COMMON FIXED POINT OF FOUR MAPS IN S_{m}-METRIC SPACE

V. SRINIVAS ${ }^{1, *}$, K. MALLAIAH ${ }^{2}$
${ }^{1}$ Department of Mathematics, UCS, Saifabad, OU,Hyderabad, Telangana, India
${ }^{2}$ Lecturer in Mathematics, JNGP, Ramanthapur, Hyderabad, Telangana, India
* Corresponding author: srinivasmaths4141@gmail.com

Abstract

In this paper, first, we deal with new metric space S_{m}-metric space that combines multiplicative metric space and S-metric space. We generate a common fixed point theorem in a S_{m}-metric space using the notions of reciprocally continuous mappings, faintly compatible mappings and occasionally weakly compatible mappings (OWC). We are also studying the well-posedness of S_{m} metric space. Further, some examples are presented to support our outcome.

1. Introduction

The idea of Multiplicative metric space(MMS for short) was first introduced by Bashirove [1] in 2008.Ozaksar and Cevical [2] investigated and proved the properties of MMS. Following that, several theorems like [3] and [4] in this area of MMS were developed. Sedhi.S et al. [5] introduced a new structure of S-metric space and developed some fixed point theorems. Pant et al. [6] used the concept of reciprocally continuous mappings which is weaker than continuous mappings. In this article, we use the multiplicative metric space and S metric space and generated a new S_{m}-metric space [7]. We used the concept of occasionally weakly compatible (OWC for shot) [9]mappings, reciprocally continuous and faintly compatible mappings [10] to generate a common fixed point theorem in S_{m}-metric space. We also discuss the well-posedness property [11] in S_{m}-metric space. Furthermore, some examples are provided to support our new findings.

Received August $23^{\text {rd }}$, 2021; accepted October $13^{\text {th }}, 2021$; published November $5^{\text {th }}, 2021$.
2010 Mathematics Subject Classification. 54H25.
Key words and phrases. Multiplicative metric space; S-metric space; S_{m}-metric space; occasionally weakly compatible; reciprocally continuous; faintly compatible mappings; well-posed property.

2. Mathematical Preliminaries:

Definition 2.1. [1] "Let $X \neq \phi$. An operator $\delta: X^{2} \rightarrow \mathbb{R}_{+}$be a multiplicative metric space (MMS) holding in the conditions below:
(M1) $\delta(\alpha, \beta) \geq 1$, and $\delta(\alpha, \beta)=1 \Longleftrightarrow \alpha=\beta$
$(\mathrm{M} 2) \delta(\alpha, \beta)=\delta(\beta, \alpha)$
(M3) $\delta(\alpha, \beta) \leq \delta(\alpha, \gamma) \delta(\gamma, \beta), \forall \alpha, \beta, \gamma \in X$.
Mapping δ together with $X,(X, \delta)$ is called a MMS".

A three-dimensional metric space was proposed by Sedghi et al . [5], and it is called S-metric space.

Definition 2.2. [5]" Let $X \neq \phi$ defined on a function $S: X^{3} \rightarrow[0, \infty)$ satisfying:
(S1) $S(\alpha, \beta, \gamma) \geq 0$;
(S2) $S(\alpha, \beta, \gamma)=0 ; \Longleftrightarrow \alpha=\beta=\gamma$,
(S3) $S(\alpha, \beta, \gamma) \leq S(\alpha, \alpha, \omega)+S(\beta, \beta, \omega)+S(\gamma, \gamma, \omega), \forall \alpha, \beta, \gamma, \omega \in X$.

The pair (X, S) is known as S -metric space on X ".

We now present the concept of S_{m}-metric space which is consolidation of multiplicative metric space defined by Bashirov [1] and S-metric space defined by Sedgi [5] by as follows

Definition 2.3. [7]" Let $X \neq \phi$. A function $S_{m}: X^{3} \rightarrow \mathbb{R}_{+}$holding the conditions below:
(MS1) $S_{m}(\alpha, \beta, \gamma) \geq 1$
(MS2) $S_{m}(\alpha, \beta, \gamma)=1 \Longleftrightarrow \alpha=\beta=\gamma$
(MS3) $S_{m}(\alpha, \beta, \gamma) \leq S_{m}(\alpha, \alpha, \omega) S_{m}(\beta, \beta, \omega) S_{m}(\gamma, \gamma, \omega), \forall \alpha, \beta, \gamma, \omega \in X$.
Mapping S_{m} together with $X,\left(X, S_{m}\right)$ is known as S_{m}-metric space."

Example 2.1. " Let $X \neq \phi, S_{m}: X^{3} \rightarrow[0, \infty)$ by
$S_{m}(\alpha, \beta, \gamma)=a^{|\alpha-\gamma|+|\beta-\gamma|}$, where $\alpha, \beta, \gamma, a \in X$, then $\left(X, S_{m}\right)$ is a S_{m}-metric space on X."

Example 2.2. Let $X=\mathbb{R}_{+}$, define $S_{m}: X^{3} \rightarrow[0, \infty)$ by
$S_{m}(\alpha, \beta, \gamma)=a^{|\beta+\gamma-2 \alpha|+|\beta-\gamma|}$, where $\alpha, \beta, \gamma \in X$, then $\left(X, S_{m}\right)$ is a S_{m}-metric space on X.

Now we present some definitions in S_{m}-metric space.

Definition 2.4. [7] Suppose $\left(X, S_{m}\right)$ is a S_{m}-metric space, a sequence $\left\{\alpha_{k}\right\} \in X$ is called (2.4.1) cauchy sequence $\Longleftrightarrow S_{m}\left(\alpha_{k}, \alpha_{k}, \alpha_{l}\right) \rightarrow 1$, for all $k, l \rightarrow \infty$;
(2.4.2) convergent $\Longleftrightarrow \exists \alpha \in X$ such that $S_{m}\left(\alpha_{k}, \alpha_{k}, \alpha\right) \rightarrow 1$ as $k \rightarrow \infty$;
(2.4.3) is complete if every cauchy sequence is convergent.

Definition 2.5. [8] " The mappings G and I be compatible mappings in S_{m}-metric space if $S_{m}\left(G I \alpha_{k}, G I \alpha_{k}, I G \alpha_{k}\right)=1$, whenever a sequence $\left\{\alpha_{k}\right\}$ in X such that $\lim _{k \rightarrow \infty} G \alpha_{k}=\lim _{k \rightarrow \infty} I \alpha_{k}=\eta$ for some $\eta \in X$. "

Definition 2.6. [8] "Let G and I be weakly compatible mappings in S_{m}-metric space if for all $\eta \in X$, $G \eta=I \eta \Longrightarrow G I \eta=I G \eta "$.

Definition 2.7. [9] "Suppose G and I are mappings in S_{m}-metric are said to be occasionally weakly compatible (OWC for shot) iff $\exists \eta \in X$ such that $G \eta=I \eta \Longrightarrow G I \eta=I G \eta$. "

Example 2.3. Let $X=[0, \infty)$ is a S_{m}-metric space on X, $S_{m}(\alpha, \beta, \gamma)=a^{|\alpha-\beta|+|\beta-\gamma|+|\gamma-\alpha|}$, for every $\alpha, \beta, \gamma \in X$.

Construct two self maps G and I as
$G(\alpha)=3 \alpha-2$ and $I(\alpha)=\alpha^{2}$.
Consider a sequence $\left\{\alpha_{k}\right\}$ given by $\alpha_{k}=2+\frac{1}{k}$ for $k \geq 0$.
$G\left(\alpha_{k}\right)=3\left(2+\frac{1}{k}\right)-2=4$ and $I\left(\alpha_{k}\right)=\left(2+\frac{1}{k}\right)^{2}=4$ as $k \rightarrow \infty$
Therefore $G \alpha_{k}=I \alpha_{k}=4 \neq \phi$.
Moreover, $G I\left(\beta_{k}\right)=G I\left(2+\frac{1}{k}\right)=G\left(2+\frac{1}{k}\right)^{2}=G\left(4+4 \frac{1}{k}+\frac{1}{k^{2}}\right)=3\left(4+4 \frac{1}{k}+\frac{1}{k^{2}}\right)-2=10$
and $I G\left(\beta_{k}\right)=I G\left(2+\frac{1}{k}\right)=I\left(3\left(2+\frac{1}{k}\right)-2\right)=I\left(4+\frac{3}{k}\right)=\left(4+\frac{3}{k}\right)^{2}=16$ as $k \rightarrow \infty$.
This gives $S_{m}\left(G I \alpha_{k}, G I \alpha_{k}, I G \alpha_{k}\right)=S_{m}(10,10,16) \neq 1$.
Hence, (G,I) is not compatible.
Now $G(1)=I(1)=1$ also $G I(1)=I G(1)=1 \Longrightarrow G I(1)=I G(1)$.
$G(2)=4, I(2)=4$ also $G I(2)=10, I G(2)=16 \Longrightarrow G I(2) \neq I G(2)$.
As a result G and I have OWC, but not weakly compatible.

Definition 2.8. [10]" Two self maps G and I in S_{m}-metric space as conditionally- compatible if there exists a sequence $\left\{\alpha_{k}\right\} \in X$ such that $G \alpha_{k}=I \alpha_{k} \neq \phi, \exists$ a sequence $\left\{\beta_{k}\right\} \in X$ such that $G \beta_{k}=I \beta_{k} \rightarrow \eta$ for some $\eta \in X$ and $S_{m}\left(G I \beta_{k}, G I \beta_{k}, I G \eta\right)=1$ as $k \rightarrow \infty$. "

Definition 2.9. [10]" Two self maps G and I in S_{m}-metric space are called as faintly compatible iff (G, I)is conditionally- compatible and G and I commute on a non -empty subset of the set of coincidence points if the collection of coincidence points is non- empty."

Definition 2.10. [6] "A reciprocally continuous mappings G and I of a S_{m}-metric space is defined as $S_{m}\left(G I \alpha_{k}, G I \alpha_{k}, I \eta\right)=1 a n d S_{m}\left(I G \alpha_{k}, I G \alpha_{k}, G \eta\right)=1$ letting $k \rightarrow \infty$ if there exists a sequence $\left\{\alpha_{k}\right\} \in X$ such that $\lim _{k \rightarrow \infty} G \alpha_{k}=\lim _{k \rightarrow \infty} I \alpha_{k}=\eta$ as $\eta \in X$. "

Example 2.4. Let $X=[0, \infty)$ is a S_{m}-metric space on X,
$S_{m}(\alpha, \beta, \gamma)=a^{|\alpha-\beta|+|\beta-\gamma|+|\gamma-\alpha|}$, for every $\alpha, \beta, \gamma \in X$.
Construct two self maps G and I as
$G(\alpha)=\alpha^{2}-3 \alpha+2$ and $I(\alpha)=3 \alpha^{2}-7 \alpha+2$.
Consider a sequence $\left\{\alpha_{k}\right\}$ given by $\alpha_{k}=2+\frac{1}{k}$ for $k \geq 0$.
then $G\left(\alpha_{k}\right)=\left(2+\frac{1}{k}\right)^{2}-3\left(2+\frac{1}{k}\right)+2=0$ and $I\left(\alpha_{k}\right)=3\left(2+\frac{1}{k}\right)^{2}-7\left(2+\frac{1}{k}\right)+2=0$ as $k \rightarrow \infty$ therefore $\lim _{k \rightarrow \infty} G \alpha_{k}=\lim _{k \rightarrow \infty} I \alpha_{k}=0 \neq \phi$.

Moreover, $G I\left(\alpha_{k}\right)=G I\left(2+\frac{1}{k}\right)=G\left[3\left(2+\frac{1}{k}\right)^{2}-7\left(2+\frac{1}{k}\right)+2\right]=G\left(\frac{3}{k^{2}}+\frac{5}{k}\right)=\left(\frac{3}{k^{2}}+\frac{5}{k}\right)^{2}-3\left(\frac{3}{k^{2}}+\frac{5}{k}\right)+2=2$ and $I G\left(\alpha_{k}\right)=I G\left(2+\frac{1}{k}\right)=I\left[\left(2+\frac{1}{k}\right)^{2}-3\left(2+\frac{1}{k}\right)+2\right]=I\left(\frac{1}{k^{2}}+\frac{1}{k}\right)=3\left(\frac{1}{k^{2}}+\frac{1}{k}\right)^{2}-7\left(\frac{1}{k^{2}}+\frac{1}{k}\right)+2=2$ as $k \rightarrow \infty$.
$\Longrightarrow S_{m}\left(G I \alpha_{k}, G I \alpha_{k}, I G \alpha_{k}\right)=S_{m}(2,2,2)=1$. Hence, (G, I) is compatible.
Consider another sequence $\left\{\beta_{k}\right\}$ given by $\beta_{k}=\frac{1}{k}$ for $k \geq 0$.
$G\left(\beta_{k}\right)=\left(\frac{1}{k^{2}}-\frac{3}{k}+2\right)=2$ and $I\left(\beta_{k}\right)=\left(\frac{3}{k^{2}}-\frac{7}{k}+2\right)=2$ as $k \rightarrow \infty$
therefore $\lim _{k \rightarrow \infty} G \beta_{k}=\lim _{k \rightarrow \infty} I \beta_{k}=2$.
Further $G I\left(\beta_{k}\right)=G I\left(\frac{1}{k}\right)=G\left(\frac{3}{k^{2}}-\frac{7}{k}+2\right)=\left(\frac{3}{k^{2}}-\frac{7}{k}+2\right)^{2}-3\left(\frac{3}{k^{2}}-\frac{7}{k}+2\right)+2=0$ and $I G\left(\beta_{k}\right)=I G\left(\frac{1}{k}\right)=$
$I\left(\frac{1}{k^{2}}-\frac{3}{k}+2\right)=3\left(\frac{1}{k^{2}}-\frac{3}{k}+2\right)-7\left(\frac{1}{k^{2}}-\frac{3}{k}+2\right)+2=-6$ as $k \rightarrow \infty$.
This gives $S_{m}\left(G I \alpha_{k}, I G \alpha_{k}, \eta\right)=S_{m}(0,0,-6) \neq 1$.
the pair (G,I) is not compatible
Hence (G,I) is conditionally compatible.
Compatibility is distinct from the concept of conditional compatibility,
Now $G(2)=0, I(2)=0$ and $G I(2)=2, I G(2)=2$.
Also $G(0)=I(0)=2$ and $G I(0)=I G(0)=0$.
Hence the pair (G,I) is faintly compatible.
As a result, the mappings G and I have faintly compatible, but they are not compatible.

Definition 2.11. [11] "The mappings G and I of a S_{m}-metric space are called well-posed if

- G and I have a unique common fixed point η in X
- If $\alpha_{k} \in X$ such that $S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right)=1$ and $S_{m}\left(I \alpha_{k}, I \alpha_{k}, \alpha_{k}\right)=1$ as $k \rightarrow \infty$ we have $S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right)=1$ as $k \rightarrow \infty . "$

3. MAIN THEOREM

Theorem:

Suppose G, H, I and J are self-mapping in a complete S_{m}-metric space X, suppose that there exist $\lambda \in\left(0, \frac{1}{2}\right)$ such that the conditions
(3.1.1) $G(X) \subseteq J(X)$ and $H(X) \subseteq I(X)$

$$
\begin{aligned}
S_{m}(G \alpha, G \alpha, H \beta) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \alpha, G \alpha, I \alpha) S_{m}(H \beta, H \beta, J \beta), S_{m}(G \alpha, G \alpha, J \beta) S_{m}(I \alpha, I \alpha, H \beta)\right.\right. \\
& \left.\left.S_{m}(G \alpha, G \alpha, J \beta) S_{m}(H \beta, H \beta, J \beta), S_{m}(G \alpha, G \alpha, I \alpha) S_{m}(H \beta, H \beta, I \alpha)\right]\right\}^{\lambda}
\end{aligned}
$$

(3.1.3) the pair (H, J) is OWC
(3.1.4) and the pair (G,I) is reciprocally continuous and faintly compatible.

Then the common fixed point problem of G, H, I and J is Well-posed.

Proof:

We begin with using (3.1.1), then there is a point $\alpha_{0} \in X$, such that
$G \alpha_{0}=J \alpha_{1}=\beta_{0}$. For this point α_{1} then there $\exists \alpha_{2} \in X$ such that $H \alpha_{1}=I \alpha_{2}=\beta_{1}$.
In general, by induction choose α_{k+1} so that

$$
\beta_{2 k}=G \alpha_{2 k}=J \alpha_{2 k+1} \text { and } \beta_{2 k+1}=H \alpha_{2 k+1}=I \alpha_{2 k+2} \text { for } k \geq 0
$$

We show that $\left\{\beta_{k}\right\}$ is a cauchy sequence in S_{m} - metric space.
Indeed, it follows that $S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right)=$

$$
\begin{aligned}
S_{m}\left(G \alpha_{2 k}, G \alpha_{2 k}, H \alpha_{2 k+1}\right) \leq \max & \left\{S_{m}\left(G \alpha_{2 k}, G \alpha_{2 k}, I \alpha_{2 k}\right) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, J \alpha_{2 k+1}\right),\right. \\
& S_{m}\left(G \alpha_{2 k}, G \alpha_{2 k}, J \alpha_{2 k+1}\right) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, I \alpha_{2 k}\right), \\
& S_{m}\left(G \alpha_{2 k}, G \alpha_{2 k}, J \alpha_{2 k+1}\right) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, J \alpha_{2 k+1}\right), \\
& \left.S_{m}\left(G \alpha_{2 k}, G \alpha_{2 k}, I \alpha_{2 k}\right) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, I \alpha_{2 k}\right)\right\}^{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right) \leq \max & \left\{S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k-1}\right) S_{m}\left(\beta_{2 k+1}, \beta_{2 k+1}, \beta_{2 k}\right),\right. \\
& S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k}\right) S_{m}\left(\beta_{2 k+1}, \beta_{2 k+1}, \beta_{2 k-1}\right), \\
& S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k}\right) S_{m}\left(\beta_{2 k+1}, \beta_{2 k+1}, \beta_{2 k}\right), \\
& \left.S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k-1}\right) S_{m}\left(\beta_{2 k+1}, \beta_{2 k+1}, \beta_{2 k-1}\right)\right\}^{\lambda}
\end{aligned}
$$

on simplification

$$
\begin{gathered}
S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right) \leq S_{m}\left(\beta_{2 k-1}, \beta_{2 k-1}, \beta_{2 k+1}\right)^{\lambda} . \\
S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right) \leq\left\{S_{m}\left(\beta_{2 k-1}, \beta_{2 k-1}, \beta_{2 k}\right) S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right)\right\}^{\lambda} . \\
S_{m}^{1-\lambda}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right) \leq S_{m}^{\lambda}\left(\beta_{2 k-1}, \beta_{2 k-1}, \beta_{2 k}\right) . \\
S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right) \leq S_{m}^{\frac{\lambda}{1-\lambda}}\left(\beta_{2 k-1}, \beta_{2 k-1}, \beta_{2 k}\right) . \\
S_{m}\left(\beta_{2 k}, \beta_{2 k}, \beta_{2 k+1}\right) \leq S_{m}^{p}\left(\beta_{2 k-1}, \beta_{2 k-1}, \beta_{2 k}\right) . \text { where } p=\frac{\lambda}{1-\lambda}
\end{gathered}
$$

Now this gives

$$
S_{m}\left(\beta_{k}, \beta_{k}, \beta_{k+1}\right) \leq S_{m}^{p}\left(\beta_{k-1}, \beta_{k-1}, \beta_{k}\right) \leq S_{m}^{p^{2}}\left(\beta_{k-2}, \beta_{k-2}, \beta_{k-1}\right) \leq \cdots S_{m}^{p^{n}}\left(\beta_{0}, \beta_{0}, \beta_{n}\right)
$$

By using triangular inequality,

$$
S_{m}\left(\beta_{k}, \beta_{k}, \beta_{n}\right) \leq S_{m}^{p^{k}}\left(\beta_{0}, \beta_{0}, \beta_{l}\right) \leq S_{m}^{p^{k+1}}\left(\beta_{0}, \beta_{0}, \beta_{n}\right) \leq \cdots S_{m}^{p^{n-1}}\left(\beta_{0}, \beta_{0}, \beta_{n}\right)
$$

Hence $\left\{\beta_{k}\right\}$ is a cauchy sequence in S_{m}-metric space.
Now X being complete in S_{m}-metric space $\exists \eta \in X$ such that $\lim _{k \rightarrow \infty} \beta_{k} \rightarrow \eta$.
Consequently, the sub sequences $\left\{G \alpha_{2 k}\right\},\left\{I \alpha_{2 k}\right\},\left\{J \alpha_{2 k+1}\right\}$ and $\left\{H \alpha_{2 k+1}\right\}$ of $\left\{\beta_{k}\right\}$ also converges to the point $\eta \in X$.

Since the pair (G,I) is faintly compatible mappings, so that \exists another sequence $\nu_{k} \in X$ such that $\lim _{k \rightarrow \infty} G \nu_{k}=\lim { }_{k \rightarrow \infty} I \nu_{k}=\omega$ for $\omega \in X$ satisfying

$$
\begin{gathered}
\lim m_{k \rightarrow \infty} S\left(G I \nu_{k}, G I \nu_{k}, I G \nu_{k}\right)=1 \text { and the pair }(\mathrm{G}, \mathrm{I}) \text { is reciprocally continuous } \\
S_{m}\left(G I \nu_{k}, G I \nu_{k}, I \omega\right)=1 \text {, and } S_{m}\left(I G \nu_{k}, I G \nu_{k}, G \omega\right)=1 \text {. as } k \rightarrow \infty .
\end{gathered}
$$

$$
\begin{equation*}
G \omega=I \omega \tag{3.1}
\end{equation*}
$$

On putting $\alpha=\omega$ and $\beta=\alpha_{2 k+1}$ in (3.1.2) we get

$$
\begin{aligned}
S_{m}\left(G \omega, G \omega, H \alpha_{2 k+1}\right) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \omega, G \omega, I \omega) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, J \alpha_{2 k+1}\right),\right.\right. \\
& S_{m}\left(G \omega, G \omega, J \alpha_{2 k+1}\right) S_{m}\left(I \omega, I \eta, H \alpha_{2 k+1}\right), \\
& S_{m}\left(G \omega, G \omega, J \alpha_{2 k+1}\right) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, J \alpha_{2 k+1}\right), \\
& \left.\left.S_{m}(G \omega, G \omega, I \omega) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, I \omega\right)\right]\right\}^{\lambda}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{m}(G \omega, G \omega, \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \omega, G \omega, I \omega) S_{m}(\eta, \eta, \eta), S_{m}(G \omega, G \omega, \eta) S_{m}(I \omega, I \omega, \eta),\right.\right. \\
& \left.\left.S_{m}(G \omega, G \omega, \eta) S^{*}(\eta, \eta, \eta), S_{m}(G \omega, G \omega, I \omega) S_{m}(\eta, \eta, I \omega)\right]\right\}^{\lambda}
\end{aligned}
$$

which gives

$$
\begin{aligned}
S_{m}(G \omega, G \omega, \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \omega, G \omega, G \omega) S_{m}(\eta, \eta, \eta), S_{m}(G \omega, G \omega, \eta) S_{m}(G \omega, G \omega, \eta),\right.\right. \\
& \left.\left.S_{m}(G \omega, G \omega, \eta) S_{m}(\eta, \eta, \eta), S_{m}(G \omega, G \omega, G \omega) S_{m}(\eta, \eta, G \omega)\right]\right\}^{\lambda}
\end{aligned}
$$

implies

$$
S_{m}(G \omega, G \omega, \eta) \leq\left\{\max \left[1, S_{m}^{2}(G \omega, G \omega, \eta), S_{m}(G \omega, G \omega, \eta), S_{m}(G \omega, G \omega, \eta)\right]\right\}^{\lambda}
$$

this gives

$$
S_{m}(G \omega, G \omega, \eta) \leq\left\{S_{m}^{2 \lambda}(G \omega, G \omega, \eta)\right\}
$$

this implies $G \omega=\eta$.

$$
\begin{equation*}
\text { therefore } G \omega=I \omega=\eta \text {. } \tag{3.2}
\end{equation*}
$$

Since the pair (G,I) is faintly compatible, so that $G \omega=I \omega$ this gives $G I \omega=I G \omega$ this implies $G \eta=I \eta$.

By using the inequality (3.1.2) on putting $\alpha=\eta$ and $\beta=\alpha_{2 k+1}$ we get

$$
\begin{aligned}
S_{m}\left(G \eta, G \eta, H \alpha_{2 k+1}\right) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \eta, G \eta, I \eta) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, J \alpha_{2 k+1}\right)\right.\right. \\
& S_{m}\left(G \eta, G \eta, J \alpha_{2 k+1}\right) S_{m}\left(I \eta, I \eta, H \alpha_{2 k+1}\right) \\
& S_{m}\left(G \eta, G \eta, J \alpha_{2 k+1}\right) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, J \alpha_{2 k+1}\right) \\
& \left.\left.S_{m}(G \eta, G \eta, I \eta) S_{m}\left(H \alpha_{2 k+1}, H \alpha_{2 k+1}, I \eta\right)\right]\right\}^{\lambda}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{m}(G \eta, G \eta, \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \eta, G \eta, I \eta) S_{m}(\eta, \eta, \eta), S_{m}(G \eta, G \eta, \eta) S_{m}(I \eta, I \eta, \eta)\right.\right. \\
& \left.\left.\left.S_{m}(G \eta, G \eta, \eta) S_{m}(\eta, \eta, \eta), S_{m}(G \eta, G \eta, I \eta) S_{m} \eta, \eta, I \eta\right)\right]\right\}^{\lambda}
\end{aligned}
$$

which gives

$$
\begin{aligned}
S_{m}(G \eta, G \eta, \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \eta, G \eta, G \eta) S_{m}(\eta, \eta, \eta), S_{m}(G \eta, G \eta, \eta) S_{m}(G \eta, G \eta, \eta)\right.\right. \\
& \left.\left.S_{m}(G \eta, G \eta, \eta) S_{m}(\eta, \eta, \eta), S_{m}(G \eta, G \eta, G \eta) S_{m}(\eta, \eta, G \eta)\right]\right\}^{\lambda}
\end{aligned}
$$

implies

$$
S_{m}(G \eta, G \eta, \eta) \leq\left\{\max \left[1, S_{m}^{2}(G \eta, G \eta, \eta), S_{m}(G \eta, G \eta, \eta), S_{m}(G \eta, G \eta, \eta)\right]\right\}^{\lambda}
$$

which implies

$$
\begin{align*}
S_{m}(G \eta, G \eta, \eta) & \leq\left\{S_{m}^{2 \lambda}(G \eta, G \eta, \eta)\right\} \\
& \Longrightarrow G \eta=\eta \tag{3.3}
\end{align*}
$$

$$
\begin{equation*}
\Longrightarrow \eta=G \eta \in G(X) \subseteq J(X) \Longrightarrow G \eta=J v \text { for some } v \in X \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
G \eta=I \eta=J v=\eta \tag{3.5}
\end{equation*}
$$

Using the inequality (3.1.2) on putting $\alpha=\eta$ and $\beta=v$ we have

$$
\begin{aligned}
S_{m}(G \eta, G \eta, H v) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \eta, G \eta, I \eta) S_{m}(H v, H v, J v), S_{m}(G \eta, G \eta, J v) S_{m}(I \eta, I \eta, H v)\right.\right. \\
& \left.\left.S_{m}(G \eta, G \eta, J v) S_{m}(H v, H v, J v), S_{m}(G \eta, G \eta, I \eta) S_{m}(H v, H v, I \eta)\right]\right\}^{\lambda}
\end{aligned}
$$

this implies

$$
\begin{aligned}
S_{m}(\eta, \eta, H v) \leq & \left\{\operatorname { m a x } \left[S_{m}(\eta, \eta, \eta) S_{m}(H v, H v, \eta), S_{m}(\eta, \eta, \eta) S_{m}(\eta, \eta, H v)\right.\right. \\
& \left.\left.S_{m}(\eta, \eta, \eta) S_{m}(H v, H v, \eta), S_{m}(\eta, \eta, \eta) S_{m}(H v, H v, \eta)\right]\right\}^{\lambda}
\end{aligned}
$$

which implies

$$
S_{m}(\eta, \eta, H v) \leq\left\{\max \left[S_{m}(H v, H v, \eta), S_{m}(\eta, \eta, H v), \quad S_{m}(H v, H v, \eta), S_{m}(H v, H v, \eta)\right]\right\}^{\lambda}
$$

this gives

$$
S_{m}(\eta, \eta, H v) \leq\left\{S_{m}(H v, H v, \eta)\right\}^{\lambda}
$$

which gives $H v=\eta$.

$$
\begin{equation*}
G \eta=I \eta=J v=H v=\eta \tag{3.6}
\end{equation*}
$$

Again (H, J) is OWC with $v \in X$ so that $H v=J v \Longrightarrow H J v=J H v$ which implies that $H \eta=J \eta$.

Using the inequality (3.1.2) and take $\alpha=\eta$ and $\beta=\eta$ we get

$$
\begin{aligned}
S_{m}(G \eta, G \eta, H \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \eta, G \eta, I \eta) S_{m}(H \eta, H \eta, J \eta), S_{m}(G \eta, G \eta, J \eta) S_{m}(I \eta, I \eta, H \eta)\right.\right. \\
& \left.\left.S_{m}(G \eta, G \eta, J \eta) S_{m}(H \eta, H \eta, J \eta), S_{m}(G \eta, G \eta, I \eta) S_{m}(H \eta, H \eta, I \eta)\right]\right\}^{\lambda}
\end{aligned}
$$

this implies

$$
\begin{aligned}
S_{m}(\eta, \eta, H \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(\eta, \eta, \eta) S_{m}(H \eta, H \eta, \eta), S_{m}(\eta, \eta, \eta) S_{m}(\eta, \eta, H \eta)\right.\right. \\
& \left.\left.S_{m}(\eta, \eta, \eta) S_{m}(H \eta, H \eta, \eta), S_{m}(\eta, \eta, \eta) S_{m}(H \eta, H \eta, \eta)\right]\right\}^{\lambda}
\end{aligned}
$$

where

$$
S_{m}(\eta, \eta, H \eta) \leq\left\{\max \left[S_{m}(H \eta, H \eta, \eta), S_{m}(\eta, \eta, H \eta), S_{m}(H \eta, H \eta, \eta), S_{m}(H \eta, H \eta, \eta)\right]\right\}^{\lambda}
$$

this gives

$$
S_{m}(\eta, \eta, H \eta) \leq\left\{S_{m}(H \eta, H \eta, \eta)\right\}^{\lambda}
$$

this gives $H \eta=\eta$.

$$
\begin{equation*}
H \eta=J \eta=\eta \tag{3.7}
\end{equation*}
$$

From(3.4) and (3.7)

$$
\begin{equation*}
G \eta=I \eta=J \eta=H \eta=\eta \tag{3.8}
\end{equation*}
$$

$\Longrightarrow \quad \eta$ is a common fixed point for the mappings G,H,I and J.
For the proof of well-posed property
Suppose $\rho(\rho \neq \eta)$ is one more fixed point of G,I,H and J
i.e $G \rho=I \rho=H \rho=J \rho=\rho$.

Using the inequality (3.1.2) take $\alpha=\rho$ and $\beta=\eta$ we have

$$
\begin{aligned}
S_{m}(G \rho, G \rho, H \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(G \rho, G \rho, I \eta) S_{m}(H \eta, H \eta, J \eta), S_{m}(G \rho, G \rho, J \eta) S_{m}(I \rho, I \rho, H \eta),\right.\right. \\
& \left.\left.S_{m}(G \rho, G \rho, J \eta) S_{m}(H \eta, H \eta, J \eta), S_{m}(G \rho, G \rho, I \rho) S_{m}(H \eta, H \eta, I \rho)\right]\right\}^{\lambda}
\end{aligned}
$$

this gives

$$
\begin{aligned}
S_{m}(\rho, \rho, \eta) \leq & \left\{\operatorname { m a x } \left[S_{m}(\rho, \rho, \eta) S_{m}(\eta, \eta, \eta), S_{m}(\rho, \rho, \eta) S_{m}(\rho, \rho, \eta)\right.\right. \\
& \left.\left.S_{m}(\rho, \rho, \eta) S_{m}(\eta, \eta, \eta), S_{m}(\rho, \rho, \rho) S_{m}(\eta, \eta, \rho)\right]\right\}^{\lambda}
\end{aligned}
$$

this gives

$$
S_{m}(\rho, \rho, \eta) \leq\left\{\max \left[1, S_{m}(\rho, \rho, \eta), 1,1\right]\right\}^{\lambda}
$$

which gives

$$
\therefore S_{m}(\rho, \rho, \eta) \leq S_{m}(\rho, \rho, \eta)^{\lambda}
$$

This gives $\rho=\eta$.
Hence η is the unique common fixed point of G,H,I and J
Suppose $\left\{\alpha_{k}\right\}$ be a sequence in X such that
$S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right)=S_{m}\left(I \alpha_{k}, I \alpha_{k}, \alpha_{k}\right)=1$
and $S_{m}\left(H \alpha_{k}, H \alpha_{k}, \alpha_{k}\right)=S_{m}\left(J \alpha_{k}, J \alpha_{k}, \alpha_{k}\right)=1$ as $k \rightarrow \infty$.
We have to show that $S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right)=1, S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) \leq S_{m}\left(G \alpha_{k}, G \alpha_{k}, \eta\right) S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right)$

$$
\begin{aligned}
& S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}\left(G \alpha_{k}, G \alpha_{k}, I \alpha_{k}\right) S_{m}(H \eta, H \eta, J \eta), S_{m}\left(G \alpha_{k}, G \alpha_{k}, J \eta\right) S_{m}\left(I \alpha_{k}, I \alpha_{k}, H \eta\right)\right.\right. \\
& \left.\left.S_{m}\left(G \alpha_{k}, G \alpha_{k}, J \eta\right) S_{m}(H \eta, H \eta, J \eta), S_{m}\left(G \alpha_{k}, G \alpha_{k}, I \alpha_{k}\right) S_{m}\left(H \eta, H \eta, I \alpha_{k}\right)\right]\right\}^{\lambda} S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right)
\end{aligned}
$$

this gives

$$
\begin{aligned}
& S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}\left(G \alpha_{k}, G \alpha_{k}, G \eta\right) S_{m}\left(I \alpha_{k}, I \alpha_{k}, I \eta\right) S_{m}(H \eta, H \eta, J \eta), S_{m}\left(G \alpha_{k}, G \alpha_{k}, J \eta\right) S_{m}\left(I \alpha_{k}, I \alpha_{k}, H \eta\right),\right.\right. \\
& \left.\left.S_{m}\left(G \alpha_{k}, G \alpha_{k}, J \eta\right) S_{m}(H \eta, H \eta, J \eta), S_{m}\left(G \alpha_{k}, G \alpha_{k}, I \alpha_{k}\right) S_{m}\left(H \eta, H \eta, I \alpha_{k}\right)\right]\right\}^{\lambda} S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right)
\end{aligned}
$$

which gives

$$
\begin{aligned}
& S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) \leq \\
& \left\{\max \left[S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right)\right) S_{m}(\eta, \eta, \eta), S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right)\right. \\
& \left.\left.S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) S_{m}(\eta, \eta, \eta), S_{m}\left(\alpha_{k}, \alpha_{k}, \alpha_{k}\right) S_{m}\left(\eta, \eta, \alpha_{k}\right)\right]\right\}^{\lambda} S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right)
\end{aligned}
$$

therefore

$$
\begin{gathered}
S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) \leq\left\{S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right)\right\}^{\lambda} S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right) \\
S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right)^{1-\lambda} \leq S_{m}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right) \\
S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right) \leq S_{m}^{\frac{1}{1-\lambda}}\left(G \alpha_{k}, G \alpha_{k}, \alpha_{k}\right) \\
S_{m}\left(\alpha_{k}, \alpha_{k}, \eta\right)=1 \text { as } k \rightarrow \infty
\end{gathered}
$$

Thus G,H,I and J is well-posed.

4. Example

Suppose $X=[0,1], S_{m^{-}}$metric space by $S_{m}(\alpha, \beta, \gamma)=e^{|\alpha-\beta|+|\beta-\gamma|+|\gamma-\alpha|}$, when $\alpha, \beta, \gamma \in X$. Define G ,I ,H J: $X x X \rightarrow X$ as follows

$$
G(\alpha)=\left\{\begin{array}{ll}
\frac{1-\alpha}{2} & \text { if } 0 \leq \alpha \leq \frac{1}{3} \\
\frac{3-2 \alpha}{4} & \text { if } \frac{1}{3}<\alpha \leq 1
\end{array} \quad J(\alpha)= \begin{cases}\frac{1+4 \alpha}{7} & \text { if } 0 \leq \alpha \leq \frac{1}{3} \\
\frac{2 \alpha+1}{4} & \text { if } \frac{1}{3}<\alpha \leq 1\end{cases}\right.
$$

and

$$
H(\alpha)=\left\{\begin{array}{ll}
\frac{2-\alpha}{5} & \text { if } 0 \leq \alpha \leq \frac{1}{3} \\
\frac{3-2 \alpha}{4} & \text { if } \frac{1}{3}<\alpha \leq 1
\end{array} \quad I(\alpha)= \begin{cases}\frac{2 \alpha+1}{5} & \text { if } 0 \leq \alpha \leq \frac{1}{3} \\
\frac{\alpha+5}{11} & \text { if } \frac{1}{3}<\alpha \leq 1\end{cases}\right.
$$

Then $\mathrm{G}(\mathrm{X})=\left(\frac{7}{12}, \frac{1}{4}\right]$ and $\mathrm{J}(\mathrm{X})=\left[\frac{1}{7}, \frac{1}{3}\right] \cup\left(\frac{5}{12}, \frac{3}{4}\right]$.
And also $\mathrm{H}(\mathrm{X})=\left(\frac{7}{21}, \frac{1}{4}\right]$ and $\mathrm{I}(\mathrm{X})=\left[\frac{1}{5}, \frac{1}{3}\right] \cup\left(\frac{16}{33}, \frac{6}{11}\right]$
thisimpliesimplies $G(X) \subseteq J(X)$ and $H(X) \subseteq I(X)$ hence the inequality (3.1.1) holds.
Take a sequence $\left\{\alpha_{k}\right\}$ as $\alpha_{k}=\frac{1}{2}+\frac{1}{k}$ as $\mathrm{k} \geq 0$.
Now $G\left(\alpha_{k}\right)=G\left(\frac{1}{2}+\frac{1}{k}\right)=\frac{3-2\left(\frac{1}{2}+\frac{1}{k}\right)}{4}=\frac{1}{2}$ and $J\left(\alpha_{k}\right)=J\left(\frac{1}{2}+\frac{1}{k}\right)=\frac{2\left(\frac{1}{2}+\frac{1}{k}\right)+1}{4}=\frac{1}{2}$.
And also $H\left(\alpha_{k}\right)=H\left(\frac{1}{2}+\frac{1}{k}\right)=\frac{3-2\left(\frac{1}{2}+\frac{1}{k}\right)}{4}=\frac{1}{2}$ and $I\left(\alpha_{k}\right)=I\left(\frac{1}{2}+\frac{1}{k}\right)=\frac{5+\left(\frac{1}{2}+\frac{1}{k}\right)}{11}=\frac{1}{2}$.
$\therefore G \alpha_{k}=J \alpha_{k}=\frac{1}{2}$ and $H \alpha_{k}=J \alpha_{k}=\frac{1}{2}$ as $k \rightarrow \infty$.
then $G I\left(\alpha_{k}\right)=G I\left(\frac{1}{2}+\frac{1}{k}\right)=G\left(\frac{1}{2}+\frac{1}{11 k}\right)=\frac{3-2\left(\frac{1}{2}+\frac{1}{11 k}\right)}{4}=\frac{1}{2}$ and $I G\left(\alpha_{k}\right)=I G\left(\frac{1}{2}+\frac{1}{k}\right)=I\left(\frac{1}{2}-\frac{1}{2 k}\right)=$ $\frac{5+\left(\frac{1}{2}-\frac{1}{2 k}\right)}{11}=\frac{1}{2}$ as $k \rightarrow \infty$.
$H J\left(\alpha_{k}\right)=H J\left(\frac{1}{2}+\frac{1}{k}\right)=H\left(\frac{5+\left(\frac{1}{2}+\frac{1}{k}\right)}{11}\right)=H\left(\frac{1}{2}+\frac{1}{11 k}\right)=\frac{3-2\left(\frac{1}{2}+\frac{1}{11 K}\right)}{4}=\frac{1}{2}$
and $J H\left(\alpha_{k}\right)=J H\left(\frac{1}{2}+\frac{1}{k}\right)=J\left(\frac{3-2\left(\frac{1}{2}+\frac{1}{k}\right)}{4}\right)=I\left(\frac{1}{2}-\frac{1}{2 k}\right)=\frac{1+2\left(\frac{1}{2}-\frac{1}{2 k}\right)}{4}=\frac{1}{2}$ as $k \rightarrow \infty$.
$\lim _{k \rightarrow \infty} S_{m}\left(G I \alpha_{k}, G I \alpha_{k}, I G \alpha_{k}\right)=S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=1$ and
$\lim _{k \rightarrow \infty} S_{m}\left(H J \alpha_{k}, H J \alpha_{k}, J H \alpha_{k}\right)=S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=1$
Hence the pairs (G,I) and (H,J) are satisfies compatible property .
Take another sequence $\left\{\beta_{k}\right\}$ as $\beta_{k}=\frac{1}{3}-\frac{1}{k}$ as $\mathrm{k} \geq 0$.
Now $G\left(\beta_{k}\right)=G\left(\frac{1}{3}-\frac{1}{k}\right)=\frac{1-\left(\frac{1}{3}-\frac{1}{k}\right)}{2}=\frac{1}{3}=$ and $I\left(\beta_{k}\right)=I\left(\frac{1}{3}-\frac{1}{k}\right)=\frac{2+\left(\frac{1}{3}-\frac{1}{k}\right)}{5}=\frac{1}{3}$.
And also $H\left(\beta_{k}\right)=H\left(\frac{1}{3}-\frac{1}{k}\right)=\frac{2-\left(\frac{1}{3}-\frac{1}{k}\right)}{5}=\frac{1}{3}$ and $J\left(\beta_{k}\right)=J\left(\frac{1}{3}-\frac{1}{k}\right)=\frac{4\left(\frac{1}{3}-\frac{1}{k}\right)+1}{7}=\frac{1}{3}$ as $k \rightarrow \infty$.
$\therefore G \beta_{k}=I \beta_{k}=\frac{1}{3}=\eta$ similarly $H \beta_{k}=J \beta_{k}=\frac{1}{3}=\eta$ as $k \rightarrow \infty$.
Further $G I\left(\beta_{k}\right)=G I\left(\frac{1}{3}-\frac{1}{k}\right)=G\left(\frac{2\left(\frac{1}{3}-\frac{1}{k}\right)+1}{5}\right)=\mathrm{G}\left(\frac{1}{3}-\frac{2}{5 k}\right)=\frac{1-\left(\frac{1}{3}-\frac{2}{5 k}\right)}{2}=\frac{1}{3}$ and $I G\left(\left(\beta_{k}\right)=I G\left(\frac{1}{3}-\frac{1}{k}\right)=\mathrm{I}\left(\frac{1-\left(\frac{1}{3}-\frac{1}{k}\right.}{2}\right)=\mathrm{I}\left(\frac{1}{3}+\frac{1}{2 k}\right)=\frac{5+\left(\frac{1}{3}+\frac{1}{2 k}\right)}{11}=\frac{16}{33} H J\left(\beta_{k}\right)=H J\left(\frac{1}{3}-\frac{1}{k}\right)=H\left(\frac{4\left(\frac{1}{3}-\frac{1}{k}\right)+1}{7}=\right.\right.$ $H\left(\frac{1}{3}-\frac{4}{7 k}\right)=\frac{2-\left(\frac{1}{3}+\frac{4}{7 k}\right)}{11}=\frac{1}{3}$
and $J H\left(\beta_{k}\right)=J H\left(\frac{1}{3}-\frac{1}{k}\right)=J\left(\frac{2-\left(\frac{1}{3}-\frac{1}{k}\right.}{5}\right)=J\left(\frac{1}{3}+\frac{1}{5 k}\right)=\frac{2\left(\frac{1}{3}+\frac{1}{5 k}\right)+1}{4}=\frac{5}{12}$ as $k \rightarrow \infty$.
this implies $\lim _{k \rightarrow \infty} S_{m}\left(G I \beta_{k}, G I \beta_{k}, I G \beta_{k}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{66}{33}\right) \neq 1$ which shows that the pairs (G,I) is faintly compatible mappings. Moreover $I\left(\frac{1}{2}\right)=\frac{1}{2}$ and $G\left(\frac{1}{2}\right)=\frac{1}{2}$ and also
$\lim _{k \rightarrow \infty} S_{m}\left(G I \alpha_{k}, G I \alpha_{k}, I w\right)=S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=1 \lim _{k \rightarrow \infty} S_{m}\left(I G \alpha_{k}, I G \alpha_{k}, G w\right)=S_{m}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=1$ this shows that the pairs (G,I) is reciprocally continuous. The inequity (3.1.4) holds.
Further $H\left(\frac{1}{2}\right)=\frac{5+\frac{1}{2}}{11}=\frac{1}{2}$ and $J\left(\frac{1}{2}\right)=\frac{2 \frac{1}{2}+1}{4}=\frac{1}{2} . \therefore H\left(\frac{1}{2}\right)=J\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)$ where $\frac{1}{2} \in X$.
And also $H J\left(\frac{1}{2}\right)=\frac{1}{2}$ and $J H\left(\frac{1}{2}\right)=\frac{1}{2}, \Longrightarrow H J\left(\frac{1}{2}\right)=J H\left(\frac{1}{2}\right)=\frac{1}{2}$. Moreover, $H\left(\frac{1}{3}\right)=\frac{2-\frac{1}{3}}{5}=\frac{1}{3}$ and $J\left(\frac{1}{3}\right)=\frac{4 \frac{1}{3}+1}{7}=\frac{1}{3} . \therefore H\left(\frac{1}{3}\right)=J\left(\frac{1}{3}\right)=\left(\frac{1}{3}\right)$ where $\frac{1}{3} \in X$.
And also $H J\left(\frac{1}{3}\right)=\frac{1}{3}$ and $J H\left(\frac{1}{3}\right)=\frac{1}{3}, \Longrightarrow H J\left(\frac{1}{3}\right)=J H\left(\frac{1}{3}\right)=\frac{1}{3}$. Which shows that the pair (H, J) satisfies OWC.

So that the inequity (3.1.3) holds.
Further more $S_{m}\left(G \beta_{k}, G \beta_{k}, \beta_{k}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1, S_{m}\left(I \beta_{k}, I \beta_{k}, \beta_{k}\right)=S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1$, when $k \rightarrow \infty$. Which implies $\lim _{k \rightarrow \infty} S_{m}\left(\beta_{k}, \beta_{k}, \eta\right)=\lim _{k \rightarrow \infty} S_{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=1$,

CASE-I

Let $\alpha, \beta \in\left[0, \frac{1}{3}\right]$,while we have $S_{m}(\alpha, \beta, \gamma)=e^{|\alpha-\gamma|+|\beta-\gamma|}$
In the inequality (3.1.2) putting $\alpha=\frac{1}{3}$ and $\beta=\frac{1}{4}$ implies

$$
\begin{aligned}
& S_{m}(0.375,0.375,0.36) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}(0.375,0.375,0.28) S_{m}(0.36,0.36,0.286) S_{m}(0.375,0.375,0.286) S_{m}(0.36,0.36,0.28),\right.\right. \\
& \left.\left.S_{m}(0.375,0.375,0.286) S_{m}(0.36,0.36,0.286), S_{m}(0.375,0.375,0.28) S_{m}(0.36,0.36,0.28)\right]\right\}^{\lambda} \\
& \quad \Longrightarrow e^{0.03} \leq\left\{\max \left[e^{0.19} e^{0.15}, e^{0.18} e^{0.16}, e^{0.18} e^{0.15}, e^{0.19} e^{0.16}\right]\right\}^{\lambda}
\end{aligned}
$$

$$
e^{0.03} \leq\left\{\max \left[e^{0.34}, e^{0.34}, e^{0.33}, e^{0.35}\right]\right\}^{\lambda} \Longrightarrow e^{0.03} \leq e^{0.35 \lambda}
$$

which gives $\lambda=0.08$, where $\lambda \in\left(0, \frac{1}{2}\right)$.

CASE-II

Let $\alpha, \beta \in\left[\frac{1}{2}, 1\right]$, then $S_{m}(\alpha, \beta, \gamma)=e^{|\alpha-\gamma|+|\beta-\gamma|}$
In the inequality(3.1.2) putting $\alpha=\frac{2}{3}$ and $\beta=\frac{3}{4}$ implies

$$
\begin{aligned}
& S_{m}(0.42,0.42,0.375) \leq \\
& \left\{\operatorname { m a x } \left[S_{m}(0.42,0.42,0.52) S_{m}(0.375,0.375,0.47) S_{m}(0.42,0.42,0.47) S_{m}(0.375,0.375,0.52),\right.\right. \\
& \left.\left.S_{m}(0.42,0.42,0.47) S_{m}(0.375,0.375,0.47), S_{m}(0.42,0.42,0.52) S_{m}(0.375,0.375,0.52)\right]\right\}^{\lambda} \\
& \Longrightarrow e^{0.09} \leq\left\{\max \left[e^{0.2} e^{0.19}, e^{0.1} e^{0.29}, e^{0.1} e^{0.19}, e^{0.2} e^{0.29}\right]\right\}^{\lambda} \\
& e^{0.09} \leq\left\{\max \left[e^{0.39}, e^{0.39}, e^{0.29}, e^{0.49}\right]\right\}^{\lambda} \Longrightarrow e^{0.09} \leq e^{0.49 \lambda}
\end{aligned}
$$

which gives $\lambda=0.18$, where $\lambda \in\left(0, \frac{1}{2}\right)$.
Hence the inequality (3.1.2) holds.
The verification in the remaining intervals is also simple. It can be observed that $\frac{1}{2}$ is a unique common fixed point of G,H,I and J.

5. CONCLUSION:

This article, aimed to prove a common fixed point theorem in S_{m}-metric space using conditions OWC, reciprocally continuous and faintly compatible mappings. Also proved the well- posed property. Further our result is supported with a suitable example.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] A.E. Bashirov, E.M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), 36-48.
[2] M. Özavşar, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, J. Eng. Technol. Appl. Sci. 2 (2017), 65-79.
[3] V. Srinivas, K. Mallaiah, Some results on weaker class of compatible mappings in S-metric space, Malaya J. Mat. 8 (2020), 1132-1137.
[4] V. Srinivas, K. Satyanna. Some results in Mnrger space by using sub compatible, faintly compatible mappings, Malaya J, Mat. 9 (2021), 725-730.
[5] S. Sedghi, N. Shobkolaei, M. Shahraki, T. Došenović, Common fixed point of four maps in S-metric spaces, Math. Sci. 12 (2018), 137-143.
[6] R.P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc. 90 (1998), 281-286.
[7] V. Naga Raju Some properties of multiplicative s-metric spaces, Adv. Math.: Sci. J. 10 (2021), 105-109.
[8] G. Jungck, B.E Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), 227-238.
[9] M.A. Al-Thagafi, N. Shahzad Generalized -non expansive self maps and invariant approximations Acta Math. Sin. (Engl. Ser.), 24 (2008), 867-876.
[10] R.K. Bisht, N. Shahzad, Faintly compatible mappings and common fixed points, Fixed Point Theory Appl. 2013 (2013), 156.
[11] F.S. de Blasi, J. Myjak, Sur la porosité de l'ensemble des contractions sans point fixe. C. R. Acad. Sci. Paris 308 (1989), 51-54.

