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Abstract. For a bounded domain contained in a wedge, we give a new Payne-Sperb-Stakgold type

inequality for the solution of a semi-linear equation. The result is isoperimetric in the sense that the

sector is the unique extremal domain.

1. Introduction

For a two-dimensional bounded domain D, Payne and Rayner proved [9,10] that the eigenfunction

u of the Dirichlet Laplacian corresponding to the fondamental eigenvalue λ(D) satisfies the following

inequality ∫
D

u2da ≤
λ(D)

4π

(∫
D

u da

)2

, (1.1)

where da denotes the Lebesgue measure. Equality is achieved if, and only if, D is a disk. The impor-

tance of this inequality is that it is a reverse Cauchy-Schwarz type inequality for the first eigenfunction

.

This inequality was extended to higher dimension by kohler Kohler-Jobin [5,6]. Her inequality states

that
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∫
D

u2 da ≤
λd/2

2d Cd j
d−2
d/2−1,1

(∫
D

u da

)2

(1.2)

where D is a bounded domain in Rd , Cd denotes the volume of the unit ball in Rd , and jd/2−1,1 is the

first positive zero of the Bessel function Jd/2−1. Using the comparison method due to Giorgio Talenti,

Chiti [1] proved that(∫
D

uq da

) 1
q

≤ K(p, q, d)λ
d
2

( 1
p
− 1
q

)

(∫
D

up da

) 1
p

for q ≥ p > 0. (1.3)

Here

K(p, q, d) = (d Cd)
1
q
− 1
p j
d ( 1

q
− 1
p

)

d
2
−1,1

( ∫ 1
0 r

d−1+q(1− d
2

)Jqd
2
−1

(j d
2
−1,1 r)dr

) 1
q

( ∫ 1
0 r

d−1+p(1− d
2

)Jpd
2
−1

(j d
2
−1,1 r)dr

) 1
p

.

Equality holds if and only if D is a ball.

A more interesting inequality in the spirit of the above has been proved by Payne, Sperb and

Stakgold [11] for the following nonlinear problem

∆ u + f (u) = 0 in Ω ⊂ R2, (1.4)

u > 0 in Ω ⊂ R2, (1.5)

u = 0 on ∂Ω,

for a given continuous function f (t), with f (0) = 0. This includes Dirichlet eigenvalue problem for

the Laplace operator when f (t) = λt. For this problem, the Payne-Rayner inequality takes the form(∫
Ω

f (u) dx

)2

≥ 8π

∫
Ω

F (u) dx (1.6)

where F (u) =
∫ u

0 f (t)dt. Finally, Mossino [7] prove a generalization of the latest inequality for the

p-Laplacian and the case of equality was discussed by Kesavan and Pacella [4]. Our aims is to give a

version of Payne-Sperb - Stakgold inequality for the case of wedge like domains.

2. Preliminary Tools and main result

Before stating our result, we give some notation . Let α ≥ 1 and W be the wedge defined in polar

coordinates (r, θ) by

W =
{

(r, θ)
∣∣ r > 0, 0 < θ <

π

α

}
. (2.1)

Whenever pertinent, the arc length element will be denoted by ds2 = dr2 + r2dθ2 while the element

of area is denoted by da = rdrdθ, and we let

v(r, θ) = rα sinαθ. (2.2)

Then, v is a positive harmonic function in W which is zero on the boundary ∂W.
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We are interested in the solution u of the following quasi-linear problem:

P1 :


∆u + f (uv )v = 0 in D

u > 0 in D

u = 0 on ∂D,

where D is a sufficiently smooth bounded domain completely contained in the wedge W and the

g((r, θ), t) = f ( t
v(r,θ) )v(r, θ) is locally Hölder continuous and satisfies the following hypotheses.

(H1) There exists A ∈ L1(D) and C > 0 such that

|g((r, θ), t)| ≤ A(r, θ) + C|t|p,∀((r, θ), t) ∈ D × R, where p > 0.

(H2) For t > 0, we have g((r, θ), t) > 0.

The role of hypothesis (H1)is to ensure that every weak solution of the problem (P1) is a C2-solution

of (P1). Notice that, The problem(P1) includes the eigenvalue problem for the Laplace operator with

Dirichlet boundary condition, when we take f (uv ) = λuv . Now, if we write the solution of (P1) as

u = vw , then the problem above transforms to

P2 :


−div(v2∇w) = f (w)v2 in D

v > 0 in D

v = 0 on ∂D ∩W.

The solution w may be interpreted as a solution of the nonlinear classical problem (P1) for the

4-dimensional domain symmetric about the x2-axis when α = 1 and for the 6-dimensional domain

bi-axially symmetric about the x1-axis and the x2-axis when α = 2, see [8] and [2]. Now, we need to

introduce some notations and definitions. Let µ denoted measure defined by dµ = v2da. Then, the

weighted unidimensional decreasing rearrangement of the function w with respect to measure µ is the

function

w∗ : [0, µ(D)]→ [0,+∞)

defined by

w∗(0) = supw,

w∗(ξ) = inf
{
t ≥ 0; mw (t) < ξ

}
, ∀ξ ∈ (0, µ(D)],

where

mw (t) = µ
({

(r, θ) ∈ D; w(r, θ) > t
})
, ∀t ∈ [0, supw ]. (2.3)

The main result is given in the following theorem.

Theorem 2.1. Let D be a smooth bounded domain completely contained in the wedge. Assume that

(H1) and (H2) are satisfied. Let F be the primitive of f such that F (0) = 0. Then the solution u of

the problem (P1) satisfies the inequality

4(2α+ 2)(2α+ 1)

(
π

2α(2α+ 2)

) 1
α+1
∫ µ(D)

0

ξ
α
α+1F

(
(
u

v
)∗(ξ)

)
dξ ≤

∫
D

F (
u

v
)v2 da.
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Equality holds if and only if D is a perfect sector SR.

The proof of this inequality and the equality case will be discussed in the next section .

3. The weighted version of Payne-sperb-stackgold inequality

To beginning, we introduce the space W (D, dµ) of measurable functions ϕ that possess weak

gradient denoted by |∇ϕ| and satisfy the following conditions

(i)
∫
D |∇ϕ|

2dµ+
∫
D |ϕ|

2dµ < +∞
(ii) There exists a sequence of functions ϕn ∈ C1(D) such that ϕn(r, θ) = 0 on ∂D ∩W and

lim
n→+∞

∫
D

|∇(ϕ− ϕn)|2dµ+

∫
D

|ϕ− ϕn|2dµ = 0. (3.1)

Using the fact that v is harmonic and the divergence theorem , we see

∫
D

|∇u|2da =

∫
D

|∇(wv)|2da =

∫
D

|∇w |2v2da =

∫
D

|∇w |2dµ.

Thus w satisfies the first condition (i). Since u is a smooth solution of the problem P1, then w is also

smooth and by the boundary condition in P2,we conclude that w satisfies the second condition (ii).

Then w is in the space W (D, dµ). We introduce now the function

Φ(t) =

∫
Dt

f (w)dµ. (3.2)

Since w and w∗ are equimeaserable then we have

Φ(t) =

∫
Dt

f (w)dµ =

∫ m(t)

0

f (w∗)dξ. (3.3)

To proceed further, we need to show thatm(t) is absolutely continuous on (0,M). Indeed, assume that

µ({w = t}) is positive. Recall that w ∈ W (D, dµ) and proceeding as in the proof of Stampacchia’s

theorem [3] to conclude that ∇w = 0 almost everywhere on the set {w = t}. Substitute this into P2,

we obtain f (w) = 0 on and so g((r, θ), u) = f (uv )v = 0 on this set, which contradicts the hypothesis

H2. Thus, w is continuous on (0,M) and By the fact that w∗ is the left inverse of m(t),we get

Φ′(t) = f (w∗(m(t))m′(t) = f (t)m′(t). (3.4)

By a weak solution to the problem P2 we mean a function w belong to W (D, dµ) and satisfies the

equality ∫
D

∇w · ∇ϕdµ =

∫
D

f (w)ϕdµ, (3.5)

for every ϕ in C1(D), such that ϕ = 0 on ∂D ∩W. Choose the test function ϕ defined by

ϕ(r, θ) =

{ (
w(r, θ)− t

)
, if w(r, θ) > t

0, otherwise ,
(3.6)
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where 0 ≤ t < M. Plugging (3.6) into (3.5) we get∫
w>t

|∇w |2dµ =

∫
w>t

f (w)(w − t)dµ. (3.7)

Then, for ε > 0, we have

1

ε

(∫
w>t

|∇w |2dµ−
∫
w>t+ε

|∇w |2dµ
)

=

∫
w>t

f (w)dµ+

∫
t<w≤t+ε

f (w)(
w − t − ε

ε
)dµ, (3.8)

which, on letting ε go to zero, gives,

lim
ε→0

1

ε

(∫
w>t

|∇w |2dµ−
∫
w>t+ε

|∇w |2dµ
)

=

∫
w>t

f (w)dµ. (3.9)

The same computation for −ε gives the same value of the limit. Thus

−
d

dt

∫
w>t

|∇w |2dµ =

∫
w>t

f (w)dµ. (3.10)

Now, applying the Cauchy Schwarz inequality(
1

ε

∫
t<w≤t+ε

|∇w |dµ
)2

≤
(

1

ε

∫
t<w≤t+ε

|∇w |2dµ
)(

1

ε

∫
t<w≤t+ε

dµ

)
(3.11)

and letting ε go to zero, we get(
−
d

dt

∫
w>t

|∇w |dµ
)2

≤ −m′(t)Φ(t). (3.12)

From the coarea formula, we have

−
d

dt

∫
w>t

|∇w |dµ =

∫
∂{w>t}

v2ds. (3.13)

Then, an application of the Payne-Weinberger isoperimetric inequality for the wedge-like membrane

[12] leads to

(
π

2α
)2

(
4α(α+ 1)

π
m(t)

) 2α+1
α+1

≤
(∫

∂{w>t}
v2ds

)2

≤ −m′(t)Φ(t). (3.14)

By appealing to (3.13), we obtain

(
π

2α
)

1
α+1 (2α+ 2)

2α+1
α+1 (m(t))

2α+1
α+1 f (t) ≤ −Φ′(t)Φ(t). (3.15)

Integrating both sides of the last relation from 0 to M, then we have

(
π

2α
)

1
α+1 (2α+ 2)

2α+1
α+1

∫ M

0

(m(t))
2α+1
α+1 f (t) ≤

1

2
Φ2(0), (3.16)
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since Φ(M) = 0. But on the left hand side we have

∫ M

0

(m(t))
2α+1
α+1 f (t)dt =

∫ M

0

2α+ 1

α+ 1
f (t)

∫ m(t)

0

ξ
α
α+1 dξdt (3.17)

=
2α+ 1

α+ 1

∫ M

0

f (t)

∫ µ(D)

0

ξ
α
α+1χ{w∗>t}(ξ)dξdt

=
2α+ 1

α+ 1

∫ µ(D)

0

∫ w∗(ξ)

0

f (t)ξ
α
α+1 dtdξ

=
2α+ 1

α+ 1

∫ µ(D)

0

F (w∗(ξ))ξ
α
α+1 dtdξ.

Substituting the last result into (3.16), the desired inequality in Theorem 2.1 follows. Moreover,

if equality is achieved in Theorem 2.1, then obviously inequality (3.15) reduces to equality. Since

Φ′(t) = f (t)m′(t) and f (t) > 0, then equality in (3.15) implies equality in (3.14) and so Payne-

Weinberger Lemma [12] implies that almost all level sets Dt are concentric sectors with fixed angle
π
α . Since D = {w > 0} is the increasing union of such sectors then D is a sector as well.
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