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Abstract. We introduce the delta-integral representation of divided difference on arbitrary time scales

and utilize it to set criteria for n-convex functions involving delta-derivative on time scales. Conse-

quences of the theory appear in terms of estimates which generalize and extend some important facts

in mathematical analysis.

1. Introduction

Time scale calculus is a well known and rapidly growing theory in mathematical analysis which

unifies two distinct well-known mathematical areas named as continuous and discrete analysis. For

supplementary details and basics of time scale calculus, we invoke [1–3].

The notion of convexity with its various types have a noteworthy presence in literature, see [4–7] and

the references therein. The notion is firstly generalized on an arbitrary time scale in 2008 by Cristian

Dinu [8], subsequently a large number of estimation and inequalities for the functions that are convex

on time scales are in the continuous state of development, some of them are present in [9, 10]. Here

we consult with an exclusive variety of these functions, that is n-convex functions. The n-convexity

or higher order convexity firstly investigated by Eberhard Hopf [11] in his scholarly thesis. Further it

was discussed in different narrations by Popoviciu [12, 13]. A comprehensive review of this family of

functions is elaborated in [5, 14]. In [15] M. Rozarija, and J. Pečarić discussed some "Jensen-Type

Inequalities on Time Scales" involving real-valued n-convex functions. Higher order convex functions

has been discussed on time scales with constant graininess function by H. A. Baig and N. Ahmad

in [16], so there is a need to explore this class of functions on arbitrary time scales.
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This article is structured as follows. In section 2 we furnish few preliminaries, utilizing in the main

results. Section 3 is dedicated to construct a relationship between nth delta derivatives and nth-order

divided difference on arbitrary time scales. Afterward, we presented some mathematical inequalities

as consequences of our main results in the last section.

2. Preliminaries

A time scale T is defined to be an arbitrary closed subset of the real numbers R, with the standard

inherited topology. The forward jump operator and the backward jump operator are defined by σ(t) :=

inf{s ∈ T : s > t}, and ρ(t) := sup{s ∈ T : s < t}, where infφ = supT and supφ = infT. Let

u : T→ R, u∆(t) is representing the first delta derivative of function u at t ∈ Tκ. The second-order

delta derivative of u at t is defined as, provided it exists

u∆2

(t) = u∆∆(t) = (u∆(t))∆ : Tκ
2 → R

Similarly higher-order derivatives are defined as u∆n(t) : Tκn → R. The definition for rd-continuous

functions can be seen in [2]. The set of rd-continuous functions u : T→ R is denoted by

Crd = Crd(T,R) = Crd(T).

The set consisting of first-order delta differentiable functions u and whose derivative is rd-continuous

is denoted by

C1
rd = C1

rd(T,R) = C1
rd(T).

The substitution rule and first mean value theorem for delta-integrals in time scales are presented

in [1–3].

Theorem 2.1. Assume ν : T→ R is strictly increasing and T̃ := ν(T) is a time scale. If u ∈ Crd and

ν ∈ C1
rd , then for a, b ∈ T ∫ b

a

u(t)ν∆(t)∆t =

∫ ν(b)

ν(a)

(
u ◦ ν−1

)
(s)∆̃s. (2.1)

Theorem 2.2. Let ν and u be bounded and integrable functions on [a, b], and let ν be nonnegative

(or nonpositive) on [a, b]. Let us set

M = sup{u(t) : t ∈ [a, b)} m = inf{u(t) : t ∈ [a, b)}.

Then there exists a real number λ satisfying the inequalities m < λ < M such that∫ b

a

u(t)ν(t)∆t = λ

∫ b

a

ν(t)∆t.

The time scale monomials have been defined in [1, 3, 17] recursively as

g0(t, s) = h0(t, s) = 1 for s, t ∈ T,
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gk+1(t, s) =

∫ t

s

gk (σ(γ), s) ∆γ, hk+1(t, s) =

∫ t

s

hk (γ, s) ∆γ, k ∈ N0. (2.2)

These monomials satisfy the following relation for t ∈ T and s ∈ Tκ:

gn (t, s) = (−1)nhn (s, t) . (2.3)

Remark 2.1. [17] The functions hn and gn satisfy

gn(t, s) ≥ 0 and hn(t, s) ≥ 0 for all t ≥ s.

Let us recall the Taylor’s formula defined on time scales from [17].

Theorem 2.3. Let u be n-times delta-differentiable on Tκn , t ∈ T and tα ∈ Tκ
n−1

. We have

u(t)−
n−1∑
k=0

hk(t, tα)u∆k (tα) =

∫ ρn−1(t)

tα

hn−1(t, σ(γ))u∆n(γ)∆γ, (2.4)

similarly,

u(t)−
n−1∑
k=0

(−1)ngk(tα, t)u
∆k (tα) =

∫ ρn−1(t)

tα

(−1)ngn−1(σ(γ), t)u∆n(γ)∆γ, (2.5)

where k ∈ N0.

higher order convex functions defined on R as well as on Z through nth-order divided difference, in

which we randomly select n + 1 points {a0, a1, . . . , an} from R or from Z, respectively and compute

the nth-order divided difference by the formula

[a0, a1, · · · , an; u] =
[a1, a2, · · · , an; u]− [a0, a1, · · · , an−1; u]

an − a0
. (2.6)

If (2.6) is non-negative we say that u is an n-convex function. Here (2.6) remains same for every

permutation of n + 1 points.

To construct the criteria for n-convexity we need to introduce the forward operator σ in the definition

of higher order convexity. So we adopt the same strategy as we did in [16]. Assume n + 1 distinct

points t0, · · · , tn ∈ T and arrange them in an increasing order. Relabel these points in the time scale

T̃ in terms of forward operator, that is

T̃ = {t0, σ(t0), · · · , σn(t0)}.

Consequently we can define the nth-order divided difference for n + 1 points as

[t0, σ(t0), · · · , σn(t0); u] =
[σ(t0), σ2(t0), · · · , σn(t0); u]− [t0, σ(t0), · · · , σn−1(t0); u]

σn(t0)− t0
. (2.7)

So a function u : T→ R, is said to be n-convex if

[t0, σ(t0), · · · , σn(t0); u] ≥ 0, (2.8)

where σ : T
⋂
T̃→ T

⋂
T̃.
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3. Main Results

Here we want to establish a criteria for n-convex function on arbitrary time scales which is stated

as u ∈ Cnrd is n-convex iff u∆n ≥ 0. It is sufficient to prove this on T̃. Firstly we introduce a new

representation of divided difference in terms of delta-integral, that can be seen in the next Theorem.

Theorem 3.1. Suppose u ∈ Cnrd(T,R). Let t0, t1, · · · , tn be n + 1 distinct points in T, then

[t0, σ(t0), · · · , σn(t0); u] =

∫ 1

0

∆s1

∫ s1

0

∆s2 · · ·
∫ sn−1

0

∆sn

× u∆n(sn[σn(t0)− σn−1(t0)] + · · ·+ s1[σ(t0)− t0] + t0), (3.1)

where n ≥ 1 and si ∈ [0, 1].

Proof. Consider t0, t1, · · · , tn, n + 1 distinct points and the corresponding time scale T̃ =

{t0, σ(t0), · · · , σn(t0)}. We prove (4.3) by induction method. For this we first show that

[t0, σ(t0); u] =

∫ 1

0

u∆(s1[σ(t0)− t0] + t0)∆s1. (3.2)

Let us use the time scales substitution rule for integration (2.1), let the new variable of integration β

in the following manner (since σ(t0) 6= t0)

β = v−1(s1) = s1[σ(t0)− t0] + t0 ⇒ v(s1) =
s1 − t0

σ(t0)− t0
,

here v−1 : [0, 1] → T̃. By calculating delta derivative of v(s1) with respect to s1 we get v∆(s1) =

1
σ(t0)−t0 therefore, s1 ∈ [0, 1] and v(s1) is strictly increasing such that v [t0, σ(t0)] = [0, 1]. Hence the

corresponding limits are

(s1 = 0)→ (β = t0); (s1 = 1)→ (β = σ(t0)).

Since σ(t0) 6= t0, thus (3.2) can be written as∫ 1

0

u∆(s1[σ(t0)− t0] + t0)∆s1

=

∫ v(σ(t0))

v(t0)

u∆(v−1(s1))∆s1

=

∫ σ(t0)

t0

u∆(β)

σ(t0)− t0
∆β

=
1

σ(t0)− t0

(
u(β)

∣∣∣∣σ(t0)

t0

)

=
u(σ(t0))− u(t0)

σ(t0)− t0
.
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Now we make the inductive hypothesis that

[t0, σ(t0), · · · , σn−1(t0); u]

=

∫ 1

0

∆s1

∫ s1

0

∆s2 · · ·
∫ sn−2

0

∆sn−1

× u∆n−1

(sn−1[σn−1(t0)− σn−2(t0)] + · · ·+ s1[σ(t0)− t0] + t0).

In the integral in (3.1) we apply substitution rule of integration of time scales (2.1) by replacing

the variable of integration sn with β.

β =v−1(sn) = sn[σn(t0)− σn−1(t0)] + · · ·+ s1[σ(t0)− t0] + t0

⇒ v(sn) =
sn − (sn−1[σn−1(t0)− σn−2(t0)] + · · ·+ s1[σ(t0)− t0] + t0)

σn(t0)− σn−1(t0)
.

So that the delta derivative of v(sn) with respect to sn gives us

v∆(sn) =
1

σn(t0)− σn−1(t0)
.

The corresponding limits are

(sn = 0)→
(
β = β0 ≡ sn−1[σn−1(t0)− σn−2(t0)] + · · ·+ s1[σ(t0)− t0] + t0

)
(sn = sn−1)→ (β = β1 ≡ sn−1[σn(t0)− σn−2(t0)] + sn−2[σn−2(t0)− σn−3(t0)]+

· · ·+ s1[σ(t0)− t0] + t0).

Thus the innermost integral of (4.3) can transform in the following manner, since σn(t0) 6= σn−1(t0)

∫ sn−1

0

u∆n(sn[σn(t0)− σn−1(t0)]) + · · ·+ s1[σ(t0)− t0] + t0)∆sn

=

∫ β1

β0

u∆n(β)

σn(t0)− σn−1(t0)
∆β

=
1

σn(t0)− σn−1(t0)

(
u∆n−1

(β)

∣∣∣∣β1

β0

)

=
u∆n−1

(β1)− u∆n−1
(β0)

σn(t0)− σn−1(t0)
.

However, by applying the inductive hypothesis we have

∫ 1

0

∆s1

∫ s1

0

∆s2 · · ·
∫ sn−2

0

∆sn−1

(
u∆n−1

(β1)− u∆n−1
(β0)

σn(t0)− σn−1(t0)

)

=
u[t0, σ(t0), · · · , σn−2(t0), σn(t0)]− u[t0, σ(t0), · · · , σn−2(t0), σn−1(t0)]

σn(t0)− σn−1(t0)

= [t0, σ(t0), · · · , σn(t0); u].
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�

In the next Theorem we establish a relation between nth-order divided difference and nth-delta

derivative on arbitrary time scales, since in this result the points ti ∈ T need not to be distinct.

Theorem 3.2. Let u ∈ Cnrd(T,R), then for n + 1 points form T we have

[t0, σ(t0), · · · , σn(t0); u] = u∆n(ξ) (hi(sn−i , 0)) , (3.3)

where s0 = 1, 0 ≤ i ≤ n, and ξ ∈ [t0, σ
n(t0)]T.

Proof. By using the time scale monomials (2.2) we can write a general notation for the integral∫ 1
0 ∆s1

∫ s1

0 ∆s2 · · ·
∫ sn−1

0 ∆sn, that is

hi(sn−i , 0) =

∫ sn−i

0

hi−1(sn−i+1, 0)∆sn−i+1. (3.4)

By the Remark 2.1 we can conclude that hn(si , 0) > 0 in (3.4) because all si > 0. Now by applying

Theorem 2.2, (3.1) yields

x (hi(sn−i , 0)) ≤ [t0, σ(t0), · · · , σn(t0); u] ≤ X (hi(sn−i , 0)) ,

or

x ≤
[t0, σ(t0), · · · , σn(t0); u]

(hi(sn−i , 0))
≤ X,

where x ≡ min u∆n(t) and X ≡ max u∆n(t) for t ∈ [t0, σ
n(t0)]T. Then by the rd-continuity of u∆n

there exists a λ in this interval that is u∆n(ξ) = λ, such that

[t0, σ(t0), · · · , σn(t0); u]

(hi(sn−i , 0))
= u∆n(ξ).

�

Here, we can directly achieve the next result.

Corollary 3.1. Let u : T→ R is n-convex function iff u∆n ≥ 0, given that u∆n exists.

Another useful property of n-convex function is represented in the next result.

Theorem 3.3. Let u(t) ∈ Cnrd(T,R) is n-convex function, then for every r ∈ N, 1 ≤ r ≤ n − 1, u∆r

is (n − r)-convex.

Proof. By Corollary 3.1 u∆n ≥ 0. Since u∆r exists for every 1 ≤ r ≤ n− 1. Let us choose (n− r + 1)

points from [ta, tb]T such that T̃ = {t0, σ(t0), · · ·σn−r (t0)}, then by using (3.3) we can write

[t0, σ(t0), · · · , σn−r (t0); u∆r ] =
(
u∆r (ξ)

)∆n−r
(hn−r (sr , 0))

= (u(ξ))∆n (hn−r (sr , 0)) ≥ 0, (3.5)

where ξ ∈ [t0, σ
n−r (t0)]T. Thus (3.5) shows that u∆r is (n − r)-convex for every 1 ≤ r ≤ n − 1.

�
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4. Applications: Inequalities for n-convex functions

Let us present Levinson’s type inequality for higher-order convex functions on time scales for this

we require the next result. Let ti ∈ [ta, tb]T, for i = 1, · · · , z . Let bi > 0 such that
∑z
i=1 bi = 1

therefore t ∈ [ta, tb]T denoted by
∑z
i=1 bi ti .

Theorem 4.1. Let u is (n + 2)-convex on T. Then for every t ∈ T the function

U(t) = [t, σ(t), · · · , σn(t); u], (4.1)

is a convex function.

Proof. By using (3.1), (4.1) can be expressed as

U(t) = [t, σ(t), · · · , σn(t); u]

=

∫ 1

0

∫ s1

0

· · ·
∫ sn−1

0

u∆n(sn[σn(t)− σn−1(t)] + · · ·+ s1[σ(t)− t] + t)∆sn · · ·∆s1.

Therefore u∆n is convex by Theorem 3.3, thus for fixed sj , σj(t) for j = 1, · · · , n we can write

u∆n

 n∑
j=1

sj [σ
j(t)− σj−1(t)] +

z∑
i=1

bi ti

 ≤ z∑
i=1

biu
∆n

 n∑
j=1

sj [σ
j(t)− σj−1(t)] + ti

 ,
which concludes the proof. �

Theorem 4.2. If u is (n + 2)-convex on T, then the given inequality is true

u[t, σ(t), · · · , σn(t)] ≤
z∑
i=1

bi [ti , σ(ti), · · · , σn(ti); u]. (4.2)

Proof. The proof is the direct consequence of Theorem 4.1. �

Remark 4.1. Let T = R in Theorem 4.2, inequality (4.2) coincides with inequality (4) in [18], this

Levinson’s type inequality itself having a great importance in literature which is used to develop further

divided difference estimates for n-convex functions in [19].

Further, we present certain useful inequalities involving n-convex functions on time scales by using

the criteria for n-convexity, that is u∆n ≥ 0.

Theorem 4.3. Let tα, tβ ∈ Tκ
n
, suppose u ∈ Cn+1

rd (T,R) be (n+1)-convex function on [tα, tβ]. Then

for each t ∈ (tα, tβ), the following inequalities hold

n−1∑
k=0

hk(t, tα)u∆k (tα) + u∆n(tα)

∫ ρn−1(t)

tα

hn−1(t, σ(γ))∆γ ≤ u(t)

≤
n−1∑
k=0

hk(t, tα)u∆k (tα) + u∆n(tβ)

∫ ρn−1(t)

tα

hn−1(t, σ(γ))∆γ, (4.3)
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where tα < ρn−1(tβ). If n is odd, then

n−1∑
k=0

hk(t, tβ)u∆k (tβ) + u∆n(tβ)

∫ ρn−1(t)

tβ

hn−1(t, σ(γ))∆γ ≤ u(t)

≤
n−1∑
k=0

hk(t, tβ)u∆k (tβ) + u∆n(tα)

∫ ρn−1(t)

tβ

hn−1(t, σ(γ))∆γ, (4.4)

and if n is even, the given inequality holds

n−1∑
k=0

hk(t, tβ)u∆k (tβ) + u∆n(tα)

∫ ρn−1(t)

tβ

hn−1(t, σ(γ))∆γ ≤ u(t)

≤
n−1∑
k=0

hk(t, tβ)u∆k (tβ) + u∆n(tβ)

∫ ρn−1(t)

tβ

hn−1(t, σ(γ))∆γ. (4.5)

Proof. If u is (n+ 1)−convex on Tκn which implies that u∆n+1 ≥ 0, then u∆n is increasing on Tκn , i.e
u∆n(tα) ≤ u∆n(γ) ≤ u∆n(tβ) for each γ ∈ [tα, tβ], let σ(γ) ≤ t so that hn−1(t, σ(γ)) is non-negative,

then from (2.4) we get

∫ ρn−1(t)

tα

hn−1(t, σ(γ))u(tα)∆γ ≤ u(t)−
n−1∑
k=0

hk(t, tα)u∆k (tα)

≤
∫ ρn−1(t)

tα

hn−1(t, σ(γ))u∆n(tβ)∆γ,

which executes the proof for (4.3).

Let n is odd and t ≤ σ(γ) so that gn−1(σ(γ), t) ≥ 0, thus we can write∫ tβ

ρn−1(t)

(−1)n−1gn−1(σ(γ), t)u∆n(tα)∆γ

≤
∫ tβ

ρn−1(t)

(−1)n−1gn−1(σ(γ, t))u∆n(γ)∆γ

≤
∫ tβ

ρn−1(t)

(−1)n−1gn−1(σ(γ), t)u∆n(tβ)∆γ,

⇒ u∆n(tβ)

∫ ρn−1(t)

tβ

hn−1(t, σ(γ))∆γ

≤
∫ ρn−1(t)

tβ

hn−1(t, σ(γ))u∆n(γ)∆γ

≤ u∆n(tα)

∫ ρn−1(t)

tβ

hn−1(σ(γ), t)∆γ,
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which gets the form

u∆n(tβ)

∫ ρn−1(t)

tβ

hn−1(t, σ(γ))∆γ

≤ u(t)−
n−1∑
k=0

hk(t, tβ)u∆k (tβ)

≤ u∆n(tα)

∫ ρn−1(t)

tβ

hn−1(σ(γ), t)∆γ,

which executes the proof for (4.4).

Let n is even then we have

(−1)n−1u∆n(tβ) ≤ (−1)n−1u∆n(γ) ≤ (−1)n−1u∆n(tα),

then by adopting the same steps we can prove (4.5). �

Therefore, we can extract the particular cases of Theorem 4.3 by considering different time scales.

First by taking T = R we obtained the following result which agrees Theorem 1 in [20].

Theorem 4.4. Let u(t) be (n+1)−convex on [tα, tβ]. Then for all t ∈ (tα, tβ), the following inequality

holds
n∑
k=0

u(k)(tα)

k!
(t − tα)k ≤ u(t) ≤

n−1∑
k=0

u(k)(tα)

k!
(t − tα)k +

u(n)(tβ)

n!
(t − tα)n. (4.6)

For odd n the following inequality is true

n∑
k=0

u(k)(tβ)

k!
(t − tβ)k ≤ u(t) ≤

n−1∑
k=0

u(k)(tβ)

k!
(t − tβ)k +

u(n)(tα)

n!
(t − tβ)n, (4.7)

and for even n the following inequality holds

n−1∑
k=0

u(k)(tβ)

k!
(t − tβ)k +

u(n)(tα)

n!
(t − tβ)n ≤ u(t) ≤

n∑
k=0

u(k)(tβ)

k!
(t − tβ)k . (4.8)

Now by considering T = Z in Theorem 4.3 we get the discrete analogues of the inequalities

(4.6), (4.7) and (4.8). Therefore, σ(t) = t + 1, σn(t) = t + n, ρ(t) = t − 1 and ρn(t) = t − n.

Theorem 4.5. Let ut : [tα, tβ] → R be an (n + 1)−convex sequence. Then for all t ∈ (tα, tβ), the

following inequality holds

n−1∑
k=0

∆kutα
k!

(t − tα)k + ∆nutα

t−n∑
γ=tα

(t − γ − 1)(n−1)

(n − 1)!
≤ ut (4.9)

≤
n−1∑
k=0

∆kutα
k!

(t − tα)k + ∆nutβ

t−n∑
γ=tα

(t − γ − 1)(n−1)

(n − 1)!
. (4.10)
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For odd n the following inequality is true

n−1∑
k=0

∆kutβ
k!

(t − tβ)k + ∆nutβ

t−n∑
γ=tβ

(t − γ − 1)(n−1)

(n − 1)!
≤ ut (4.11)

≤
n−1∑
k=0

∆kutβ
k!

(t − tβ)k + ∆nutα

t−n∑
γ=tβ

(t − γ − 1)(n−1)

(n − 1)!
, (4.12)

and for even n the following inequality holds

n−1∑
k=0

∆kutβ
k!

(t − tβ)k + ∆nutα

t−n∑
γ=tβ

(t − γ − 1)(n−1)

(n − 1)!
≤ ut (4.13)

≤
n−1∑
k=0

∆kutβ
k!

(t − tβ)k + ∆nutβ

t−n∑
γ=tβ

(t − γ − 1)(n−1)

(n − 1)!
. (4.14)

The next result is obtained by considering n = 1 in (4.3) and (4.4).

Corollary 4.1. Let tα, tβ ∈ Tκ, if u is convex on [tα, tβ], then the given inequalities hold for all

t ∈ [tα, tβ]

max{u(tα) + u∆(tα)(t − tα), u(tβ) + u∆(tβ)(t − tβ)} ≤ u(t)

≤ min{u(tα) + u∆(tβ)(t − tα), u(tβ) + u∆(tα)(t − tβ)}. (4.15)

The next result is obtained by considering n = 2 in (4.3) and (4.5).

Corollary 4.2. Let tα, tβ ∈ Tκ
2
, if u is 3−convex on [tα, tβ], then the given inequalities hold for all

t ∈ [tα, tβ]T

max

{
u(tα) + u∆(tα)(t − tα) + u∆2

(tα)

∫ ρ(t)

tα

(γ − tα)∆γ, u(tβ) + u∆(tβ)(t − tβ)

+ u∆2

(tα)

∫ ρ(t)

tα

(γ − tβ)∆γ

}
≤ u(t) ≤ min

{
u(tα) + u∆(tβ)(t − tα)

+ u∆2

(tα)

∫ ρ(t)

tα

(γ − tβ)∆γ, u(tβ) + u∆(tα)(t − tβ) + u∆2

(tβ)

∫ ρ(t)

tα

(γ − tβ)∆γ

}
.

Remark 4.2. When we take T = R in Corollaries 4.1 and 4.2 we get the results which coincide with

Corollary 1 and Corollary 2 in [20] respectively. Moreover Corollary 4.1 for T = R is used to derive

more useful result in [21].

5. Conclusion

The notion of n-convexity has been discussed in [16], on specific time scales that are R or hZ.
Here we extend the theory on arbitrary time scale and developed the relationship between the delta

derivatives of order n and the nth-order divided difference using integral representation of nth-order

divided difference on time scales, see [5, 22]. Further we utilized this relationship to derive some
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dynamic inequalities from which we are able to extract some difference inequalities that are equally

important in the study of difference equations and their applications.
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