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Abstract. In this paper, we introduce the concepts of common property −(E.A) and common limit range

property for six self-mappings and prove common fixed point theorems of such mappings satisfying (ψ,ϕ)−

weak contraction on an S−metric space. Examples are given to illustrate our results.

1. Introduction and Preliminaries

In 2006, Mustafa and Sims [21] introduced G− metric space to overcome fundamental flaws in B. C.

Dhage’s theory of generalized metric spaces ( [10–12]) and discussed the topological properties of G− metric

spaces. In 2012, Sedghi et al. [26] introduced the concept of S− metric space as a modification of D∗−

metric space [27] and G− metric space [21]. But, in 2014, Dung et al. [14] showed by giving examples that

the class of S− metric spaces and the class of G− metric spaces are distinct.
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Before going to our main work, let us recall some basic definitions, lemmas, and preliminaries that will

be used in this paper.

Definition 1.1. [26] Let X be a non-empty set. A function S : X ×X ×X → [0,∞) is said to be an S−

metric on X if it satisfies the following properties:

(S1) S(x, y, z) = 0 if and only if x = y = z;

(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a), for all x, y, z, a ∈ X.

The pair (X,S) is called an S− metric space.

Example 1.1. [26] Let X = Rn and ‖ · ‖ be a norm on X. Define S(x, y, z) = ‖2x− y − z‖+ ‖y − z‖, for

all x, y, z ∈ X. Then (X,S) is an S− metric space.

Example 1.2. [26] Let X = R. Define S(x, y, z) = |x− z|+ |y − z|, for all x, y, z ∈ X. Then (X,S) is an

S− metric space.

Definition 1.2. [26] Let (X,S) be an S− metric space.

(i) A sequence {xn} in X is called a Cauchy sequence if and only if S(xn, xn, xm)→ 0 as n,m→∞.

(ii) A sequence {xn} in X converges to x ∈ X if and only if S(xn, xn, x) → 0 as n → ∞. In this case,

we write lim
n→∞

xn = x.

(iii) The S− metric space (X,S) is said to be complete if every Cauchy sequence in it is convergent.

Lemma 1.1. [26] In an S− metric space, we have S(x, x, y) = S(y, y, x).

Lemma 1.2. [26] Let (X,S) be an S− metric space. If sequence {xn} in X converges to x, then x is

unique.

Lemma 1.3. [26] Let (X,S) be an S− metric space. If sequence {xn} in X converges to x, then {xn} is a

Cauchy sequence.

Lemma 1.4. [26] Let (X,S) be an S− metric space. If there exist sequences {xn} and {yn} such that

lim
n→∞

xn = x and lim
n→∞

yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

Definition 1.3. [3] Let X 6= ∅ and P,Q : X → X be two self-mappings. If u = Px = Qx, for some x ∈ X,

then x is called a coincidence point of P and Q, and u is called a point of coincidence (briefly, poc) of P and

Q.

Lemma 1.5. [3] Suppose that P and Q be weakly compatible self-mappings on a non-empty set X. If P

and Q have a unique point of coincidence u = Px = Qx, then u is the unique common fixed point P and Q.
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In 1997, Alber and Guere-Delabriere [5] introduced the concept of weak contraction, wherein the authors

introduced the following notion for mappings defined on a Hilbert space X.

Consider the following set of real functions Φ =
{
ϕ : [0,∞)→ [0,∞) : ϕ is a lower semi-continuous and ϕ(t) =

0 if and only if t = 0
}

.

A mapping T : X → X is called a ϕ− weak contraction if there exists a function ϕ ∈ Φ such that

d
(
T x, T y

)
≤ d(x, y)− ϕ

(
d(x, y)

)
, for all x, y ∈ X.

Dutta and Choudhury [15] proved a fixed point theorem for a self-mapping satisfying (ψ,ϕ)−weak contractive

condition as follows.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be a self-mapping satisfying

ψ
(
d(T x, T y)

)
≤ ψ

(
d(x, y)

)
− ϕ

(
d(x, y)

)
, for some ϕ ∈ Φ and

ψ ∈ Ψ =
{
ψ : [0,∞)→ [0,∞) : ψ is continuous non-decreasing and ψ(0) = 0

}
.

Then, T has a common fixed point in X.

Many researchers utilized (ψ,ϕ)− weak contractive conditions to prove a number of metrical fixed point

theorems (e.g., [2, 4–9, 13], [20], [30]). Recently, Singh and Bimol Singh [29] proved some coincidence and

common fixed point theorems involving ψ ∈ Ψ and ϕ ∈ Φ in S− metric spaces.

Definition 1.4. [28] A pair (A,B) of self-mappings of an S− metric space (X,S) is said to be compatible

if lim
n→∞

S(ABxn,ABxn,BAxn) = 0, whenever {xn} is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Bxn = t,

for some t ∈ X.

In 1998, Jungck and Rhoades [18] introduced the following concept of weakly compatibility.

Definition 1.5. A pair (A,B) of self-mappings of an S− metric space (X,S) is said to be weakly compatible

if they commute at each coincidence point (i.e., ABx = BAx, x ∈ X whenever Ax = Bx).

In 2002, Aamri and Moutawakil [1] introduced the concept of property −(E.A) in metric spaces. In the

same line, we use this concept in S− metric space as follows.

Definition 1.6. A pair (A,P) of self-mappings of an S− metric space (X,S) is said to satisfy the property

−(E.A) if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = t, for some t ∈ X.
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Any pair of compatible as well as non-compatible self-mappings of an S− metric space (X,S) satisfy the

property −(E.A), but a pair of mappings satisfying the property −(E.A) need not be non-compatible (see

Example 1 of [16]).

In 2005, Liu et al. [19] introduced the notion of common property −(E.A) for hybrid pairs of mappings,

which contain the property −(E.A). For more details on various type of compatible mappings and their

relation, one may refer to ( [8], [22–25], [31], [32]) and references therein.

Definition 1.7. Two pairs (A,P) and (B,Q) of self-mappings of an S− metric space (X,S) are said to

satisfy the common property −(E.A) if there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = t, for some t ∈ X.

In a similar way, we define the notion of common property −(E.A) for six self-mappings on S−metric space.

Definition 1.8. Three pairs (A,P), (B,Q) and (C,R) of self-mappings of an S− metric space (X,S) are

said to satisfy the common property −(E.A) if there exist three sequences {xn}, {yn} and {zn} in X such

that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = t,

for some t ∈ X.

It can be observed that the fixed point results usually require closeness of the underlying subspaces for

the existence of common fixed points under the property −(E.A) and common property −(E.A). In 2011,

Sintunavarat and Kumam [33] coined the idea of ‘common limit range property’. In 2012, Imdad et al. [17]

extended the notion of common limit range property to two pairs of self-mappings of a metric space which

relax the closeness requirements of the underlying subspaces.

Definition 1.9. A pair (A,P) of self-mappings of an S− metric space (X,S) is said to satisfy the common

limit range property with respect to P, (briefly, (CLRP)− property), if there exists a sequence {xn} in X

such that

lim
n→∞

Axn = lim
n→∞

Pxn = t, where t ∈ PX.

Thus, one can infer that a pair (A,P) satisfying the property −(E.A) along with the closeness of the subspace

PX always enjoys the (CLRP)− property with respect to the mapping P (see Examples 2.16–2.17 of [17]).

Definition 1.10. Two pairs (A,P) and (B,Q) of self-mappings of an S− metric space (X,S) are said to

satisfy the common limit range property (briefly, (CLRPQ)− property) with respect to mappings P and Q,

if there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = t, where t ∈ PX ∩QX.
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Example 1.3. [20] Let X = [0, 12) endow with S− metric S(x, y, z) = |x−z|+ |y−z|. Define self-mappings

A,B,P,Q : X → X by

Ax =


6, 0 ≤ x ≤ 6

9, 6 < x < 12

; Bx =


0, 0 ≤ x < 6

6, 6 ≤ x < 12

;

Px =


6, 0 ≤ x ≤ 6

3, 6 < x < 12

; Qx =


4, 0 ≤ x < 6

12− x, 6 ≤ x < 12.

Consider two sequences {xn} and {yn} of X such that xn = 1
n and yn = 6+ 1

n , n ∈ N. Note that PX = {3, 6}

and QX = (0, 6]. Also, we have

lim
n→∞

Axn = lim
n→∞

Pxn = 6 ∈ X and lim
n→∞

Byn = lim
n→∞

Qyn = 6 ∈ QX.

It follows that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = t, where t = 6 ∈ PX ∩QX.

Therefore the pairs (A,P) and (B,Q) satisfy (CLRPQ)− property.

In a similar mode, we give the concept of the common limit range property for six self-mappings as follows.

Definition 1.11. Three pairs (A,P), (B,Q) and (C,R) of self-mappings of an S−metric space (X,S) are

said to satisfy the common limit range property with respect to mappings P, Q and R (briefly, (CLRPQR)−

property), if there exist three sequences {xn}, {yn} and {zn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = t,

where t ∈ PX ∩QX ∩RX, for some t ∈ X.

Example 1.4. Let X = [0, 5]. Define a mapping S : X3 → [0,∞) by S(x, y, z) = |x− y|+ |y − z| , ∀x, y, z ∈

X. Clearly, (X,S) is an S−metric space.

Let A,B, C,P,Q,R : X → X be six self-mappings defined by

Ax =


1, if x = [0, 1]

2, if x ∈ (1, 5]
; Bx =


0, if x = [0, 1)

1, if x ∈ [1, 5]
; Cx =


1, if x = [0, 1]

5, if x ∈ (1, 5]
;

Px =


1, if x = [0, 1]

3, if x ∈ (1, 5]
; Qx =


1
2 , if x = [0, 1)

1, if x ∈ [1, 5]
; Rx =


1, if x = [0, 1]

4, if x ∈ (1, 5].

Consider the three sequences {xn} =

{
1

n

}
, {yn} =

{
1 +

1

2n

}
, {zn} =

{
1− 1

n

}
,∀n ∈ N. Now, we have

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = 1 ∈ PX ∩ QX ∩ RX. The pairs

(A,P), (B,Q) and (C,R) satisfy the (CLRPQR)−property.
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Definition 1.12. Let (X,S) be an S−metric space andA,B, C,P,Q,R : X → X be six self-mappings. Then

the mappings A,B, C,P,Q and R are called an (A,B, C)(ψ,ϕ)− weak contraction with respect to (P,Q,R)

if there exist two functions ψ ∈ Ψ and ϕ ∈ Φ such that

ψ
(
M(x, y, z)

)
≤ ψ

(
∆(x, y, z)

)
− ϕ

(
∆(x, y, z)

)
, (1.1)

for all x, y, z ∈ X, where

M(x, y, z) = max
{
S(Ax,Ax,By), S(By,By, Cz)

}
and

∆(x, y, z) = max
{
S(Px,Px,Qy), S(Ax,Ax,Rz), S(Px,Px,By), S(Qy,Qy, Cz)

}
.

In the present paper, we discuss some common fixed point theorems for three pairs of self-mappings

employing the common property −(E.A) and common limit range property in S−metric spaces.

2. Main results

Before we start to prove our main theorems, we discuss the following lemmas.

Lemma 2.1. Let (X,S) be an S− metric space and A,B, C,P,Q,R : X → X be an (A,B, C)(ψ,ϕ)− weak

contraction with respect to (P,Q,R) satisfying the following conditions:

(i) BX ⊂ RX (resp. AX ⊂ RX);

(ii) the pairs (A,P) and (B,Q) satisfy the common property −(E.A).

Then the pairs (A,P), (B,Q) and (C,R) share the common property −(E.A).

Proof. Suppose the pair (A,P) and (B,Q) satisfy the common property −(E.A), then there exist two

sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = t,

for some t ∈ X. Since BX ⊂ RX and lim
n→∞

Byn = t, then there exist n0 ∈ N∪{0} and a sequence {zn} in RX

such that Byn = Rzn, for all n ≥ n0. Therefore lim
n→∞

Byn = lim
n→∞

Rzn = t. Now we claim that lim
n→∞

Czn = t.

On contrary, we suppose that lim
n→∞

Czn 6= t, then there exists ε > 0 and k ≥ n0 for all k ∈ N∪ {0} such that

lim
k→∞

S(t, t, Cznk
) = ε. For this, from (1.1), we obtain

ψ
(
M(xnk

, ynk
, znk

)
)
≤ ψ

(
∆(xnk

, ynk
, znk

)
)
− ϕ

(
∆(xnk

, ynk
, znk

)
)
,

where

M(xnk
, ynk

, znk
) = max

{
S(Axnk

,Axnk
,Bynk

), S(Bynk
,Bynk

, Cznk
)
}
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and

∆(xnk
, ynk

, znk
) = max

{
S(Pxnk

,Pxnk
,Qynk

), S(Axnk
,Axnk

,Rznk
), S(Pxnk

,Pxnk
,Bynk

),

S(Qynk
,Qynk

, Cznk
)
}

Taking limit as n→∞, we obtain

lim
k→∞

ψ
(
M(xnk

, ynk
, znk

)
)
≤ lim
k→∞

ψ
(
∆(xnk

, ynk
, znk

)
)
− lim
k→∞

ϕ
(
∆(xnk

, ynk
, znk

)
)
,

where

lim
k→∞

M(xnk
, ynk

, znk
) = lim

k→∞
max{S(t, t, t), S(t, t, Cznk

)} = lim
k→∞

S(t, t, Cznk
) = ε

and

lim
k→∞

∆(xnk
, ynk

, znk
) = max{0, 0, 0, ε} = ε.

Since ϕ is lower semi-continuous function, so we obtain

ϕ(ε) ≤ lim
k→∞

inf ϕ
(
∆(xnk

, ynk
, znk

)
)
.

Consequently, we obtain

ψ(ε) ≤ ψ(ε)− ϕ(ε)),

gives ϕ(ε)) = 0 implies ε = 0. This is a contradiction. �

Lemma 2.2. Let (X,S) be an S− metric space and A,B, C,P,Q,R : X → X be an (A,B, C)(ψ,ϕ)− weak

contraction with respect to (P,Q,R) satisfying the following conditions:

(i) BX ⊂ RX and RX is closed;

(ii) the pairs (A,P) and (B,Q) satisfy the (CLRPQ)− property.

Then the pairs (A,P), (B,Q) and (C,R) share the common property −(E.A).

Proof. By Lemma 2.1, the pairs (A,P), (B,Q) and (C,R) satisfy the common property −(E.A). Then there

exist three sequences {xn}, {yn} and {zn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = t,

for some t ∈ PX ∩QX. Also by (ii), we obtain t ∈ RX. This completes the proof. �

Theorem 2.1. Let (X,S) be an S− metric space and A,B, C,P,Q,R : X → X be six self-mappings.

Suppose the mappings A,B, C,P,Q, and R be (A,B, C)(ψ,ϕ)− weak contraction with respect to (P,Q,R)

satisfying the following conditions:

(i) the pairs (A,P), (B,Q) and (C,R) share the common property −(E.A);

(ii) PX, QX and RX are closed subsets of X.
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Then the pairs (A,P), (B,Q) and (C,R) have their coincidence points in X. Further, A,B, C,P,Q and R

have a unique common fixed point, provided the pairs (A,P) (B,Q) and (C,R) are weakly compatible.

Proof. From (i), the pairs (A,P), (B,Q) and (C,R) share the common property −(E.A), then there exist

three sequences {xn}, {yn} and {zn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = t,

for some t ∈ X. Since PX is a closed subset of X and lim
n→∞

Pxn = t, then there exists a point u ∈ X such

that Pu = t. Now, we assert that Au = Pu. Using inequality (1.1) with x = u, y = yn and z = zn, we get

ψ
(
M(u, yn, zn)

)
≤ ψ

(
∆(u, yn, zn)

)
− ϕ

(
∆(u, yn, zn)

)
, (2.1)

where

M(u, yn, zn) = max{S(Au,Au,Byn), S(Byn,Byn, Czn)}

and

∆(u, yn, zn) = max
{
S(Pu,Pu,Qyn), S(Au,Au,Rzn), S(Pu,Pu,Byn),

S(Qyn,Qyn, Czn)
}
.

Taking the limit as n→∞ in (2.1), we obtain

ψ
(
S(Au,Au, t)

)
≤ lim
n→∞

ψ
(
∆(u, yn, zn)

)
− lim
n→∞

ϕ
(
∆(u, yn, zn)

)
, (2.2)

where

lim
n→∞

M(u, yn, zn) = max
{
S(Au,Au, t), S(t, t, t)

}
= S(Au,Au, t)

and

lim
n→∞

∆(u, yn, zn) = max
{
S(Pu,Pu, t), S(Au,Au, t), S(Pu,Pu, t), S(t, t, t)

}
(2.3)

= max
{

0, S(Au,Au, t), 0, 0
}

=S(Au,Au, t).

Since ϕ is lower semi-continuous, we obtain

ϕ
(
S(Au,Au, t)

)
≤ lim
n→∞

inf ϕ
(
∆(u, yn, zn)

)
. (2.4)

From (2.2), (2.3) and (2.4), we obtain

ψ
(
S(Au,Au, t)

)
≤ ψ

(
S(Au,Au, t)

)
− lim
n→∞

inf ϕ
(
∆(u, yn, zn)

)
(2.5)

≤ ψ
(
S(Au,Au, t)

)
− ϕ

(
S(Au,Au, t)

)
.
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Consequently, ϕ
(
S(Au,Au, t)

)
= 0 implies S(Au,Au, t) = 0. Hence Au = t = Pu. This shows that the pair

(A,P) has a coincidence point in X. Since QX is a closed subset of X, then lim
n→∞

Qyn = t ∈ QX. Then

there exists a point v ∈ X such that Qv = t. Now, we assert that Bv = Qv. Otherwise from (1.1) with

x = u, y = v and z = zn, we obtain

ψ
(
M(u, v, zn)

)
≤ ψ

(
∆(u, v, zn)

)
− ϕ

(
∆(u, v, zn)

)
(2.6)

where

M(u, v, zn) = max
{
S(Au,Au,Bv), S(Bv,Bv, Czn)

}
and

∆(u, v, zn) = max
{
S(Pu,Pu,Qv), S(Au,Au,Rzn), S(Pu,Pu,Bv),

S(Qv,Qv, Czn)
}

Taking the limit as n→∞ in (2.6), we get

lim
n→∞

ψ
(
M(u, v, zn)

)
≤ lim
n→∞

ψ
(
∆(u, v, zn)

)
− lim
n→∞

ϕ
(
∆(u, v, zn)

)
(2.7)

where

lim
n→∞

M(u, v, zn) = max
{
S(t, t,Bv), S(Bv,Bv, t)

}
= S(t, t,Bv)

and

lim
n→∞

∆(u, v, zn) = max
{
S(t, t, t), S(t, t, t), S(t, t,Bv), S(t, t, t)

}
(2.8)

= S(t, t,Bv)

Moreover, lower semi-continuity of ϕ, we have

ϕ
(
S(t, t,Bv)

)
≤ lim
n→∞

ϕ
(
∆(u, v, zn)

)
(2.9)

From (2.7), (2.8) and (2.9), we obtain

ψ
(
S(t, t,Bv)

)
≤ ψ

(
S(t, t,Bv)

)
− ϕ

(
S(t, t,Bv)

)
,

so ϕ(S(t, t,Bv)) = 0 and it implies S(t, t,Bv) = 0. Hence Bv = Qv = t. This shows that v is a coincidence

point of the pair (B,Q) in X.

Also since RX is a closed subset of X and lim
n→∞

Rzn = t. Then there exists a point w ∈ X such that

Rw = t. We show that Rw = Cw. Using inequality (1.1) with x = u, y = v and z = w, we get

ψ
(
M(u, v, w)

)
≤ ψ

(
∆(u, v, w)

)
− ϕ

(
∆(u, v, w)

)
,
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where

M(u, v, w) = max
{
S(Au,Au,Bv), S(Bv,Bv, Cw)

}
= max

{
S(t, t, t), S(t, t, Cw)

}
= S(t, t, Cw)

and

∆(u, v, w) = max
{
S(Pu,Pu,Qv), S(Au,Au,Rw), S(Pu,Pu,Bv), S(Qv,Qv, Cw)

}
= max

{
S(t, t, t), S(t, t, t), S(t, t, t), S(t, t, Cw)

}
= S(t, t, Cw).

From the above inequality, we obtain

ψ
(
S(t, t, Cw)

)
≤ ψ

(
S(t, t, Cw)

)
− ϕ

(
S(t, t, Cw)

)
.

So ϕ
(
S(t, t, Cw)

)
= 0, then S(t, t, Cw) = 0. Hence Cw = t = Rw. This shows that w is a coincidence point

of the pair (C,R).

Thus the pairs (A,P), (B,Q) and (C,R) have their coincidence points in X.

It remains to prove that the pairs (A,P), (B,Q) and (C,R) have a unique common fixed point in X.

Since the pairs (A,P), (B,Q) and (C,R) are weakly compatible. Then Au = Pu = t implies At = APu =

PAu = Pt. Similarly, Bt = BQv = QBv = Qt and Ct = CRw = RCw = Rt. Therefore, t is a coincidence

point of the pairs (A,P), (B,Q) and (C,R). One can show that At = Pt = t by taking x = t, y = v and

z = w in (1.1). Also At = Bt, this can be proved by putting x = y = t and z = w in (1.1). Similarly, by

putting x = u, y = v and z = t in (1.1), we obtain Bt = Ct. Thus, At = Bt = Ct = Pt = Qt = Rt. Now, we

show that the point of coincidence of the pairs (A,P), (B,Q) and (C,R) is unique.

If the point of coincidence of the pairs (A,P), (B,Q) and (C,R) is not unique, then there exist ξ, ξ∗ ∈

X, ξ 6= ξ∗ such that At = Pt = Bt = Qt = ξ and Ct = Rt = ξ∗. Using inequality (1.1), we obtain

ψ
(
M(t, t, t)

)
≤ ψ

(
∆(t, t, t)

)
− ϕ

(
∆(t, t, t)

)
.

where

M(t, t, t) = max
{
S(At,At,Bt), S(Bt,Bt, Ct)

}
= max

{
S(ξ, ξ, ξ), S(ξ, ξ, ξ∗)

}
= S(ξ, ξ, ξ∗)
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and

∆(t, t, t) = max
{
S(Pt,Pt,Qt), S(At,At,Rt), S(Pt,Pt,Bt), S(Qt,Qt, Ct)

}
= max

{
S(ξ, ξ, ξ), S(ξ, ξ, ξ∗), S(ξ, ξ, ξ), S(ξ, ξ, ξ∗)

}
=S(ξ, ξ, ξ∗)

Therefore, the above inequality becomes

ψ
(
S(ξ, ξ, ξ∗)

)
≤ ψ

(
S(ξ, ξ, ξ∗)

)
− ϕ

(
S(ξ, ξ, ξ∗)

)
,

so ϕ
(
S(ξ, ξ, ξ∗)

)
= 0 i.e., S(ξ, ξ, ξ∗) = 0 which implies ξ = ξ∗. Therefore, the point of coincidence of the

pairs (A,P), (B,Q) and (C,R) is unique and hence by Lemma 1.5, the pairs (A,P), (B,Q) and (C,R) have

a unique common fixed point in X. �

Example 2.1. Let X = [0, 1]. Define a mapping S : X3 → [0,∞) by

S(x, y, z) =


0, if x = y = z

max{x, y, z}, otherwise

for all x, y, z ∈ X. Clearly, (X,S) is an S− metric space. Consider the self-mappings Ax =
x

4
, Bx =

x

4
, Cx =

x

4
, Px = x, Qx = Rx =

x

2
, for all x ∈ X. Setting ψ(t) = t and ϕ(t) =

t

4
for t ∈ [0,∞).

(a) In order to check the inequality (1.1), consider the following four cases:

(i) x = y = z, (ii) x ≤ y < z, (iii) x ≤ z < y, (iv) y ≤ z < x.

Case (i): If x = y = z, we get M(x, y, z) = 0, so the condition is trivially satisfied.

Case (ii): If x ≤ y < z. Then, we have

M(x, y, z) = max
{
S
(x

4
,
x

4
,
y

4

)
, S
(y

4
,
y

4
,
z

4

)}
=
z

4

and

∆(x, y, z) = max
{
S
(
x, x,

y

2

)
, S
(x

4
,
x

4
,
z

2

)
, S
(
x, x,

y

4

)
, S
(y

2
,
y

2
,
z

4

)}
= x or

z

2

If x <
z

2
, then ψ

(z
4

)
=
z

4
≤ 3z

8
= ψ

(z
2

)
− ϕ

(z
2

)
If
z

2
< x =⇒ z

4
<
x

2
, so ψ

(z
4

)
< ψ

(x
2

)
≤ 3x

4
= ψ(x)− ϕ(x).

Similarly, the inequality (1.1) is also satisfied for case (iii).

Case (iv): If y ≤ z < x, we have M(x, y, z) =
x

4
and ∆(x, y, z) = x, so the inequality (1.1) reduces to

ψ
(x

4

)
=
x

4
≤ 3x

4
= ψ(x)− ϕ(x).
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Thus, for all x, y, z ∈ X, we obtain

ψ
(
M(x, y, z)

)
≤ ψ

(
∆(x, y, z)

)
− ϕ

(
∆(x, y, z)

)
.

(b) Now, let us show that the pairs (A,P), (B,Q) and (C,R) are weakly compatible. For this, let Ax =

Px =⇒ x

4
= x =⇒ x = 0. Now, AP0 = A0 = 0 = P0 = PA0. Therefore, (A,P) is weakly compatible.

Similarly, (B,Q) and (C,R) are also weakly compatible mappings.

(c) Now, we show that the pairs (A,P), (B,Q) and (C,R) share the common property −(E.A). For this, let

xn =
1

n
, yn =

1

n+ 2
and zn =

1

2n+ 3
for n ∈ N. Clearly, {xn}, {yn} and {zn} are in X. Then, we have

S(Axn,Axn, 0) = S

(
1

4n
,

1

4n
, 0

)
= max

{
1

4n
,

1

4n
, 0

}
=

1

4n
→ 0 as n→∞.

Also,

S(Pxn,Pxn, 0) = S

(
1

n
,

1

n
, 0

)
= max

{
1

n
,

1

n
, 0

}
=

1

n
→ 0 as n→∞.

Similarly, we get that Byn, Qyn, Czn and Rzn → 0 as n→∞.

Therefore, there exist three sequences {xn}, {yn} and {zn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = t,

Therefore, (A,P), (B,Q) and (C,R) share the common property −(E.A).

(d) As PX = [0, 1], QX = RX = [0, 12 ], then PX, QX and RX are closed subsets of X.

Therefore, all the conditions of Theorem 2.1 are satisfied and 0 is the unique common fixed point of the

self-mappings.

Theorem 2.2. Let (X,S) be an S− metric space and A,B, C,P,Q,R : X → X be an (A,B, C)(ψ,ϕ)−

weak contraction with respect to (P,Q,R). If the pairs (A,P), (B,Q) and (C,R) satisfy the (CLRPQR)−

property, then (A,P), (B,Q) and (C,R) have their coincidence points.

Moreover, A,B, C,P,Q and R have a unique common fixed point provided the pairs (A,P), (B,Q) and

(C,R) are weakly compatible.

Proof. Suppose the pairs (A,P), (B,Q) and (C,R) satisfy the (CLRPQR)− property, then there exist three

sequences {xn}, {yn} and {zn} in X such that

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = t,

for some t ∈ PX ∩ QX ∩ RX. It follows that t ∈ PX and there exists u ∈ X such that Pu = t. Now we

assert that Au = Pu. Using inequality (1.1) with x = u, y = yn, z = zn, we get

ψ
(
M(u, yn, zn)

)
≤ ψ

(
∆(u, yn, zn)

)
− ϕ

(
∆(u, yn, zn)

)
, (2.10)
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where

M(u, yn, zn) = max
{
S(Au,Au,Byn), S(Byn,Byn, Czn)

}
∆(u, yn, zn) = max

{
S(Pu,Pu,Qyn), S(Au,Au,Rzn), S(Pu,Pu,Byn),

S(Qyn,Qyn, Czn)
}
.

Taking the limit as n→∞ in (2.10), we get

lim
n→∞

ψ
(
M(u, yn, zn)

)
≤ lim
n→∞

ψ
(
∆(u, yn, zn)

)
− lim
n→∞

ϕ
(
∆(u, yn, zn)

)
where

lim
n→∞

M(u, yn, zn) = max
{
S(Au,Au, t), S(t, t, t)

}
= S(Au,Au, t)

lim
n→∞

∆(u, yn, zn) = max
{
S(t, t, t), S(Au,Au, t), S(t, t, t), S(t, t, t),

}
= S(Au,Au, t).

From the above inequality, we obtain

ψ
(
S(Au,Au, t)

)
≤ ψ

(
S(Au,Au, t)

)
− ϕ

(
S(Au,Au, t)

)
,

so ϕ
(
S(Au,Au, t)

)
= 0, i.e., S(Au,Au, t) = 0. Hence Au = t = Pu, which shows that u is a coincidence

point of the pair (A,P). As t ∈ QX, there exists a point v ∈ X such that Qv = t. We show that Bv = Qv.

Using inequality (1.1) with x = u, y = v and z = zn, we have

ψ
(
M(u, v, zn)

)
≤ ψ

(
∆(u, v, zn)

)
− ϕ

(
∆(u, v, zn)

)
(2.11)

where

M(u, v, zn) = max
{
S(Au,Au,Bv), S(Bv,Bv, Czn)

}
= max

{
S(t, t,Bv), S(Bv,Bv, Czn)

}
and

∆(u, v, zn) = max
{
S(Pu,Pu,Qv), S(Au,Au,Rzn), S(Pu,Pu,Bv),

S(Qv,Qv, Czn)
}

= max
{
S(t, t, t), S(t, t,Rzn), S(t, t,Bv), S(t, t, Czn)

}
Taking the limit as n→∞ in (2.11), we get

lim
n→∞

ψ
(
M(u, v, zn)

)
≤ lim
n→∞

ψ
(
∆(u, v, zn)

)
− lim
n→∞

ϕ
(
∆(u, v, zn)

)
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where

lim
n→∞

M(u, v, zn) = max
{
S(t, t,Bv), S(Bv,Bv, t)

}
= S(Bv,Bv, t)

and

lim
n→∞

∆(u, v, zn) = max
{
S(t, t, t), S(t, t, t), S(t,Bv,Bv), S(t, t, t)

}
= S(Bv,Bv, t),

The above equation gives

ψ
(
S(Bv,Bv, t)

)
≤ ψ

(
S(Bv,Bv, t)

)
− ϕ

(
S(Bv,Bv, t)

)
,

so ϕ(S(Bv,Bv, t)) = 0, i.e., S(Bv,Bv, t) = 0. Hence, Bv = Qv = t, which shows that v is a coincidence point

of the pair (B,Q).

As t ∈ RX, there exists a point w ∈ X such that Rw = t. We show that Rw = Cw. Using inequality

(1.1) with x = u, y = v and z = w, we get

ψ
(
M(u, v, w)

)
≤ ψ

(
∆(u, v, w)

)
− ϕ

(
∆(u, v, w)

)
where

M(u, v, w) = max
{
S(Au,Au,Bv), S(Bv,Bv, Cw)

}
= S(t, t, Cw)

and

∆(u, v, w) = max
{
S(Pu,Pu,Qv), S(Au,Au,Rw), S(Pu,Pu,Bv), S(Qv,Qv, Cw)

}
= max

{
S(t, t, t), S(t, t, t), S(t, t, t), S(t, t, Cw)

}
= S(t, t, Cw).

Follows from the above inequality, we obtain

ψ
(
S(t, t, Cw)

)
≤ ψ

(
S(t, t, Cw)

)
− ϕ

(
S(t, t, Cw)

)
,

so ϕ
(
S(t, t, Cw)

)
= 0, i.e., S(t, t, Cw) = 0. Hence, Cw = t = Rw, which shows that w is a point of coincidence

of the pair (C,R). Thus the pairs (A,P), (B,Q) and (C,R) have their coincidence points in X.

It remains to prove that the pairs (A,P), (B,Q) and (C,R) have a unique common fixed point in X.

Since the pairs (A,P), (B,Q) and (C,R) are weakly compatible. Then Au = Pu = t implies At = APu =

PAu = Pt. Similarly, Bt = BQv = QBv = Qt and Ct = CRw = RCw = Rt. Therefore, t is a coincidence

point of the pairs (A,P), (B,Q) and (C,R). Following the same steps as in Theorem 2.1, one can show that

At = Bt = Ct = Pt = Qt = Rt. Now, we show that the point of coincidence of the pairs (A,P), (B,Q) and

(C,R) is unique.
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If the point of coincidence of the pairs (A,P), (B,Q) and (C,R) is not unique, then there exist ξ, ξ∗ ∈

X, ξ 6= ξ∗ such that At = Pt = Bt = Qt = ξ and Ct = Rt = ξ∗. Using inequality (1.1), we obtain

ψ
(
M(t, t, t)

)
≤ ψ

(
∆(t, t, t)

)
− ϕ

(
∆(t, t, t)

)
,

where

M(t, t, t) = max
{
S(At,At,Bt), S(Bt,Bt, Ct)

}
= max

{
S(ξ, ξ, ξ), S(ξ, ξ, ξ∗)

}
= S(ξ, ξ, ξ∗)

and

∆(t, t, t) = max
{
S(Pt,Pt,Qt), S(At,At,Rt), S(Pt,Pt,Bt), S(Qt,Qt, Ct)

}
= max

{
S(ξ, ξ, ξ), S(ξ, ξ, ξ∗), S(ξ, ξ, ξ), S(ξ, ξ, ξ∗)

}
=S(ξ, ξ, ξ∗)

Therefore, the above inequality becomes

ψ
(
S(ξ, ξ, ξ∗)

)
≤ ψ

(
S(ξ, ξ, ξ∗)

)
− ϕ

(
S(ξ, ξ, ξ∗)

)
,

so ϕ
(
S(ξ, ξ, ξ∗)

)
= 0 i.e., S(ξ, ξ, ξ∗) = 0 which implies ξ = ξ∗. Therefore, the point of coincidence of the

pairs (A,P), (B,Q) and (C,R) is unique and hence by Lemma 1.5, the pairs (A,P), (B,Q) and (C,R) have

a unique common fixed point in X.

�

Example 2.2. Let X = [0, 20]. Define a mapping S : X3 → [0,∞) by S(x, y, z) = |x− y|+|y − z| , ∀x, y, z ∈

X. Clearly, (X,S) is an S−metric space.

Let A,B, C,P,Q,R : X → X be six self-mappings defined by

Ax =

 2, if x ∈ [0, 2]

3, if x ∈ (2, 20]
; Bx =

 1, if x ∈ [0, 2)

2, if x ∈ [2, 20]
; Cx =

 2, if x ∈ [0, 2]

1, if x ∈ (2, 20]

Px =

 2, if x ∈ [0, 2]

6, if x ∈ (2, 20]
, Qx =

 4, if x ∈ [0, 2)

2, if x ∈ [2, 20]
; Rx =

 2, if x ∈ [0, 2]

8, if x ∈ (2, 20].

Consider three sequences {xn} = {2− 1

n
}, {yn} = {2 +

1

n+ 1
}, {zn} = { 1

n
},∀n ∈ N.

lim
n→∞

Axn = lim
n→∞

Pxn = lim
n→∞

Byn = lim
n→∞

Qyn = lim
n→∞

Czn = lim
n→∞

Rzn = 2,

where 2 ∈ PX ∩QX ∩RX. Therefore, the pairs (A,P), (B,Q) and (C,R) satisfy (CLRPQR)− property.

Consider ψ(t) = t and ϕ(t) =
t

4
.

In order to check the inequality (1.1), we have the following eight cases:
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(i) x, z ∈ [0, 2], y ∈ [0, 2), (ii) x ∈ [0, 2], y ∈ [0, 2), z ∈ (2, 20], (iii) x ∈ [0, 2], y ∈ [2, 20], z ∈ [0, 2], (iv)

x ∈ [0, 2], y ∈ [2, 20], z ∈ (2, 20], (v) x ∈ (2, 20], y ∈ [0, 2), z ∈ [0, 2], (vi) x ∈ (2, 20]y ∈ [0, 2), z ∈ (2, 20],

(vii) x ∈ (2, 20], y ∈ [2, 20], z ∈ [0, 2], (viii) x ∈ (2, 20], y ∈ [2, 20], z ∈ (2, 20],

In case (i), we have M(x, y, z) = 1 and ∆(x, y, z) = 2, so the inequality (1.1) reduces to

ψ(1) = 1 ≤ 3

2
= ψ(2)− ϕ(2)

In case (ii) and (vi), we have M(x, y, z) = 1 and ∆(x, y, z) = 6, so (1.1) reduces to

ψ(1) = 1 ≤ 9

2
= ψ(6)− ϕ(6).

In case (iii), we have M(x, y, z) = 0, so the inequality (1.1) is trivially satisfied. In case (v) and (vi), we

have M(x, y, z) = 2 and ∆(x, y, z) = 5, so the inequality (1.1) reduces to

ψ(2) = 2 ≤ 15

4
= ψ(5)− ϕ(5)

In case (vii), we have M(x, y, z) = 1 and ∆(x, y, z) = 4, so the inequality (1.1) reduces to

ψ(1) = 1 ≤ 3 = ψ(4)− ϕ(4)

In case (viii), we have M(x, y, z) = 1 and ∆(x, y, z) = 5, so the inequality (1.1) reduces to

ψ(1) = 1 ≤ 15

4
= ψ(5)− ϕ(5)

Thus, the inequality (1.1) holds true for all x, y, z ∈ X.

Hence, all the conditions of Theorem 2.2 are satisfied, and 2 is a unique common fixed point of the pairs

(A,P), (B,Q) and (C,R) which also remains a point of coincidence. Here, one may notice that all the

involved mappings are discontinuous at their unique common fixed point 2.

Theorem 2.3. Let (X,S) be an S− metric space and A,B, C,P,Q,R : X → X be an (A,B, C)(ψ,ϕ)− weak

contraction with respect to (P,Q,R) satisfying the following conditions:

(i) BX ⊂ RX (resp. AX ⊂ RX);

(ii) the pairs (A,P) and (B,Q) satisfy the common property −(E.A);

(iii) PX, QX and RX are closed subsets of X.

Then the pairs (A,P), (B,Q) and (C,R) have their coincidence points in X. Further, A,B, C,P,Q and R

have a unique common fixed point, provided the pairs (A,P), (B,Q) and (C,R) are weakly compatible.

Proof. It follows from Lemma 2.1 and Theorem 2.1. �

Theorem 2.4. Let (X,S) be an S− metric space and A,B, C,P,Q,R : X → X be an (A,B, C)(ψ,ϕ)− weak

contraction with respect to (P,Q,R) satisfying the following conditions:

(i) BX ⊂ RX and RX is closed;
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(ii) the pairs (A,P) and (B,Q) satisfy the (CLRPQ)− property.

Then the pairs (A,P), (B,Q) and (C,R) have their coincidence points in X. Further, A,B, C,P,Q and R

have a unique common fixed point, provided the pairs (A,P), (B,Q) and (C,R) are weakly compatible.

Proof. It follows from Lemma 2.2 and Theorem 2.2. �

2.1. Conclusion. The concepts of the property −(E.A) and the common limit range property for six self-

mappings are discussed to obtain common fixed point theorems of (ψ,ϕ)− weak contraction with illustrative

examples on S−metric space. The main advantages of this work are, the mappings and the space used in

our results do not require continuity and completeness to obtain the fixed point.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication

of this paper.
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