in (\phi^{-1}(K) : M_1)$ since $(K : M_2) \subseteq (\phi^{-1}(K) : M_1)$ and if $sa\phi(m_1) \in K$ or $sb\phi(m_1) \in K$, we have $\phi(sam_1) \in K$ implies $sam_1 \in \phi^{-1}(K)$ or $\phi(sbm_1) \in K$ implies $sbm_1 \in \phi^{-1}(K)$. Hence $\phi^{-1}(K)$ is a weakly S-2-absorbing submodule of M_1 .

2. First observe that $(\phi(P) : M_2) \cap S = \emptyset$. Indeed, assume that $s' \in (\phi(P) : M_2) \cap S$. Then $\phi(s'M_1) = s'\phi(M_1) = s'M_2 \subseteq \phi(P)$ and so $s'M_1 \subseteq P$ as ker $\phi \subseteq P$. This shows that $s' \in (P : M_1)$ and so $(P : M_1) \cap S \neq \emptyset$, a contradiction occurs since P is a weakly S-2-absorbing submodule of M_1 . Now, let $a, b \in R$ and $m_2 \in M_2$ be such that $0 \neq abm_2 \in \phi(P)$. As we can write $m_2 = \phi(m_1)$ for some $m_1 \in M_1$ and so $0 \neq abm_2 = ab(\phi(m_1)) = \phi(abm_1) \in \phi(P)$. Since ker $\phi \subseteq P$, we have $0 \neq abm_1 \in P$. Then there exists $s \in S$ such that $sab \in (P : M_1)$ or $sam_1 \in P$ or $sbm_1 \in P$. Consequently we get $sab \in (\phi(P) : M_2)$ or $\phi(sam_1) = sa\phi(m_1) = sam_2 \in \phi(P)$ or $\phi(sbm_1) = sb\phi(m_1) = sbm_2 \in \phi(P)$. Hence $\phi(P)$ is weakly S-2-absorbing submodule of M_2 .

Corollary 2.3. Let *S* be a multiplicatively closed subset of *R*. P_1 and P_2 are two submodules of *M* with $P_2 \subseteq P_1$.

1. If K is a weakly S-2-absorbing submodule of M with $(K : P_1) \cap S = \emptyset$, then $K \cap P_1$ is a weakly S-2-absorbing submodule of P_1 .

2. If P_1 is a weakly S-2-absorbing submodule of M, then P_1/P_2 is a weakly S-2-absorbing submodule of M/P_2 .

3. If P_1/P_2 is a weakly S-2-absorbing submodule of M/P_2 and P_2 is a weakly S-2-absorbing submodule of M, then P_1 is a weakly S-2-absorbing submodule of M.

Proof. 1. Consider the injection $i: P_1 \to M$ defined by $i(p_1) = p_1$ for all $p_1 \in P_1$. We have to show that $(i^{-1}(K) : P_1) \cap S = \emptyset$. Indeed, if $s \in (i^{-1}(K) : P_1) \cap S$, then $sP_1 \subseteq i^{-1}(K)$. As $i^{-1}(K) = K \cap P_1$, we have $sP_1 \subseteq K \cap P_1 \subseteq K$ and so $s \in (K : P_1) \cap S$, a contradiction as K is weakly S-2-absorbing. Thus by Proposition 2.8(1), we conclude the result.

2. Consider the canonical epimorphism $\pi: M \to M/P_2$ defined by $\pi(m) = m + P_2$. Then $\pi(P_1) = P_1/P_2$ is a weakly S-2-absorbing submodule of M/P_2 by Proposition 2.8(2).

3. Let $a, b \in R$ and $m \in M$ be such that $0 \neq abm \in P_1$. Then $ab(m + P_2) = abm + P_2 \in P_1/P_2$. If $ab(m + P_2) \neq P_2$, then there exists $s_1 \in S$ of P_1/P_2 implies $s_1ab \in (P_1/P_2 : M/P_2)$ or $s_1a(m + P_2) \in P_1/P_2$ or $s_1b(m + P_2) \in P_1/P_2$. Hence $s_1ab \in (P_1 : M)$ or $s_1am \in P_1$ or $s_1bm \in P_1$. If $abm \in P_2$, then by assumption, there exists $s_2 \in S$ of P_2 such that $s_2ab \in (P_2 : M) \subseteq (P_1 : M)$ or $s_2am \in P_2 \subseteq P_1$ or $s_2bm \in P_2 \subseteq P_1$. It follows that P_1 is a weakly S-2-absorbing submodule of M associated with $s = s_1s_2 \in S$.

We need to recall the following Lemma for the next result.

Lemma 2.2. [2] For an ideal I of a ring R and a submodule N of a finitely generated faithful multiplication R-module M, the following hold.

- 1. $(IN :_R M) = I(N :_R M).$
- 2. If I is finitely generated faithful multiplication, then
 - (a) $(IN :_M I) = N$.
 - (b) Whenever $N \subseteq IM$, then $(JN :_M I) = J(N :_M I)$ for any ideal J of R.

Proposition 2.9. Let *I* be a finitely generated faithful multiplication ideal of a ring R, S be a multiplicatively closed subset of R and P be a submodule of a finitely generated faithful multiplication cyclic R-module M.

1. If IP is a weakly S-2-absorbing submodule of M and $(P : M) \cap S = \emptyset$, then either I is a weakly S-2-absorbing ideal of R or P is a weakly S-2-absorbing submodule of M.

2. P is a weakly S-2-absorbing submodule of IM if and only if $(P:_M I)$ is a weakly S-2-absorbing submodule of M.

Proof. (1) Suppose P = M, we get $I = I(P :_R M) = (IP :_R M)$ by Lemma 2.2. Since IP is a weakly S-2-absorbing submodule of M, by Proposition 2.5, I is a weakly S-2-absorbing ideal of R. Now, suppose P is a proper submodule of M. By Lemma 2.2, $(IP :_M I) = P$ and so $(P : M) = ((IP :_M I) :_R M) = (I(P :_R M) :_M I)$. Let $a, b \in R$ and $m \in M$ be such that $0 \neq abm \in P$. Since I is faithful, then $(0 :_M I) = Ann_R(I)M = 0$ [2], and so $0 \neq abIm \subseteq IP$. By Proposition 2.7, there exists $s \in S$ of IP such that $sab \in (IP : M)$ or $saIm \subseteq IP$ or $sbIm \subseteq IP$. If $sab \in (IP : M)$, then $sab \in (P : M)$. If $saIm \subseteq IP$, then $sam \in (IP : I) = P$. Likewise if $sbIm \subseteq IP$, then $sbm \in P$. Hence P is a weakly S-2-absorbing submodule of M.

(2) Suppose *P* is a weakly *S*-2-absorbing submodule of *IM*. Then $(P :_R IM) \cap S = ((P :_M I) :_R M) \cap S = \emptyset$. Let *a*, $b \in R$ and $m \in M$ be such that $0 \neq abm \in (P :_M I)$. If abIm = 0, then $abm \in (0 :_M I) = Ann_R(I)M = 0$, a contradiction. Hence $0 \neq abIm \subseteq P$. By Proposition 2.7, there exists $s \in S$ of *P* such that $sab \in (P : IM)$ or $saIm \subseteq P$ or $sbIm \subseteq P$. If $sab \in (P :_R IM)$, then $sab \in ((P :_M I) :_R M)$. If $saIm \subseteq P$, then $sam \in (P : I)$ and similarly if $sbIm \subseteq P$, we get $sbm \in (P : I)$ as required.

Conversely, suppose $(P :_M I)$ is a weakly S-2-absorbing submodule of M. Then clearly $((P :_M I) :_R M) \cap S = (P :_R IM) \cap S = \emptyset$. Let $a, b \in R$ and $x \in IM$ be such that $0 \neq abx \in P$. Clearly $ab < x > \subseteq P$. Since $x \in IM$, by Lemma 2.2, $ab(< x > :_M I) = (ab < x > :_M I) \subseteq (P :_M I)$. If $ab(< x > :_M I) = 0$, then since $abx \in (abIx :_M I)$ and $Ix \subseteq IM$, by Lemma 2.2, we have $abx \in ab(Ix :_M I) \subseteq ab(< x > :_M I) = 0$, a contradiction. So we have $0 \neq ab(< x > :_M I) \subseteq (P :_M I)$.

 $(P:_M I)$. By Proposition 2.7, there exists $s' \in S$ of $(P:_M I)$ such that $s'ab \in ((P:_M I):_R M)$ or $s'a(< x >:_M I) \subseteq (P:_M I)$ or $s'b(< x >:_M I) \subseteq (P:_M I)$. If $s'ab \in ((P:_M I):_R M)$, then $s'ab \in (P:_R IM)$. If $s'a(< x >:_M I) \subseteq (P:_M I)$, then $Is'a(< x >:_M I) \subseteq P$. Since $s'ax \in s'a < x >= s'a(I < x >:_M I) = s'aI(< x >:_M I) \subseteq P$ by Lemma 2.2. Likewise if $s'b(< x >:_M I) \subseteq (P:_M I)$, then $s'bx \in P$. Hence P is a weakly S-2-absorbing submodule of IM.

Acknowledgment: The author thanks Prof. Dr. P. Dheena, Professor, Department of Mathematics, Annamalai University, for suggesting the problem and going through the proof.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- M.M. Ali, Idempotent and Nilpotent Submodules of Multiplication Modules, Commun. Algebra. 36 (2008), 4620–4642. https://doi.org/10.1080/00927870802186805.
- [2] M.M. Ali, Residual Submodules of Multiplication Modules, Beitr. Algebra Geom. 46 (2005), 405-422.
- [3] F.A.A. Almahdi, E.M. Bouba, M. Tamekkante, On Weakly S-Prime Ideals of Commutative Rings, An. Univ. Ovidius Const. - Ser. Mat. 29 (2021), 173–186. https://doi.org/10.2478/auom-2021-0024.
- [4] R. Ameri, On the Prime Submodules of Multiplication Modules, Int. J. Math. Math. Sci. 2003 (2003), 1715–1724. https://doi.org/10.1155/s0161171203202180.
- [5] S.E. Atani, F. Farzalipour, On Weakly Prime Submodules, Tamkang J. Math. 38 (2007), 247–252. https://doi. org/10.5556/j.tkjm.38.2007.77.
- [6] A.Y. Darani, F. Soheilnia, 2-Absorbing and Weakly 2-Absorbing Submodules, Thai J. Math. 9 (2011), 577-584.
- [7] A.Y. Darani, F. Soheilnia, U. Tekir, G. Ulucak, On Weakly 2-Absorbing Primary Submodules of Modules Over Commutative Rings, J. Korean Math. Soc. 54 (2017), 1505–1519. https://doi.org/10.4134/JKMS.J160544.
- [8] Z.A. El-Bast, P.P. Smith, Multiplication Modules, Commun. Algebra. 16 (1988), 755-779. https://doi.org/10. 1080/00927878808823601.
- [9] N.J. Groenewald, On Weakly Prime and Weakly 2-absorbing Modules over Noncommutative Rings, Kyungpook Math. J. 61 (2021), 33–48. https://doi.org/10.5666/KMJ.2021.61.1.33.
- [10] A. Hamed, A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2019), 533–542. https: //doi.org/10.1007/s13366-019-00476-5.
- [11] H.A. Khashan, E.Y. Celikel, On Weakly S-Prime Submodules, (2021). https://doi.org/10.48550/ARXIV.2110. 14639.
- [12] R.L. McCasland, M.E. Moore, On Radicals of Submodules of Finitely Generated Modules, Can. Math. Bull. 29 (1986), 37–39. https://doi.org/10.4153/CMB-1986-006-7.
- [13] S. Moradi, A. Azizi, Weakly 2-Absorbing Submodules of Modules, Turk. J. Math. 40 (2016), 350-364.
- [14] E. Sengelen Sevim, T. Arabaci, U. Tekir, On S-prime submodles, Turkish Journal of Mathematics 43.2(2019),1036-1046.
- [15] P.F. Smith, Some Remarks on Multiplication Modules, Arch. Math. 50 (1988), 223–235. https://doi.org/10. 1007/BF01187738.
- [16] G. Ulucak, Ü. Tekir, S. Koç, On S-2-Absorbing Submodules and Vn-Regular Modules, An. Univ. Ovidius Const. -Ser. Mat. 28 (2020), 239–257. https://doi.org/10.2478/auom-2020-0030.