COMMON FIXED POINT OF FOUR MAPS IN S_m-METRIC SPACE

V. SRINIVAS^{1,*}, K. MALLAIAH²

¹Department of Mathematics, UCS, Saifabad, OU,Hyderabad, Telangana, India ²Lecturer in Mathematics, JNGP, Ramanthapur, Hyderabad, Telangana, India

* Corresponding author: srinivasmaths4141@gmail.com

ABSTRACT. In this paper, first, we deal with new metric space S_m -metric space that combines multiplicative metric space and S-metric space. We generate a common fixed point theorem in a S_m -metric space using the notions of reciprocally continuous mappings, faintly compatible mappings and occasionally weakly compatible mappings (OWC). We are also studying the well-posedness of S_m metric space. Further, some examples are presented to support our outcome.

1. INTRODUCTION

The idea of Multiplicative metric space (MMS for short) was first introduced by Bashirove [1] in 2008.Ozaksar and Cevical [2] investigated and proved the properties of MMS. Following that, several theorems like [3] and [4] in this area of MMS were developed. Sedhi.S et al. [5] introduced a new structure of S-metric space and developed some fixed point theorems. Pant et al. [6] used the concept of reciprocally continuous mappings which is weaker than continuous mappings. In this article, we use the multiplicative metric space and S metric space and generated a new S_m -metric space [7]. We used the concept of occasionally weakly compatible (OWC for shot) [9]mappings, reciprocally continuous and faintly compatible mappings [10] to generate a common fixed point theorem in S_m -metric space. We also discuss the well-posedness property [11] in S_m -metric space. Furthermore, some examples are provided to support our new findings.

©2021 Authors retain the copyrights

Received August 23rd, 2021; accepted October 13th, 2021; published November 5th, 2021.

²⁰¹⁰ Mathematics Subject Classification. 54H25.

Key words and phrases. Multiplicative metric space; S-metric space; S_m -metric space; occasionally weakly compatible; reciprocally continuous; faintly compatible mappings; well-posed property.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

2. MATHEMATICAL PRELIMINARIES:

Definition 2.1. [1] "Let $X \neq \phi$. An operator $\delta : X^2 \to \mathbb{R}_+$ be a multiplicative metric space (MMS) holding in the conditions below:

- (M1) $\delta(\alpha, \beta) \ge 1$, and $\delta(\alpha, \beta) = 1 \iff \alpha = \beta$
- (M2) $\delta(\alpha, \beta) = \delta(\beta, \alpha)$
- (M3) $\delta(\alpha, \beta) \leq \delta(\alpha, \gamma)\delta(\gamma, \beta), \forall \alpha, \beta, \gamma \in X.$ Mapping δ together with $X, (X, \delta)$ is called a MMS".

A three-dimensional metric space was proposed by Sedghi et al. [5], and it is called S-metric space.

Definition 2.2. [5] " Let $X \neq \phi$ defined on a function $S: X^3 \rightarrow [0, \infty)$ satisfying:

- (S1) $S(\alpha, \beta, \gamma) \ge 0;$
- $(S2) \ S(\alpha,\beta,\gamma)=0; \iff \alpha=\beta=\gamma,$
- $(S3) \ S(\alpha,\beta,\gamma) \leq S(\alpha,\alpha,\omega) + S(\beta,\beta,\omega) + S(\gamma,\gamma,\omega), \forall \alpha,\beta,\gamma,\omega \in X.$

The pair (X, S) is known as S-metric space on X ".

We now present the concept of S_m -metric space which is consolidation of multiplicative metric space defined by Bashirov [1] and S-metric space defined by Sedgi [5] by as follows

Definition 2.3. [7] " Let $X \neq \phi$. A function $S_m : X^3 \to \mathbb{R}_+$ holding the conditions below:

- (MS1) $S_m(\alpha, \beta, \gamma) \ge 1$
- (MS2) $S_m(\alpha, \beta, \gamma) = 1 \iff \alpha = \beta = \gamma$
- (MS3) $S_m(\alpha, \beta, \gamma) \leq S_m(\alpha, \alpha, \omega) S_m(\beta, \beta, \omega) S_m(\gamma, \gamma, \omega), \forall \alpha, \beta, \gamma, \omega \in X.$ Mapping S_m together with X, (X, S_m) is known as S_m -metric space."

Example 2.1. "Let $X \neq \phi, S_m : X^3 \to [0, \infty)$ by $S_m(\alpha, \beta, \gamma) = a^{|\alpha - \gamma| + |\beta - \gamma|}$, where $\alpha, \beta, \gamma, a \in X$, then (X, S_m) is a S_m -metric space on X."

Example 2.2. Let $X = \mathbb{R}_+$, define $S_m : X^3 \to [0, \infty)$ by $S_m(\alpha, \beta, \gamma) = a^{|\beta+\gamma-2\alpha|+|\beta-\gamma|}$, where $\alpha, \beta, \gamma \in X$, then (X, S_m) is a S_m -metric space on X.

Now we present some definitions in S_m -metric space.

Definition 2.4. [7] Suppose (X, S_m) is a S_m -metric space, a sequence $\{\alpha_k\} \in X$ is called (2.4.1) cauchy sequence $\iff S_m(\alpha_k, \alpha_k, \alpha_l) \to 1$, for all $k, l \to \infty$; (2.4.2) convergent $\iff \exists \alpha \in X \text{ such that } S_m(\alpha_k, \alpha_k, \alpha) \to 1 \text{ as } k \to \infty;$

(2.4.3) is complete if every cauchy sequence is convergent.

Definition 2.5. [8] " The mappings G and I be compatible mappings in S_m -metric space if $S_m(GI\alpha_k, GI\alpha_k, IG\alpha_k) = 1$, whenever a sequence $\{\alpha_k\}$ in X such that $\lim_{k\to\infty} G\alpha_k = \lim_{k\to\infty} I\alpha_k = \eta$ for some $\eta \in X$."

Definition 2.6. [8] "Let G and I be weakly compatible mappings in S_m -metric space if for all $\eta \in X$, $G\eta = I\eta \implies GI\eta = IG\eta$ ".

Definition 2.7. [9] "Suppose G and I are mappings in S_m -metric are said to be occasionally weakly compatible (OWC for shot) iff $\exists \eta \in X$ such that $G\eta = I\eta \implies GI\eta = IG\eta$."

Example 2.3. Let $X = [0, \infty)$ is a S_m -metric space on X, $S_m(\alpha, \beta, \gamma) = a^{|\alpha-\beta|+|\beta-\gamma|+|\gamma-\alpha|}$, for every $\alpha, \beta, \gamma \in X$. Construct two self maps G and I as $G(\alpha) = 3\alpha - 2$ and $I(\alpha) = \alpha^2$. Consider a sequence $\{\alpha_k\}$ given by $\alpha_k = 2 + \frac{1}{k}$ for $k \ge 0$. $G(\alpha_k) = 3(2 + \frac{1}{k}) - 2 = 4$ and $I(\alpha_k) = (2 + \frac{1}{k})^2 = 4$ as $k \to \infty$ Therefore $G\alpha_k = I\alpha_k = 4 \neq \phi$. Moreover, $GI(\beta_k) = GI(2 + \frac{1}{k}) = G(2 + \frac{1}{k})^2 = G(4 + 4\frac{1}{k} + \frac{1}{k^2}) = 3(4 + 4\frac{1}{k} + \frac{1}{k^2}) - 2 = 10$ and $IG(\beta_k) = IG(2 + \frac{1}{k}) = I(3(2 + \frac{1}{k}) - 2) = I(4 + \frac{3}{k}) = (4 + \frac{3}{k})^2 = 16$ as $k \to \infty$. This gives $S_m(GI\alpha_k, GI\alpha_k, IG\alpha_k) = S_m(10, 10, 16) \neq 1$. Hence, (G,I) is not compatible. Now G(1) = I(1) = 1 also $GI(1) = IG(1) = 1 \implies GI(1) = IG(1)$. G(2) = 4, I(2) = 4 also GI(2) = 10, $IG(2) = 16 \implies GI(2) \neq IG(2)$. As a result G and I have OWC, but not weakly compatible.

Definition 2.8. [10] " Two self maps G and I in S_m -metric space as conditionally- compatible if there exists a sequence $\{\alpha_k\} \in X$ such that $G\alpha_k = I\alpha_k \neq \phi, \exists$ a sequence $\{\beta_k\} \in X$ such that $G\beta_k = I\beta_k \rightarrow \eta$ for some $\eta \in X$ and $S_m(GI\beta_k, GI\beta_k, IG\eta) = 1$ as $k \rightarrow \infty$."

Definition 2.9. [10] " Two self maps G and I in S_m -metric space are called as faintly compatible iff (G, I) is conditionally- compatible and G and I commute on a non-empty subset of the set of coincidence points if the collection of coincidence points is non-empty."

Definition 2.10. [6] "A reciprocally continuous mappings G and I of a S_m -metric space is defined as $S_m(GI\alpha_k, GI\alpha_k, I\eta) = 1$ and $S_m(IG\alpha_k, IG\alpha_k, G\eta) = 1$ letting $k \to \infty$ if there exists a sequence $\{\alpha_k\} \in X$ such that $\lim_{k\to\infty} G\alpha_k = \lim_{k\to\infty} I\alpha_k = \eta$ as $\eta \in X$."

Example 2.4. Let $X = [0, \infty)$ is a S_m -metric space on X, $S_m(\alpha, \beta, \gamma) = a^{|\alpha-\beta|+|\beta-\gamma|+|\gamma-\alpha|}, \text{ for every } \alpha, \beta, \gamma \in X.$ Construct two self maps G and I as $G(\alpha) = \alpha^2 - 3\alpha + 2$ and $I(\alpha) = 3\alpha^2 - 7\alpha + 2$. Consider a sequence $\{\alpha_k\}$ given by $\alpha_k = 2 + \frac{1}{k}$ for $k \ge 0$. then $G(\alpha_k) = (2 + \frac{1}{k})^2 - 3(2 + \frac{1}{k}) + 2 = 0$ and $I(\alpha_k) = 3(2 + \frac{1}{k})^2 - 7(2 + \frac{1}{k}) + 2 = 0$ as $k \to \infty$ therefore $lim_{k\to\infty}G\alpha_k = lim_{k\to\infty}I\alpha_k = 0 \neq \phi.$ Moreover, $GI(\alpha_k) = GI(2 + \frac{1}{k}) = G[3(2 + \frac{1}{k})^2 - 7(2 + \frac{1}{k}) + 2] = G(\frac{3}{k^2} + \frac{5}{k}) = (\frac{3}{k^2} + \frac{5}{k})^2 - 3(\frac{3}{k^2} + \frac{5}{k}) + 2 = 2$ and $IG(\alpha_k) = IG(2+\frac{1}{k}) = I[(2+\frac{1}{k})^2 - 3(2+\frac{1}{k}) + 2] = I(\frac{1}{k^2} + \frac{1}{k}) = 3(\frac{1}{k^2} + \frac{1}{k})^2 - 7(\frac{1}{k^2} + \frac{1}{k}) + 2 = 2$ as $k \to \infty$. $\implies S_m(GI\alpha_k, GI\alpha_k, IG\alpha_k) = S_m(2, 2, 2) = 1.$ Hence, (G,I) is compatible. Consider another sequence $\{\beta_k\}$ given by $\beta_k = \frac{1}{k}$ for $k \ge 0$. $G(\beta_k) = (\frac{1}{k^2} - \frac{3}{k} + 2) = 2 \text{ and } I(\beta_k) = (\frac{3}{k^2} - \frac{7}{k} + 2) = 2 \text{ as } k \to \infty$ therefore $\lim_{k\to\infty} G\beta_k = \lim_{k\to\infty} I\beta_k = 2.$ Further $GI(\beta_k) = GI(\frac{1}{k}) = G(\frac{3}{k^2} - \frac{7}{k} + 2) = (\frac{3}{k^2} - \frac{7}{k} + 2)^2 - 3(\frac{3}{k^2} - \frac{7}{k} + 2) + 2 = 0$ and $IG(\beta_k) = IG(\frac{1}{k}) = IG(\frac{1}{k})$ $I(\frac{1}{k^2} - \frac{3}{k} + 2) = 3(\frac{1}{k^2} - \frac{3}{k} + 2) - 7(\frac{1}{k^2} - \frac{3}{k} + 2) + 2 = -6 \text{ as } k \to \infty.$ This gives $S_m(GI\alpha_k, IG\alpha_k, \eta) = S_m(0, 0, -6) \neq 1$. the pair (G,I) is not compatible Hence (G,I) is conditionally compatible. Compatibility is distinct from the concept of conditional compatibility, Now G(2)=0, I(2)=0 and GI(2)=2, IG(2)=2. Also G(0)=I(0)=2 and GI(0)=IG(0)=0. Hence the pair (G,I) is faintly compatible.

As a result, the mappings G and I have faintly compatible, but they are not compatible.

Definition 2.11. [11] "The mappings G and I of a S_m -metric space are called well-posed if

- G and I have a unique common fixed point η in X
- If $\alpha_k \in X$ such that $S_m(G\alpha_k, G\alpha_k, \alpha_k) = 1$ and $S_m(I\alpha_k, I\alpha_k, \alpha_k) = 1$ as $k \to \infty$ we have $S_m(\alpha_k, \alpha_k, \eta) = 1$ as $k \to \infty$."

3. MAIN THEOREM

Theorem:

Suppose G, H, I and J are self-mapping in a complete S_m -metric space X, suppose that there exist $\lambda \in (0, \frac{1}{2})$ such that the conditions

(3.1.1) $G(X) \subseteq J(X)$ and $H(X) \subseteq I(X)$ (3.1.2)

$$S_m(G\alpha, G\alpha, H\beta) \leq \left\{ max[S_m(G\alpha, G\alpha, I\alpha)S_m(H\beta, H\beta, J\beta), S_m(G\alpha, G\alpha, J\beta)S_m(I\alpha, I\alpha, H\beta)] \right\}^{\lambda}$$
$$S_m(G\alpha, G\alpha, J\beta)S_m(H\beta, H\beta, J\beta), S_m(G\alpha, G\alpha, I\alpha)S_m(H\beta, H\beta, I\alpha)] \right\}^{\lambda}$$

(3.1.3) the pair (H,J) is OWC

(3.1.4) and the pair (G,I) is reciprocally continuous and faintly compatible.

Then the common fixed point problem of G, H, I and J is Well-posed.

Proof:

We begin with using (3.1.1), then there is a point $\alpha_0 \in X$, such that $G\alpha_0 = J\alpha_1 = \beta_0$. For this point α_1 then there $\exists \alpha_2 \in X$ such that $H\alpha_1 = I\alpha_2 = \beta_1$. In general, by induction choose α_{k+1} so that

$$\beta_{2k} = G\alpha_{2k} = J\alpha_{2k+1}$$
 and $\beta_{2k+1} = H\alpha_{2k+1} = I\alpha_{2k+2}$ for $k \ge 0$.

We show that $\{\beta_k\}$ is a cauchy sequence in S_m - metric space . Indeed, it follows that $S_m(\beta_{2k},\beta_{2k},\beta_{2k+1})=$

$$S_{m}(G\alpha_{2k}, G\alpha_{2k}, H\alpha_{2k+1}) \leq \max \left\{ S_{m}(G\alpha_{2k}, G\alpha_{2k}, I\alpha_{2k}) S_{m}(H\alpha_{2k+1}, H\alpha_{2k+1}, J\alpha_{2k+1}), \\S_{m}(G\alpha_{2k}, G\alpha_{2k}, J\alpha_{2k+1}) S_{m}(H\alpha_{2k+1}, H\alpha_{2k+1}, I\alpha_{2k}), \\S_{m}(G\alpha_{2k}, G\alpha_{2k}, J\alpha_{2k+1}) S_{m}(H\alpha_{2k+1}, H\alpha_{2k+1}, J\alpha_{2k+1}), \\S_{m}(G\alpha_{2k}, G\alpha_{2k}, I\alpha_{2k}) S_{m}(H\alpha_{2k+1}, H\alpha_{2k+1}, I\alpha_{2k}) \right\}^{\lambda}$$

$$S_{m}(\beta_{2k},\beta_{2k},\beta_{2k+1}) \leq \max \left\{ S_{m}(\beta_{2k},\beta_{2k},\beta_{2k-1})S_{m}(\beta_{2k+1},\beta_{2k+1},\beta_{2k}), \\S_{m}(\beta_{2k},\beta_{2k},\beta_{2k})S_{m}(\beta_{2k+1},\beta_{2k+1},\beta_{2k-1}), \\S_{m}(\beta_{2k},\beta_{2k},\beta_{2k},\beta_{2k})S_{m}(\beta_{2k+1},\beta_{2k+1},\beta_{2k}), \\S_{m}(\beta_{2k},\beta_{2k},\beta_{2k-1})S_{m}(\beta_{2k+1},\beta_{2k+1},\beta_{2k-1}) \right\}^{\lambda}$$

on simplification

$$S_{m}(\beta_{2k}, \beta_{2k}, \beta_{2k+1}) \leq S_{m}(\beta_{2k-1}, \beta_{2k-1}, \beta_{2k+1})^{\lambda}.$$

$$S_{m}(\beta_{2k}, \beta_{2k}, \beta_{2k+1}) \leq \{S_{m}(\beta_{2k-1}, \beta_{2k-1}, \beta_{2k})S_{m}(\beta_{2k}, \beta_{2k}, \beta_{2k+1})\}^{\lambda}$$

$$S_{m}^{1-\lambda}(\beta_{2k}, \beta_{2k}, \beta_{2k+1}) \leq S_{m}^{\lambda}(\beta_{2k-1}, \beta_{2k-1}, \beta_{2k}).$$

$$S_{m}(\beta_{2k}, \beta_{2k}, \beta_{2k+1}) \leq S_{m}^{\frac{\lambda}{1-\lambda}}(\beta_{2k-1}, \beta_{2k-1}, \beta_{2k}).$$
where $p = \frac{\lambda}{1-\lambda}$

Now this gives

$$S_m(\beta_k, \beta_k, \beta_{k+1}) \le S_m^p(\beta_{k-1}, \beta_{k-1}, \beta_k) \le S_m^{p^2}(\beta_{k-2}, \beta_{k-2}, \beta_{k-1}) \le \cdots S_m^{p^n}(\beta_0, \beta_0, \beta_n)$$

By using triangular inequality,

$$S_m(\beta_k,\beta_k,\beta_n) \le S_m^{p^k}(\beta_0,\beta_0,\beta_l) \le S_m^{p^{k+1}}(\beta_0,\beta_0,\beta_n) \le \cdots S_m^{p^{n-1}}(\beta_0,\beta_0,\beta_n)$$

Hence $\{\beta_k\}$ is a cauchy sequence in S_m -metric space.

Now X being complete in $S_m\text{-metric space }\exists\eta\in X$ such that $lim_{k\to\infty}\beta_k\to\eta$.

Consequently, the sub sequences $\{G\alpha_{2k}\}$, $\{I\alpha_{2k}\}$, $\{J\alpha_{2k+1}\}$ and $\{H\alpha_{2k+1}\}$ of $\{\beta_k\}$ also converges to the point $\eta \in X$.

Since the pair (G,I) is faintly compatible mappings, so that \exists another sequence $\nu_k \in X$ such that $\lim_{k\to\infty} G\nu_k = \lim_{k\to\infty} I\nu_k = \omega$ for $\omega \in X$ satisfying

 $lim_{k\to\infty}S(GI\nu_k, GI\nu_k, IG\nu_k) = 1$ and the pair (G,I) is reciprocally continuous

$$S_m(GI\nu_k, GI\nu_k, I\omega) = 1$$
, and $S_m(IG\nu_k, IG\nu_k, G\omega) = 1$. as $k \to \infty$.

$$(3.1) G\omega = I\omega$$

On putting $\alpha = \omega$ and $\beta = \alpha_{2k+1}$ in (3.1.2) we get

$$\begin{split} S_m(G\omega,G\omega,H\alpha_{2k+1}) \leq & \left\{ max[S_m(G\omega,G\omega,I\omega)S_m(H\alpha_{2k+1},H\alpha_{2k+1},J\alpha_{2k+1}), S_m(G\omega,G\omega,G\omega,J\alpha_{2k+1})S_m(I\omega,I\eta,H\alpha_{2k+1}), S_m(G\omega,G\omega,G\omega,J\alpha_{2k+1})S_m(H\alpha_{2k+1},H\alpha_{2k+1},J\alpha_{2k+1}), S_m(G\omega,G\omega,I\omega)S_m(H\alpha_{2k+1},H\alpha_{2k+1},I\omega)] \right\}^{\lambda} \end{split}$$

and

$$S_m(G\omega, G\omega, \eta) \le \left\{ max[S_m(G\omega, G\omega, I\omega)S_m(\eta, \eta, \eta), S_m(G\omega, G\omega, \eta)S_m(I\omega, I\omega, \eta), S_m(G\omega, G\omega, G\omega, \eta)S^*(\eta, \eta, \eta), S_m(G\omega, G\omega, I\omega)S_m(\eta, \eta, I\omega)] \right\}^{\lambda}$$

which gives

$$\begin{split} S_m(G\omega,G\omega,\eta) \leq & \left\{ max[S_m(G\omega,G\omega,G\omega)S_m(\eta,\eta,\eta),S_m(G\omega,G\omega,\eta)S_m(G\omega,G\omega,\eta),\\ & S_m(G\omega,G\omega,\eta)S_m(\eta,\eta,\eta),S_m(G\omega,G\omega,G\omega)S_m(\eta,\eta,G\omega)] \right\}^{\lambda} \end{split}$$

implies

$$S_m(G\omega,G\omega,\eta) \leq \biggl\{max[1,S_m^2(G\omega,G\omega,\eta),S_m(G\omega,G\omega,\eta),S_m(G\omega,G\omega,\eta)]\biggr\}^{\lambda}$$

this gives

$$S_m(G\omega,G\omega,\eta) \leq \left\{S_m^{2\lambda}(G\omega,G\omega,\eta)\right\}$$

this implies $G\omega = \eta$.

(3.2) therefore
$$G\omega = I\omega = \eta$$
.

Since the pair (G,I) is faintly compatible, so that $G\omega = I\omega$ this gives $GI\omega = IG\omega$ this implies $G\eta = I\eta$.

By using the inequality (3.1.2) on putting $\alpha = \eta$ and $\beta = \alpha_{2k+1}$ we get

$$\begin{split} S_m(G\eta, G\eta, H\alpha_{2k+1}) \leq & \left\{ max[S_m(G\eta, G\eta, I\eta)S_m(H\alpha_{2k+1}, H\alpha_{2k+1}, J\alpha_{2k+1}), \\ & S_m(G\eta, G\eta, J\alpha_{2k+1})S_m(I\eta, I\eta, H\alpha_{2k+1}), \\ & S_m(G\eta, G\eta, J\alpha_{2k+1})S_m(H\alpha_{2k+1}, H\alpha_{2k+1}, J\alpha_{2k+1}), \\ & S_m(G\eta, G\eta, I\eta)S_m(H\alpha_{2k+1}, H\alpha_{2k+1}, I\eta)] \right\}^{\lambda} \end{split}$$

and

$$S_m(G\eta, G\eta, \eta) \le \left\{ max[S_m(G\eta, G\eta, I\eta)S_m(\eta, \eta, \eta), S_m(G\eta, G\eta, \eta)S_m(I\eta, I\eta, \eta), S_m(G\eta, G\eta, \eta)S_m(\eta, \eta, \eta), S_m(G\eta, G\eta, I\eta)S_m\eta, \eta, I\eta)] \right\}^{\lambda}$$

which gives

$$S_m(G\eta, G\eta, \eta) \le \left\{ max[S_m(G\eta, G\eta, G\eta, G\eta)S_m(\eta, \eta, \eta), S_m(G\eta, G\eta, \eta)S_m(G\eta, G\eta, \eta), S_m(G\eta, G\eta, \eta)S_m(\eta, \eta, \eta), S_m(G\eta, G\eta, G\eta, S_m(\eta, \eta, G\eta)] \right\}^{\lambda}$$

implies

$$S_m(G\eta, G\eta, \eta) \leq \left\{ max[1, {S_m}^2(G\eta, G\eta, \eta), S_m(G\eta, G\eta, \eta), S_m(G\eta, G\eta, \eta)] \right\}^{\lambda}$$

which implies

$$S_m(G\eta, G\eta, \eta) \le \left\{ {S_m}^{2\lambda}(G\eta, G\eta, \eta) \right\}$$

$$(3.3) \implies G\eta = \eta.$$

$$G\eta = I\eta = \eta.$$

 $\implies \eta = G\eta \in G(X) \subseteq J(X) \implies G\eta = Jv \text{ for some } v \in X.$

$$G\eta = I\eta = Jv = \eta.$$

Using the inequality (3.1.2) on putting $\alpha = \eta$ and $\beta = v$ we have

$$S_m(G\eta, G\eta, Hv) \le \left\{ max[S_m(G\eta, G\eta, I\eta)S_m(Hv, Hv, Jv), S_m(G\eta, G\eta, Jv)S_m(I\eta, I\eta, Hv), S_m(G\eta, G\eta, Jv)S_m(Hv, Hv, Jv), S_m(G\eta, G\eta, I\eta)S_m(Hv, Hv, I\eta)] \right\}^{\lambda}$$

this implies

$$\begin{split} S_m(\eta,\eta,Hv) \leq & \left\{ max[S_m(\eta,\eta,\eta)S_m(Hv,Hv,\eta),S_m(\eta,\eta,\eta)S_m(\eta,\eta,Hv), \\ & S_m(\eta,\eta,\eta)S_m(Hv,Hv,\eta),S_m(\eta,\eta,\eta)S_m(Hv,Hv,\eta)] \right\}^{\lambda} \end{split}$$

which implies

$$S_m(\eta, \eta, Hv) \leq \left\{ max[S_m(Hv, Hv, \eta), S_m(\eta, \eta, Hv), \qquad S_m(Hv, Hv, \eta), S_m(Hv, Hv, \eta)] \right\}^{\lambda}$$

this gives

$$S_m(\eta,\eta,Hv) \leq \left\{S_m(Hv,Hv,\eta)\right\}^{\lambda}$$

which gives $Hv = \eta$.

$$G\eta = I\eta = Jv = Hv = \eta.$$

Again (H,J) is OWC with $v \in X$ so that $Hv = Jv \implies HJv = JHv$ which implies that $H\eta = J\eta$.

Using the inequality (3.1.2) and take $\alpha = \eta$ and $\beta = \eta$ we get

$$S_m(G\eta, G\eta, H\eta) \leq \left\{ max[S_m(G\eta, G\eta, I\eta)S_m(H\eta, H\eta, J\eta), S_m(G\eta, G\eta, J\eta)S_m(I\eta, I\eta, H\eta), S_m(G\eta, G\eta, J\eta)S_m(H\eta, H\eta, J\eta), S_m(G\eta, G\eta, I\eta)S_m(H\eta, H\eta, I\eta)] \right\}^{\lambda}$$

this implies

$$S_m(\eta, \eta, H\eta) \leq \left\{ max[S_m(\eta, \eta, \eta)S_m(H\eta, H\eta, \eta), S_m(\eta, \eta, \eta)S_m(\eta, \eta, H\eta), S_m(\eta, \eta, \eta)S_m(H\eta, H\eta, \eta), S_m(\eta, \eta, \eta)S_m(H\eta, H\eta, \eta)] \right\}^{\lambda}$$

where

$$S_m(\eta,\eta,H\eta) \leq \left\{ \max[S_m(H\eta,H\eta,\eta),S_m(\eta,\eta,H\eta),S_m(H\eta,H\eta,\eta),S_m(H\eta,H\eta,\eta)] \right\}^{\lambda}$$

this gives

$$S_m(\eta,\eta,H\eta) \leq \left\{S_m(H\eta,H\eta,\eta)\right\}^{\lambda}$$

this gives $H\eta = \eta$.

 $H\eta = J\eta = \eta.$

From (3.4) and (3.7)

$$G\eta = I\eta = J\eta = H\eta = \eta.$$

 \implies η is a common fixed point for the mappings G,H,I and J.

For the proof of well-posed property

Suppose $\rho(\rho\neq\eta)$ is one more fixed point of G,I,H and J

i.e $G\rho = I\rho = H\rho = J\rho = \rho$.

Using the inequality (3.1.2) take $\alpha = \rho$ and $\beta = \eta$ we have

$$S_m(G\rho, G\rho, H\eta) \leq \left\{ \max[S_m(G\rho, G\rho, I\eta)S_m(H\eta, H\eta, J\eta), S_m(G\rho, G\rho, J\eta)S_m(I\rho, I\rho, H\eta) \\ S_m(G\rho, G\rho, J\eta)S_m(H\eta, H\eta, J\eta), S_m(G\rho, G\rho, I\rho)S_m(H\eta, H\eta, I\rho)] \right\}^{\lambda}$$

this gives

$$S_m(\rho,\rho,\eta) \le \left\{ \max[S_m(\rho,\rho,\eta)S_m(\eta,\eta,\eta), S_m(\rho,\rho,\eta)S_m(\rho,\rho,\eta)] \right\}^{\lambda}$$
$$S_m(\rho,\rho,\eta)S_m(\eta,\eta,\eta), S_m(\rho,\rho,\rho)S_m(\eta,\eta,\rho)] \right\}^{\lambda}$$

this gives

$$S_m(\rho,\rho,\eta) \le \left\{ \max[1, S_m(\rho,\rho,\eta), 1, 1] \right\}^{\lambda}$$

which gives

$$\therefore S_m(\rho,\rho,\eta) \le S_m(\rho,\rho,\eta)^{\lambda}$$

This gives $\rho = \eta$.

Hence η is the unique common fixed point of G,H,I and J

Suppose $\{\alpha_k\}$ be a sequence in X such that

 $S_m(G\alpha_k, G\alpha_k, \alpha_k) = S_m(I\alpha_k, I\alpha_k, \alpha_k) = 1$

and $S_m(H\alpha_k, H\alpha_k, \alpha_k) = S_m(J\alpha_k, J\alpha_k, \alpha_k) = 1$ as $k \to \infty$. We have to show that $S_m(\alpha_k, \alpha_k, \eta) = 1$, $S_m(\alpha_k, \alpha_k, \eta) \le S_m(G\alpha_k, G\alpha_k, \eta)S_m(G\alpha_k, G\alpha_k, \alpha_k)$

$$\begin{split} S_{m}(\alpha_{k},\alpha_{k},\eta) &\leq \\ \left\{ \max[S_{m}(G\alpha_{k},G\alpha_{k},I\alpha_{k})S_{m}(H\eta,H\eta,J\eta),S_{m}(G\alpha_{k},G\alpha_{k},J\eta)S_{m}(I\alpha_{k},I\alpha_{k},H\eta), \\ S_{m}(G\alpha_{k},G\alpha_{k},J\eta)S_{m}(H\eta,H\eta,J\eta),S_{m}(G\alpha_{k},G\alpha_{k},I\alpha_{k})S_{m}(H\eta,H\eta,I\alpha_{k})] \right\}^{\lambda} S_{m}(G\alpha_{k},G\alpha_{k},\alpha_{k}) \end{split}$$

this gives

$$S_{m}(\alpha_{k},\alpha_{k},\eta) \leq \left\{ \max[S_{m}(G\alpha_{k},G\alpha_{k},G\eta)S_{m}(I\alpha_{k},I\alpha_{k},I\eta)S_{m}(H\eta,H\eta,J\eta),S_{m}(G\alpha_{k},G\alpha_{k},J\eta)S_{m}(I\alpha_{k},I\alpha_{k},H\eta) \\ S_{m}(G\alpha_{k},G\alpha_{k},J\eta)S_{m}(H\eta,H\eta,J\eta),S_{m}(G\alpha_{k},G\alpha_{k},I\alpha_{k})S_{m}(H\eta,H\eta,I\alpha_{k})] \right\}^{\lambda} S_{m}(G\alpha_{k},G\alpha_{k},\alpha_{k},\alpha_{k})$$

which gives

$$S_{m}(\alpha_{k},\alpha_{k},\eta) \leq \left\{ \max[S_{m}(\alpha_{k},\alpha_{k},\eta)S_{m}(\alpha_{k},\alpha_{k},\eta))S_{m}(\eta,\eta,\eta), S_{m}(\alpha_{k},\alpha_{k},\eta)S_{m}(\alpha_{k},\alpha_{k},\eta), \\ S_{m}(\alpha_{k},\alpha_{k},\eta)S_{m}(\eta,\eta,\eta), S_{m}(\alpha_{k},\alpha_{k},\alpha_{k},\alpha_{k})S_{m}(\eta,\eta,\alpha_{k})] \right\}^{\lambda} S_{m}(G\alpha_{k},G\alpha_{k},\alpha_{k},\alpha_{k})$$

therefore

$$S_m(\alpha_k, \alpha_k, \eta) \le \left\{ S_m(\alpha_k, \alpha_k, \eta) \right\}^{\lambda} S_m(G\alpha_k, G\alpha_k, \alpha_k)$$
$$S_m(\alpha_k, \alpha_k, \eta)^{1-\lambda} \le S_m(G\alpha_k, G\alpha_k, \alpha_k)$$
$$S_m(\alpha_k, \alpha_k, \eta) \le S_m^{\frac{1}{1-\lambda}}(G\alpha_k, G\alpha_k, \alpha_k)$$
$$S_m(\alpha_k, \alpha_k, \eta) = 1 \text{ as } k \to \infty.$$

Thus G,H,I and J is well-posed.

4. Example

Suppose X = [0, 1], S_m - metric space by $S_m(\alpha, \beta, \gamma) = e^{|\alpha - \beta| + |\beta - \gamma| + |\gamma - \alpha|}$, when $\alpha, \beta, \gamma \in X$. Define G ,I ,H J: $XxX \to X$ as follows

$$G(\alpha) = \begin{cases} \frac{1-\alpha}{2} & \text{if } 0 \le \alpha \le \frac{1}{3}; \\ \frac{3-2\alpha}{4} & \text{if } \frac{1}{3} < \alpha \le 1. \end{cases} \qquad J(\alpha) = \begin{cases} \frac{1+4\alpha}{7} & \text{if } 0 \le \alpha \le \frac{1}{3}; \\ \frac{2\alpha+1}{4} & \text{if } \frac{1}{3} < \alpha \le 1. \end{cases}$$
and
$$H(\alpha) = \begin{cases} \frac{2-\alpha}{5} & \text{if } 0 \le \alpha \le \frac{1}{3}; \\ \frac{3-2\alpha}{4} & \text{if } \frac{1}{3} < \alpha \le 1. \end{cases} \qquad I(\alpha) = \begin{cases} \frac{2\alpha+1}{5} & \text{if } 0 \le \alpha \le \frac{1}{3}; \\ \frac{\alpha+5}{11} & \text{if } \frac{1}{3} < \alpha \le 1. \end{cases}$$
Then $G(X) = (\frac{7}{12}, \frac{1}{4}]$ and $J(X) = [\frac{1}{7}, \frac{1}{3}] \cup (\frac{5}{12}, \frac{3}{4}]$.
And also $H(X) = (\frac{7}{21}, \frac{1}{4}]$ and $I(X) = [\frac{1}{5}, \frac{1}{3}] \cup (\frac{16}{33}, \frac{6}{11}]$
thisimplies implies $G(X) \subseteq J(X)$ and $H(X) \subseteq I(X)$ hence the inequality (3.1.1) holds.
Take a sequence $\{\alpha_k\}$ as $\alpha_k = \frac{1}{2} + \frac{1}{k}$ as $k \ge 0$.
Now $G(\alpha_k) = G(\frac{1}{2} + \frac{1}{k}) = \frac{3-2(\frac{1}{2} + \frac{1}{k})}{4} = \frac{1}{2}$ and $J(\alpha_k) = J(\frac{1}{2} + \frac{1}{k}) = \frac{5+(\frac{1}{2} + \frac{1}{k})}{11} = \frac{1}{2}$.
And also $H(\alpha_k) = H(\frac{1}{2} + \frac{1}{k}) = G(\frac{1}{2} + \frac{1}{11k}) = \frac{3-2(\frac{1}{2} + \frac{1}{11k})}{4} = \frac{1}{2}$ and $IG(\alpha_k) = IG(\frac{1}{2} + \frac{1}{k}) = I(\frac{1}{2} - \frac{1}{2k}) = \frac{5+(\frac{1}{2} - \frac{1}{2k})}{11} = \frac{1}{2}$
as $k \to \infty$.
H $J(\alpha_k) = HJ(\frac{1}{2} + \frac{1}{k}) = H(\frac{5+(\frac{1}{2} + \frac{1}{k})}{11} = H(\frac{1}{2} + \frac{1}{11k}) = \frac{3-2(\frac{1}{2} + \frac{1}{11k})}{4} = \frac{1}{2}$

and $JH(\alpha_k) = JH(\frac{1}{2} + \frac{1}{k}) = J(\frac{3-2(\frac{1}{2} + \frac{1}{k})}{4}) = I(\frac{1}{2} - \frac{1}{2k}) = \frac{1+2(\frac{1}{2} - \frac{1}{2k})}{4} = \frac{1}{2}$ as $k \to \infty$. $\lim_{k\to\infty} S_m(GI\alpha_k, GI\alpha_k, IG\alpha_k) = S_m(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = 1$ and $\lim_{k\to\infty} S_m(HJ\alpha_k, HJ\alpha_k, JH\alpha_k) = S_m(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = 1$ Hence the pairs (G,I) and (H,J) are satisfies compatible property. Take another sequence $\{\beta_k\}$ as $\beta_k = \frac{1}{2} - \frac{1}{k}$ as $k \ge 0$. Now $G(\beta_k) = G(\frac{1}{2} - \frac{1}{k}) = \frac{1 - (\frac{1}{2} - \frac{1}{k})}{2} = \frac{1}{2} = \text{and } I(\beta_k) = I(\frac{1}{2} - \frac{1}{k}) = \frac{2 + (\frac{1}{2} - \frac{1}{k})}{5} = \frac{1}{2}.$ And also $H(\beta_k) = H(\frac{1}{3} - \frac{1}{k}) = \frac{2 - (\frac{1}{3} - \frac{1}{k})}{5} = \frac{1}{3}$ and $J(\beta_k) = J(\frac{1}{3} - \frac{1}{k}) = \frac{4(\frac{1}{3} - \frac{1}{k}) + 1}{7} = \frac{1}{3}$ as $k \to \infty$. $\therefore G\beta_k = I\beta_k = \frac{1}{2} = \eta$ similarly $H\beta_k = J\beta_k = \frac{1}{2} = \eta$ as $k \to \infty$. Further $GI(\beta_k) = GI(\frac{1}{2} - \frac{1}{k}) = G(\frac{2(\frac{1}{3} - \frac{1}{k}) + 1}{5}) = G(\frac{1}{2} - \frac{2}{5k}) = \frac{1 - (\frac{1}{3} - \frac{2}{5k})}{2} = \frac{1}{2}$ and $IG((\beta_k) = IG(\frac{1}{3} - \frac{1}{k}) = I(\frac{1-(\frac{1}{3} - \frac{1}{k})}{2}) = I(\frac{1}{3} + \frac{1}{2k}) = \frac{5+(\frac{1}{3} + \frac{1}{2k})}{11} = \frac{16}{33} HJ(\beta_k) = HJ(\frac{1}{3} - \frac{1}{k}) = H(\frac{4(\frac{1}{3} - \frac{1}{k})+1}{7} = \frac{16}{33} HJ(\beta_k) = HJ(\frac{1}{3} - \frac{1}{k}) = H(\frac{4(\frac{1}{3} - \frac{1}{k})+1}{7} = \frac{16}{33} HJ(\beta_k) = HJ(\frac{1}{3} - \frac{1}{k}) = H(\frac{4(\frac{1}{3} - \frac{1}{k})+1}{7} = \frac{16}{33} HJ(\beta_k) = HJ(\frac{1}{3} - \frac{1}{k}) = H(\frac{4(\frac{1}{3} - \frac{1}{k})+1}{7} = \frac{16}{33} HJ(\beta_k) = HJ(\frac{1}{3} - \frac{1}{k}) = H(\frac{4(\frac{1}{3} - \frac{1}{k})+1}{7} = \frac{16}{33} HJ(\beta_k) = HJ(\frac{1}{3} - \frac{1}{k}) = H(\frac{4(\frac{1}{3} - \frac{1}{k})+1}{7} = \frac{16}{33} HJ(\beta_k) = HJ(\frac{1}{3} - \frac{1}{k}) = H(\frac{1}{3} + \frac{1}{3}) = H(\frac{1}{$ $H(\frac{1}{2} - \frac{4}{7k}) = \frac{2 - (\frac{1}{3} + \frac{4}{7k})}{11} = \frac{1}{2}$ and $JH(\beta_k) = JH(\frac{1}{3} - \frac{1}{k}) = J(\frac{2-(\frac{1}{3} - \frac{1}{k})}{5}) = J(\frac{1}{3} + \frac{1}{5k}) = \frac{2(\frac{1}{3} + \frac{1}{5k}) + 1}{4} = \frac{5}{12}$ as $k \to \infty$. this implies $\lim_{k\to\infty} S_m(GI\beta_k, GI\beta_k, IG\beta_k) = S_m(\frac{1}{3}, \frac{1}{3}, \frac{66}{33}) \neq 1$ which shows that the pairs (G,I) is faintly compatible mappings. Moreover $I(\frac{1}{2}) = \frac{1}{2}$ and $G(\frac{1}{2}) = \frac{1}{2}$ and also $\lim_{k\to\infty} S_m(GI\alpha_k, GI\alpha_k, Iw) = S_m(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = 1 \lim_{k\to\infty} S_m(IG\alpha_k, IG\alpha_k, Gw) = S_m(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = 1$ this shows that the pairs (G,I) is reciprocally continuous. The inequity (3.1.4) holds. Further $H(\frac{1}{2}) = \frac{5+\frac{1}{2}}{11} = \frac{1}{2}$ and $J(\frac{1}{2}) = \frac{2\frac{1}{2}+1}{4} = \frac{1}{2}$. $\therefore H(\frac{1}{2}) = J(\frac{1}{2}) = (\frac{1}{2})$ where $\frac{1}{2} \in X$. And also $HJ(\frac{1}{2}) = \frac{1}{2}$ and $JH(\frac{1}{2}) = \frac{1}{2}$, $\implies HJ(\frac{1}{2}) = JH(\frac{1}{2}) = \frac{1}{2}$. Moreover, $H(\frac{1}{3}) = \frac{2-\frac{1}{3}}{5} = \frac{1}{3}$ and $J(\frac{1}{2}) = \frac{4\frac{1}{3}+1}{7} = \frac{1}{2}$. $\therefore H(\frac{1}{2}) = J(\frac{1}{2}) = (\frac{1}{2})$ where $\frac{1}{2} \in X$. And also $HJ(\frac{1}{3}) = \frac{1}{3}$ and $JH(\frac{1}{3}) = \frac{1}{3}$, $\implies HJ(\frac{1}{3}) = JH(\frac{1}{3}) = \frac{1}{3}$. Which shows that the pair(H,J) satisfies OWC.

So that the inequity (3.1.3) holds.

Further more $S_m(G\beta_k, G\beta_k, \beta_k) = S_m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = 1, S_m(I\beta_k, I\beta_k, \beta_k) = S_m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = 1$, when $k \to \infty$. Which implies $\lim_{k\to\infty} S_m(\beta_k, \beta_k, \eta) = \lim_{k\to\infty} S_m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = 1$,

CASE-I

Let $\alpha, \beta \in [0, \frac{1}{3}]$, while we have $S_m(\alpha, \beta, \gamma) = e^{|\alpha - \gamma| + |\beta - \gamma|}$ In the inequality (3.1.2) putting $\alpha = \frac{1}{3}$ and $\beta = \frac{1}{4}$ implies

$$\begin{split} S_m(0.375, 0.375, 0.36) &\leq \\ \left\{ max[S_m(0.375, 0.375, 0.28)S_m(0.36, 0.36, 0.286)S_m(0.375, 0.375, 0.286)S_m(0.36, 0.36, 0.28), \\ S_m(0.375, 0.375, 0.286)S_m(0.36, 0.36, 0.286), \\ S_m(0.375, 0.375, 0.28)S_m(0.36, 0.36, 0.286), \\ S_m(0.375, 0.375, 0.375, 0.375, 0.366) \\ S_m(0.375, 0.37$$

$$\implies e^{0.03} \le \left\{ \max[e^{0.19}e^{0.15}, e^{0.18}e^{0.16}, e^{0.18}e^{0.15}, e^{0.19}e^{0.16}] \right\}^{\lambda}$$

 $e^{0.03} \leq \{ \max[e^{0.34}, e^{0.34}, e^{0.33}, e^{0.35}] \}^{\lambda} \implies e^{0.03} \leq e^{0.35\lambda}$

which gives $\lambda = 0.08$, where $\lambda \in (0, \frac{1}{2})$.

CASE-II

Let $\alpha, \beta \in [\frac{1}{2}, 1]$, then $S_m(\alpha, \beta, \gamma) = e^{|\alpha - \gamma| + |\beta - \gamma|}$ In the inequality (3.1.2) putting $\alpha = \frac{2}{3}$ and $\beta = \frac{3}{4}$ implies

$$\begin{split} S_m(0.42, 0.42, 0.375) &\leq \\ \left\{ max[S_m(0.42, 0.42, 0.52)S_m(0.375, 0.375, 0.47)S_m(0.42, 0.42, 0.42)S_m(0.375, 0.375, 0.52), \\ S_m(0.42, 0.42, 0.47)S_m(0.375, 0.375, 0.47), \\ S_m(0.42, 0.42, 0.42)S_m(0.375, 0.375, 0.52)] \right\}^{\lambda} \\ &\implies e^{0.09} \leq \{ \max[e^{0.39}, e^{0.39}, e^{0.29}, e^{0.49}] \}^{\lambda} \implies e^{0.09} \leq e^{0.49\lambda} \end{split}$$

which gives $\lambda = 0.18$, where $\lambda \in (0, \frac{1}{2})$.

Hence the inequality (3.1.2) holds.

The verification in the remaining intervals is also simple. It can be observed that $\frac{1}{2}$ is a unique common fixed point of G,H,I and J.

5. CONCLUSION:

This article, aimed to prove a common fixed point theorem in S_m -metric space using conditions OWC, reciprocally continuous and faintly compatible mappings. Also proved the well- posed property. Further our result is supported with a suitable example.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- A.E. Bashirov, E.M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), 36–48.
- M. Özavşar, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, J. Eng. Technol. Appl. Sci. 2 (2017), 65–79.
- [3] V. Srinivas, K. Mallaiah, Some results on weaker class of compatible mappings in S-metric space, Malaya J. Mat. 8 (2020), 1132-1137.
- [4] V. Srinivas, K. Satyanna. Some results in Mnrger space by using sub compatible, faintly compatible mappings, Malaya J, Mat. 9 (2021), 725-730.

- [5] S. Sedghi, N. Shobkolaei, M. Shahraki, T. Došenović, Common fixed point of four maps in S-metric spaces, Math. Sci. 12 (2018), 137–143.
- [6] R.P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc. 90 (1998), 281-286.
- [7] V. Naga Raju Some properties of multiplicative s-metric spaces, Adv. Math.: Sci. J. 10 (2021), 105–109.
- [8] G. Jungck, B.E Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), 227-238.
- M.A. Al-Thagafi, N. Shahzad Generalized -non expansive self maps and invariant approximations Acta Math. Sin. (Engl. Ser.), 24 (2008), 867-876.
- [10] R.K. Bisht, N. Shahzad, Faintly compatible mappings and common fixed points, Fixed Point Theory Appl. 2013 (2013), 156.
- [11] F.S. de Blasi, J. Myjak, Sur la porosité de l'ensemble des contractions sans point fixe. C. R. Acad. Sci. Paris 308 (1989), 51–54.