International Journal of Analysis and Applications

 International Journal of Analy sis Journal of t nalysisand Applications

Payne-Sperb-Stakgold Type Inequality for a Wedge-Like Membrane

Abir Sboui ${ }^{1,3,5, *}$, Abdelhalim Hasnaoui ${ }^{2,4}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Science (TURAIF), Northern Border University, KSA
${ }^{2}$ Faculty of Arts and Science (RAFHA), Northern Border University, KSA
${ }^{3}$ Department of Mathematics, ISSATM, University of Carthage, Tunisia
${ }^{4}$ Department of Mathematics, FST, University of Tunis EI Manar, Tunisia
${ }^{5}$ Laboratory of partial differential equations and applications (LR03ESO4), Faculty of sciences of Tunis, University of Tunis El Manar, 1068 Tunis, Tunisia

* Corresponding author: abir.sboui@nbu.edu.sa, abirsboui@yahoo.fr

Abstract

For a bounded domain contained in a wedge, we give a new Payne-Sperb-Stakgold type inequality for the solution of a semi-linear equation. The result is isoperimetric in the sense that the sector is the unique extremal domain.

1. Introduction

For a two-dimensional bounded domain D, Payne and Rayner proved $[9,10]$ that the eigenfunction u of the Dirichlet Laplacian corresponding to the fondamental eigenvalue $\lambda(D)$ satisfies the following inequality

$$
\begin{equation*}
\int_{D} u^{2} d a \leq \frac{\lambda(D)}{4 \pi}\left(\int_{D} u d a\right)^{2} \tag{1.1}
\end{equation*}
$$

where d a denotes the Lebesgue measure. Equality is achieved if, and only if, D is a disk. The importance of this inequality is that it is a reverse Cauchy-Schwarz type inequality for the first eigenfunction

This inequality was extended to higher dimension by kohler Kohler-Jobin [5, 6]. Her inequality states that

Received: Feb. 23, 2022.
2010 Mathematics Subject Classification. 35P15, 45A12, 58E30.
Key words and phrases. Payne-Sperb-Stakgold inequality; semi-linear equation; isoperimetric inequality.

$$
\begin{equation*}
\int_{D} u^{2} d a \leq \frac{\lambda^{d / 2}}{2 d C_{d} j_{d / 2-1,1}^{d-2}}\left(\int_{D} u d a\right)^{2} \tag{1.2}
\end{equation*}
$$

where D is a bounded domain in \mathbb{R}^{d}, C_{d} denotes the volume of the unit ball in \mathbb{R}^{d}, and $j_{d / 2-1,1}$ is the first positive zero of the Bessel function $J_{d / 2-1}$. Using the comparison method due to Giorgio Talenti, Chiti [1] proved that

$$
\begin{equation*}
\left(\int_{D} u^{q} d a\right)^{\frac{1}{q}} \leq K(p, q, d) \lambda^{\frac{d}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\left(\int_{D} u^{p} d a\right)^{\frac{1}{p}} \text { for } q \geq p>0 \tag{1.3}
\end{equation*}
$$

Here

$$
K(p, q, d)=\left(d C_{d}\right)^{\frac{1}{q}-\frac{1}{p}} j_{\frac{d}{2}-1,1}^{d\left(\frac{1}{q}-\frac{1}{p}\right)}, \frac{\left(\int_{0}^{1} r^{d-1+q\left(1-\frac{d}{2}\right)} \int_{\frac{d}{2}-1}^{q}\left(j_{\frac{d}{2}-1,1} r\right) d r\right)^{\frac{1}{q}}}{\left(\int_{0}^{1} r^{d-1+p\left(1-\frac{d}{2}\right)} \int_{\frac{d}{2}-1}^{p}\left(j_{\frac{d}{2}-1,1} r\right) d r\right)^{\frac{1}{p}}} .
$$

Equality holds if and only if D is a ball.
A more interesting inequality in the spirit of the above has been proved by Payne, Sperb and Stakgold [11] for the following nonlinear problem

$$
\begin{align*}
\Delta u+f(u) & =0 \text { in } \Omega \subset \mathbb{R}^{2}, \tag{1.4}\\
u & >0 \text { in } \Omega \subset \mathbb{R}^{2}, \tag{1.5}\\
u & =0 \text { on } \partial \Omega,
\end{align*}
$$

for a given continuous function $f(t)$, with $f(0)=0$. This includes Dirichlet eigenvalue problem for the Laplace operator when $f(t)=\lambda t$. For this problem, the Payne-Rayner inequality takes the form

$$
\begin{equation*}
\left(\int_{\Omega} f(u) d x\right)^{2} \geq 8 \pi \int_{\Omega} F(u) d x \tag{1.6}
\end{equation*}
$$

where $F(u)=\int_{0}^{u} f(t) d t$. Finally, Mossino [7] prove a generalization of the latest inequality for the p-Laplacian and the case of equality was discussed by Kesavan and Pacella [4]. Our aims is to give a version of Payne-Sperb - Stakgold inequality for the case of wedge like domains.

2. Preliminary Tools and main result

Before stating our result, we give some notation. Let $\alpha \geq 1$ and \mathcal{W} be the wedge defined in polar coordinates (r, θ) by

$$
\begin{equation*}
\mathcal{W}=\left\{(r, \theta) \mid r>0,0<\theta<\frac{\pi}{\alpha}\right\} . \tag{2.1}
\end{equation*}
$$

Whenever pertinent, the arc length element will be denoted by $d s^{2}=d r^{2}+r^{2} d \theta^{2}$ while the element of area is denoted by $d a=r d r d \theta$, and we let

$$
\begin{equation*}
v(r, \theta)=r^{\alpha} \sin \alpha \theta \tag{2.2}
\end{equation*}
$$

Then, v is a positive harmonic function in \mathcal{W} which is zero on the boundary $\partial \mathcal{W}$.

We are interested in the solution u of the following quasi-linear problem:

$$
\mathcal{P}_{1}:\left\{\begin{array}{lll}
\Delta u+f\left(\frac{u}{v}\right) v & =0 & \text { in } D \\
u & >0 & \text { in } D \\
u & =0 & \text { on } \partial D
\end{array}\right.
$$

where D is a sufficiently smooth bounded domain completely contained in the wedge \mathcal{W} and the $g((r, \theta), t)=f\left(\frac{t}{v(r, \theta)}\right) v(r, \theta)$ is locally Hölder continuous and satisfies the following hypotheses.
(H1) There exists $A \in L^{1}(D)$ and $C>0$ such that
$|g((r, \theta), t)| \leq A(r, \theta)+C|t|^{p}, \forall((r, \theta), t) \in D \times \mathbb{R}$, where $p>0$.
(H2) For $t>0$, we have $g((r, \theta), t)>0$.
The role of hypothesis $(\mathrm{H} 1)$ is to ensure that every weak solution of the problem $\left(\mathcal{P}_{1}\right)$ is a C^{2}-solution of $\left(\mathcal{P}_{1}\right)$. Notice that, The problem $\left(\mathcal{P}_{1}\right)$ includes the eigenvalue problem for the Laplace operator with Dirichlet boundary condition, when we take $f\left(\frac{u}{v}\right)=\lambda \frac{u}{v}$. Now, if we write the solution of $\left(\mathcal{P}_{1}\right)$ as $u=v w$, then the problem above transforms to

$$
\mathcal{P}_{2}:\left\{\begin{array}{lll}
-\operatorname{div}\left(v^{2} \nabla w\right) & =f(w) v^{2} & \text { in } D \\
v & >0 & \\
v & =0 & \\
v & \text { on } \partial D \cap \mathcal{W} .
\end{array}\right.
$$

The solution w may be interpreted as a solution of the nonlinear classical problem (\mathcal{P}_{1}) for the 4-dimensional domain symmetric about the x_{2}-axis when $\alpha=1$ and for the 6 -dimensional domain bi-axially symmetric about the x_{1}-axis and the x_{2}-axis when $\alpha=2$, see [8] and [2]. Now, we need to introduce some notations and definitions. Let μ denoted measure defined by $d \mu=v^{2} d a$. Then, the weighted unidimensional decreasing rearrangement of the function w with respect to measure μ is the function

$$
w^{*}:[0, \mu(D)] \rightarrow[0,+\infty)
$$

defined by

$$
\begin{gathered}
w^{*}(0)=\sup w, \\
w^{*}(\xi)=\inf \left\{t \geq 0 ; \quad m_{w}(t)<\xi\right\}, \quad \forall \xi \in(0, \mu(D)],
\end{gathered}
$$

where

$$
\begin{equation*}
m_{w}(t)=\mu(\{(r, \theta) \in D ; \quad w(r, \theta)>t\}), \quad \forall t \in[0, \sup w] . \tag{2.3}
\end{equation*}
$$

The main result is given in the following theorem.
Theorem 2.1. Let D be a smooth bounded domain completely contained in the wedge. Assume that $(H 1)$ and $(H 2)$ are satisfied. Let F be the primitive of f such that $F(0)=0$. Then the solution u of the problem $\left(\mathcal{P}_{1}\right)$ satisfies the inequality

$$
4(2 \alpha+2)(2 \alpha+1)\left(\frac{\pi}{2 \alpha(2 \alpha+2)}\right)^{\frac{1}{\alpha+1}} \int_{0}^{\mu(D)} \xi^{\frac{\alpha}{\alpha+1}} F\left(\left(\frac{u}{v}\right)^{*}(\xi)\right) d \xi \leq \int_{D} F\left(\frac{u}{v}\right) v^{2} d a .
$$

Equality holds if and only if D is a perfect sector \mathcal{S}_{R}.
The proof of this inequality and the equality case will be discussed in the next section .

3. The weighted version of Payne-sperb-stackgold inequality

To beginning, we introduce the space $W(D, d \mu)$ of measurable functions φ that possess weak gradient denoted by $|\nabla \varphi|$ and satisfy the following conditions
(i) $\int_{D}|\nabla \varphi|^{2} d \mu+\int_{D}|\varphi|^{2} d \mu<+\infty$
(ii) There exists a sequence of functions $\varphi_{n} \in C^{1}(\bar{D})$ such that $\varphi_{n}(r, \theta)=0$ on $\partial D \cap \mathcal{W}$ and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{D}\left|\nabla\left(\varphi-\varphi_{n}\right)\right|^{2} d \mu+\int_{D}\left|\varphi-\varphi_{n}\right|^{2} d \mu=0 \tag{3.1}
\end{equation*}
$$

Using the fact that v is harmonic and the divergence theorem, we see

$$
\int_{D}|\nabla u|^{2} d a=\int_{D}|\nabla(w v)|^{2} d a=\int_{D}|\nabla w|^{2} v^{2} d a=\int_{D}|\nabla w|^{2} d \mu .
$$

Thus w satisfies the first condition (i). Since u is a smooth solution of the problem P_{1}, then w is also smooth and by the boundary condition in P_{2}, we conclude that w satisfies the second condition (ii). Then w is in the space $W(D, d \mu)$. We introduce now the function

$$
\begin{equation*}
\Phi(t)=\int_{D_{t}} f(w) d \mu . \tag{3.2}
\end{equation*}
$$

Since w and w^{*} are equimeaserable then we have

$$
\begin{equation*}
\Phi(t)=\int_{D_{t}} f(w) d \mu=\int_{0}^{m(t)} f\left(w^{*}\right) d \xi . \tag{3.3}
\end{equation*}
$$

To proceed further, we need to show that $m(t)$ is absolutely continuous on $(0, M)$. Indeed, assume that $\mu(\{w=t\})$ is positive. Recall that $w \in W(D, d \mu)$ and proceeding as in the proof of Stampacchia's theorem [3] to conclude that $\nabla w=0$ almost everywhere on the set $\{w=t\}$. Substitute this into P_{2}, we obtain $f(w)=0$ on and so $g((r, \theta), u)=f\left(\frac{u}{v}\right) v=0$ on this set, which contradicts the hypothesis H_{2}. Thus, w is continuous on $(0, M)$ and By the fact that w^{*} is the left inverse of $m(t)$, we get

$$
\begin{equation*}
\Phi^{\prime}(t)=f\left(w^{*}(m(t)) m^{\prime}(t)=f(t) m^{\prime}(t) .\right. \tag{3.4}
\end{equation*}
$$

By a weak solution to the problem P_{2} we mean a function w belong to $W(D, d \mu)$ and satisfies the equality

$$
\begin{equation*}
\int_{D} \nabla w \cdot \nabla \varphi d \mu=\int_{D} f(w) \varphi d \mu, \tag{3.5}
\end{equation*}
$$

for every φ in $C^{1}(\bar{D})$, such that $\varphi=0$ on $\partial D \cap \mathcal{W}$. Choose the test function φ defined by

$$
\varphi(r, \theta)= \begin{cases}(w(r, \theta)-t), & \text { if } w(r, \theta)>t \tag{3.6}\\ 0, & \text { otherwise }\end{cases}
$$

where $0 \leq t<M$. Plugging (3.6) into (3.5) we get

$$
\begin{equation*}
\int_{w>t}|\nabla w|^{2} d \mu=\int_{w>t} f(w)(w-t) d \mu \tag{3.7}
\end{equation*}
$$

Then, for $\epsilon>0$, we have

$$
\begin{equation*}
\frac{1}{\epsilon}\left(\int_{w>t}|\nabla w|^{2} d \mu-\int_{w>t+\epsilon}|\nabla w|^{2} d \mu\right)=\int_{w>t} f(w) d \mu+\int_{t<w \leq t+\epsilon} f(w)\left(\frac{w-t-\epsilon}{\epsilon}\right) d \mu \tag{3.8}
\end{equation*}
$$

which, on letting ϵ go to zero, gives,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\int_{w>t}|\nabla w|^{2} d \mu-\int_{w>t+\epsilon}|\nabla w|^{2} d \mu\right)=\int_{w>t} f(w) d \mu . \tag{3.9}
\end{equation*}
$$

The same computation for $-\epsilon$ gives the same value of the limit. Thus

$$
\begin{equation*}
-\frac{d}{d t} \int_{w>t}|\nabla w|^{2} d \mu=\int_{w>t} f(w) d \mu \tag{3.10}
\end{equation*}
$$

Now, applying the Cauchy Schwarz inequality

$$
\begin{equation*}
\left(\frac{1}{\epsilon} \int_{t<w \leq t+\epsilon}|\nabla w| d \mu\right)^{2} \leq\left(\frac{1}{\epsilon} \int_{t<w \leq t+\epsilon}|\nabla w|^{2} d \mu\right)\left(\frac{1}{\epsilon} \int_{t<w \leq t+\epsilon} d \mu\right) \tag{3.11}
\end{equation*}
$$

and letting ϵ go to zero, we get

$$
\begin{equation*}
\left(-\frac{d}{d t} \int_{w>t}|\nabla w| d \mu\right)^{2} \leq-m^{\prime}(t) \Phi(t) \tag{3.12}
\end{equation*}
$$

From the coarea formula, we have

$$
\begin{equation*}
-\frac{d}{d t} \int_{w>t}|\nabla w| d \mu=\int_{\partial\{w>t\}} v^{2} d s . \tag{3.13}
\end{equation*}
$$

Then, an application of the Payne-Weinberger isoperimetric inequality for the wedge-like membrane [12] leads to

$$
\begin{equation*}
\left(\frac{\pi}{2 \alpha}\right)^{2}\left(\frac{4 \alpha(\alpha+1)}{\pi} m(t)\right)^{\frac{2 \alpha+1}{\alpha+1}} \leq\left(\int_{\partial\{w>t\}} v^{2} d s\right)^{2} \leq-m^{\prime}(t) \Phi(t) \tag{3.14}
\end{equation*}
$$

By appealing to (3.13), we obtain

$$
\begin{equation*}
\left(\frac{\pi}{2 \alpha}\right)^{\frac{1}{\alpha+1}}(2 \alpha+2)^{\frac{2 \alpha+1}{\alpha+1}}(m(t))^{\frac{2 \alpha+1}{\alpha+1}} f(t) \leq-\Phi^{\prime}(t) \Phi(t) . \tag{3.15}
\end{equation*}
$$

Integrating both sides of the last relation from 0 to M, then we have

$$
\begin{equation*}
\left(\frac{\pi}{2 \alpha}\right)^{\frac{1}{\alpha+1}}(2 \alpha+2)^{\frac{2 \alpha+1}{\alpha+1}} \int_{0}^{M}(m(t))^{\frac{2 \alpha+1}{\alpha+1}} f(t) \leq \frac{1}{2} \phi^{2}(0) \tag{3.16}
\end{equation*}
$$

since $\Phi(M)=0$. But on the left hand side we have

$$
\begin{align*}
\int_{0}^{M}(m(t))^{\frac{2 \alpha+1}{\alpha+1}} f(t) d t & =\int_{0}^{M} \frac{2 \alpha+1}{\alpha+1} f(t) \int_{0}^{m(t)} \xi^{\frac{\alpha}{\alpha+1}} d \xi d t \tag{3.17}\\
& =\frac{2 \alpha+1}{\alpha+1} \int_{0}^{M} f(t) \int_{0}^{\mu(D)} \xi^{\frac{\alpha}{\alpha+1}} \chi_{\left\{w^{*}>t\right\}}(\xi) d \xi d t \\
& =\frac{2 \alpha+1}{\alpha+1} \int_{0}^{\mu(D)} \int_{0}^{w^{*}(\xi)} f(t) \xi^{\frac{\alpha}{\alpha+1}} d t d \xi \\
& =\frac{2 \alpha+1}{\alpha+1} \int_{0}^{\mu(D)} F\left(w^{*}(\xi)\right) \xi^{\frac{\alpha}{\alpha+1}} d t d \xi
\end{align*}
$$

Substituting the last result into (3.16), the desired inequality in Theorem 2.1 follows. Moreover, if equality is achieved in Theorem 2.1, then obviously inequality (3.15) reduces to equality. Since $\Phi^{\prime}(t)=f(t) m^{\prime}(t)$ and $f(t)>0$, then equality in (3.15) implies equality in (3.14) and so PayneWeinberger Lemma [12] implies that almost all level sets D_{t} are concentric sectors with fixed angle $\frac{\pi}{\alpha}$. Since $D=\{w>0\}$ is the increasing union of such sectors then D is a sector as well.

Acknowledgement: The authors gratefully acknowledge the approval and the support of this research study by the grant number 7912-SAT-2018-3-9-F from the Deanship of Scientific Research at Northern Border University, Arar, KSA.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] G. Chiti, An Isoperimetric Inequality for the Eigenfunctions of Linear Second Order Elliptic Operators, Boll. Unione Mat. Ital., VI. Ser., A. 1 (1982), 145-151.
[2] A. Hasnaoui, L. Hermi, Isoperimetric Inequalities for a Wedge-Like Membrane, Ann. Henri Poincaré. 15 (2014), 369-406. https://doi.org/10.1007/s00023-013-0243-y.
[3] S. Kesavan, Topics in Functional Analysis and Applications, New Age International, 1989.
[4] S. Kesavan, P. Filomena, Symmetry of Positive Solutions of a Quasilinear Elliptic Equation via Isoperimetric Inequalities, Appl. Anal. 54 (1994), 27-37. https://doi.org/10.1080/00036819408840266.
[5] M.-T. Kohler-Jobin, Sur la première fonction propre d'une membrane: une extension àN dimensions de l'inégalité isopérimétrique de Payne-Rayner, J. Appl. Math. Phys. (ZAMP). 28 (1977), 1137-1140. https://doi.org/10. 1007/BF01601680.
[6] M.-T. Kohler-Jobin, Isoperimetric Monotonicity and Isoperimetric Inequalities of Payne-Rayner Type for the First Eigenfunction of the Helmholtz Problem, Z. Angew. Math. Phys. 32 (1981), 625-646. https://doi.org/10.1007/ BF00946975.
[7] J. Mossino, A Generalization of the Payne-Rayner Isoperimetric Inequality, Boll. Unione Mat. Ital., VI. Ser., A. 2 (1983), 335-342.
[8] L.E. Payne, Isoperimetric Inequalities for Eigenvalue and Their Applications, Autovalori e autosoluzioni: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Chieti, Italy, 1962, G. Fichera (ed.), C.I.M.E. Summer Schools, 27 (1962), 1-58.
[9] L.E. Payne, M.E. Rayner, An Isoperimetric Inequality for the First Eigenfunction in the Fixed Membrane Problem, J. Appl. Math. Phys. (ZAMP). 23 (1972), 13-15. https://doi.org/10.1007/BF01593198.
[10] L.E. Payne, M.E. Rayner, Some Isoperimetric Norm Bounds for Solutions of the Helmholtz Equation, J. Appl. Math. Phys. (ZAMP). 24 (1973), 105-110. https://doi.org/10.1007/BF01594001.
[11] L.E. Payne, R. Sperb, I. Stakgold, On Hopf Type Maximum Principles for Convex Domains, Nonlinear Anal., Theory Methods Appl. 1 (1977), 547-559. https://doi.org/10.1016/0362-546X (77) 90016-5.
[12] L.E. Payne, H.F. Weinberger, A Faber-Krahn Inequality for Wedge-Like Membranes, J. Math. Phys. 39 (1960), 182-188. https://doi.org/10.1002/sapm1960391182.

