International Journal of Analysis and Applications Volume 19, Number 4 (2021), 542-560 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-19-2021-542

METHODS FOR DESIGNING EXPERIMENTS TO STUDY THE ACTUAL CAUSES OF THE HOUSING CRISIS

ALANAZI TALAL ABDULRAHMAN*

Department of Mathamtics, College of Science, University of Ha'il, Saudi Arabia

* Corresponding author: t.shyman@uoh.edu.sa

ABSTRACT. In this paper, I use the edge design analysis, contrast method analysis and regression analysis to study the actual reasons that led to the housing crisis. Also, applications of the housing crisis in KSA have been obtained, for example, the extent of this phenomenon with two levels (+, -).

1. INTRODUCTION

Having an appropriate house is perhaps the main issues for all individuals. The Universal Declaration of Human Rights stressed the privilege of each human to have an appropriate house. Subsequently, numerous investigations have since featured the significance of having reasonable homes that serve the necessities, everything being equal. This would help guarantee social and financial soundness for everybody and empower people to be more dynamic local area individuals. Because of a few significant socioeconomics, social, social and financial changes, numerous nations have confronted lodging issues and issues around the arrangement of appropriate houses over the most recent couple of many years. As of late, oil incomes have empowered the Gulf Cooperation Council nations to observe quick improvement that has changed them from helpless nations into cutting edge ones. Numerous advancements have additionally been seen. Because of such turn of events, the legislatures in Gulf Cooperation Council nations have progressed the urban areas and increased the living expectations through making upgrades to the monetary, social and metropolitan climate. Saudi

Received April 11th, 2021; accepted May 4th, 2021; published May 25th, 2021.

²⁰¹⁰ Mathematics Subject Classification. 91B25.

Key words and phrases. the housing crisis; edge designs; contrast method; linear model; screening design; data analysis. ©2021 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

Arabia, as the biggest nation of the Gulf Cooperation Council nations with complete land space of the Kingdom is around 1,960,582 sq. km. Likewise, as perhaps the most populated ones arriving at the quantity of 34710 million, as per Ministry of Municipal, Rural Affairs(See figure 1). This fast increment has caused lodging issues and lodging shortages([1]).

	2015	2020	2025	2030	2035
Total population	31,557	34,710	37,290	39,480	41,317
Urban population	26,249	29,256	31,843	34,143	36,170
Level of urbanization (%)	83.2	84.3	85.4	86.5	87.5
Five largest urban Agglomerations					
Riyadh	6,218	7,231	7,953	8,547	9,058
Jeddah	4,035	4,610	5,022	5,388	5,710
Makkah	1,796	2,042	2,219	2,379	2,521
Al-Madinah	1,299	1,489	1,625	1,744	1,848
Dammam	1,080	1,253	1,376	1,478	1,566
Total population of the five largest agglomerations	14,428	16,625	18,195	19,536	20,703
Five largest agglomerations as % of urban population	54.97	56.82	57.14	57.22	57.24
Five largest agglomerations as % of total population	45.72	47.90	48.79	49.48	50.12

Table 1.1: Saudi Arabia urbanization trends 2015–2035

Source: United Nations, 2018a.

FIGURE 1. KSA Urbanization from 2015-2035

Notwithstanding, the nation has accomplished observable advancement in numerous areas and fields inside a brief timeframe. This is credited primarily to the expanded incomes delivered by oil trades. The lodging area is one of the areas that has seen huge improvement throughout the most recent couple of many years, both the lodging approaches of Saudi Arabia are portrayed by the giving of enormous help to this area to make the securing of houses simpler for the residents. All things considered, because of fast metropolitan turn of events, close by monetary and social changes, including movement to urban communities, diverse Region of Saudi Arabia have encountered major and continuous changes to the metropolitan climate and the occupants' ways of life.

These progressions have accordingly influenced the requirements, wants and goals of the occupants and additionally, the interest for lodging. Presently, the lodging areas in Saudi Arabia are confronting various difficulties, including, in addition to other things: a prerequisite to give an immense number of houses. There has been a reduction in the quantity of houses offered on reasonable installment plans. Expanded houses and property costs. Proprietorship rates waiting be raised as they have diminished throughout the most recent decade. More interest being created in the primary locale and urban areas. As inhabitants are the principle partners and major parts as far as the lodging issue, the investigation of their perspectives, lodging necessities and the variables influencing their current and future lodging choices would be useful in outlining future insights and plans. In light of the study's aftereffects of General Authority for Statistics,2018, the absolute number of homes busy with Saudi families made up (3591098) in 2018, contrasted with (3504690) in 2017. The quantity of people living in such abodes recorded (21420372), with a normal size of Saudi families coming to (5,96), contrasted with (5,97) in 2017([2]). Nonetheless, the normal size can be gotten by partitioning the quantity of people by the complete number of families. It merits referencing here that the lodging issue in Saudi Arabia has pulled in the consideration of specialists from various fields and foundations ([3]). Nonetheless, during this examination, it was noticed that there has been a lessening throughout the most recent couple of years in the quantity of scholastic investigations being attempted that attention on the examination of this issue according to the perspective of the inhabitants and their longings. Along these lines, this is the primary inspiration for the determination of the subject of this exploration.

A goal of this examination is to find the actual causes of the housing crisis in Saudi society. To accomplish this objective, this examination used subjective and quantitative information to decide the genuine purposes behind of the housing crisiss. This paper starts by the method using in different examples.

2. Method

Target population and study sample

The main technique used in this survey is that it is based on only statistics and statistical analysis that included 16 questions about housing crisis. The number of people who participated to answer these questions has reached 410 individual.

Data collection

By then learn the achievement levels for the concentrated on understudy using the sensible model. This is displayed in Table 1, which clarifies the information gathered. I have collected data using the techniques of application of edge design and supersaturated designs to study the housing crisis. Also, to analyse the data from both techniques and applying this data in the app of SPSS.

Reasonsr	signal	Yes/No
The banking sector	+	Yes
	_	No
The lack of the citizen's culture of the impor-	+	Yes
tance of house owning		
	_	No
The religion contributed in the housing crisis	+	Yes
by prohibiting the works of the banks		
	_	No
Earth association and family extended roots	+	Yes
	_	No
The increasing prices of the real estate com-	+	Yes
pared wit individual's income		
	_	No
The unemployment	+	Yes
	_	No
The natural factors and climate (earth quick)	+	Yes
	_	No
Landowners monopolization of the lands and	+	Yes
not investing in them		
	_	No
The poor system of the current housing plans	+	Yes
	_	No

TABLE 1. The reasons of the housing crisis in data

The limited availability of the residential lands	+	Yes
and their usability		
	_	No
The lack of the governmental service facilities	+	Yes
	_	No
The rural exodus that has conquered the cities	+	Yes
	_	No
The lack of the housing units offered	+	Yes
	_	No
The absence of the supervision over offices and	+	Yes
real estate companies		
	_	No
The increasing of building materials and man-	+	Yes
power prices		
	_	No
Real estate developer's' exploitation of resi-	+	Yes
dential lands		
	_	No
Y(Response)	Number	The individual's income

TABLE 1. (cont.)

How to select a sample

A pre-plan comprising of six components and twelve preliminaries is chosen by edge design method. Then, a pre-plan comprising of 16 components and 14 preliminaries is chosen by supersaturated design method . These plans are considered taking all things together the information that has been placed in the past advances and if there should arise an occurrence of acquiring the entire plan is put the estimation of the reaction and the quantity of the individual who addressed the survey.

Consolidating and adjusting distinctive examination technique

The plan picked in the past advance is dissected utilizing the edges, supersaturated design and regression analysis methods. On the off chance that the elements that we get from the edge plan technique are equivalent to supersaturated designs, these elements are the genuine reasons for housing crisis.

3. Application of data analysis

3.1. Use of the edge plans in screening tests. Statistical significance was analyzed using edge design analysis using the SPSS computer software to determine the actual causes that led to of the housing crisis in Saudi society. [4] have presented the edge plans. The edge relies upon a model-autonomous test that can be utilized for dynamic factors. To know the dynamic factors, the estimations are organizes into a gathering of E sets. In this methodology the estimations contrasts in just a single part. It is normal in screening tests, and suggests that practically all distinctions

$$z_{i,j} := y_i - y_j, \quad (i,j) \in E,$$

More details about this method can be found in [5]. In order to address these ethical concerns, the following example are taken.

Example 3.1. Let n = 6 and the lack of the governmental service facilitie x_1 , the rural exodus that has conquered the cities x_2 , the lack of the housing units offered x_3 , the absence of the supervision over offices and real estate companies x_4 , the increasing of building materials and manpower prices x_5 and real estate developer's' exploitation of residential lands x_6 .

Run	x_1	x_2	x_3	x_4	x_5	x_6	Υ
1	+	+	-	+	+	+	840
2	-	+	+	+	+	+	10000
3	+	-	+	+	+	+	2000
4	-	-	-	+	-	+	900
5	-	-	-	+	+	-	2000
6	-	-	-	-	+	+	10000
7	-	+	-	+	+	+	9000
8	-	-	+	+	+	+	15000
9	+	-	-	+	+	+	5000
10	-	-	-	-	-	+	0
11	-	-	-	+	-	-	3000
12	-	-	-	-	+	-	3000

TABLE 2. One replicate for Example 3.1.

Presently an investigation information in Table 2 (utilizing liner regression) with the program bundle SPSS. According to the findings of the final model it tends to be seen that the p-value from the Analysis of Variances table (Figure 2) is under 0.05, which is there is dynamic factor the poor system of the current housing plans x_3 and allow an evaluated liner show $Y = 14900 - 6550x_3 + \epsilon$, with $R - sg = 87.9\%\epsilon$ of mean 8450 and standard deviation $\sigma = 6325.77$. Also from the result, the residual is normal because p-value (0.130) is more than 0.05(See Figure 3).

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
1	.879 ^a	.773	.501	4468.55681			
a. Pr	edictors: (Co	nstant), x6, x	5, x4, x3, x2, x1				
b. Dependent Variable: y							

			ANOVA			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	340330000.0	6	56721666.67	2.841	.136 ^b
	Residual	99840000.00	5	19968000.00		
	Total	440170000.0	11			
a. D	ependent Varia	ble:y				

b. Predictors: (Constant), x6, x5, x4, x3, x2, x1

			Coefficients ^a						
		Unstandardize	d Coefficients	Standardized Coefficients			Г		
Model		В	Std. Error	Beta	t	Sig.	. ⊢	v	9/
1	(Constant)	14900.000	4079.216		3.653	.015		y v1	04
	x1	-700.000	1869.331	100	374	.723		v2	
	x2	2550.000	1869.331	.365	1.364	.231		v2	
	х3	6550.000	1869.331	.937	3.504	.017		×4	
	x4	-2750.000	1869.331	393	-1.471	.201		X4 VE	
	x5	-1400.000	1869.331	200	749	.488		x0 v6	
	x6	-350.000	1869.331	050	187	.859	╷└	X0	

Descriptive Statistics									
	Mean	Std. Deviation	N						
У	8450.0000	6325.77699	12						
x1	5000	.90453	12						
x2	5000	.90453	12						
xЗ	5000	.90453	12						
×4	.5000	.90453	12						
x5	.5000	.90453	12						
x6	.5000	.90453	12						

FIGURE 2. Final model for Example 3.1

Tests of Normality									
Kolmogorov-Smirnov ^a Shapiro-Wilk Statistic df Sig. Statistic df									
						Sig.			
Unstandardized Residual .224 12 .100 .893 12 .1									
a Lilliafara Oinnifeanna Comation									

a. Lilliefors Significance Correction

FIGURE 3. Test of normal for Example 3.1

Example 3.2. Let n = 6 and the poor system of the current housing plans x_1 , the limited availability of the residential lands and their usability x_2 , the lack of the governmental service facilitie x_3 , the rural exodus that has conquered the cities x_4 , the lack of the housing units offered x_5 and the absence of the supervision over offices and real estate companies x_6 .

Run	x_1	x_2	x_3	x_4	x_5	x_6	Υ
1	+	+	-	+	+	+	1000
2	-	+	+	+	+	+	4000
3	+	-	+	+	+	+	6800
4	-	-	-	+	-	+	4000
5	-	-	-	+	+	-	7000
6	-	-	-	-	+	+	55000
7	-	+	-	+	+	+	2400
8	-	-	+	+	+	+	7000
9	+	-	-	+	+	+	4855
10	-	-	-	-	-	+	2000
11	-	-	-	+	-	-	3000
12	-	-	-	-	+	-	4000

TABLE 3. One replicate for Example 3.2.

Now an analysis data in Table 3 (using liner regression) with the software package SPSS. According to the findings of the final model it tends to be seen that the p-value from the Analysis of Variances table (Figure 4) is under 0.05 that revealed there are active variables the poor system of the current housing plans x_1 , the limited availability of the residential lands and their usability x_2 the rural exodus that has conquered the cities x_4 , and the lack of the housing units offered x_5 and give an estimated liner model $Y = 18075 - 764.5x_1 - 2078.25x_2 + 885.5x_4 + 151.5x_5 + \epsilon$, with $R - sg = 94.6\%\epsilon$ of mean 4296.25 and standard deviation $\sigma = 2007.43$. Also from the result, the residual is normal because p-value (0.965) is more than 0.05(See Figure 5).

x1 x2 x3 x4 x5

Model Summary ^b									
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate					
1	.973 ^a	.946	.881	693.27412					
a. Predictors: (Constant), x6, x5, x4, x3, x2, x1									
h De	nondont Va	riahle: v							

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	41924711.25	6	6987451.875	14.538	.005 ^b
	Residual	2403145.000	5	480629.000		
	Total	44327856.25	11			
a. D	ependent Varia	ble:y				

b. Predictors: (Constant), x6, x5, x4, x3, x2, x1

						Coefficients ^a			
Descript	tive Statistics	N	ı F		Unstandardize	d Coefficients	Standardized Coefficients		
Mean 4206.2500	2007 42745	12		Model	B	Std Error	Beta	t	Sig
4230.2300	2007.43745	12		1 (Constant)	1807 500	632.870	Dota	2 856	036
5000	.90453	12		v1	764 500	200.017	244	2.000	046
5000	.90453	12		XI	-704.000	290.017	344	-2.030	.040
5000	.90453	12		x2	-2078.250	290.017	936	-7.166	.001
.5000	.90453	12		xЗ	521.750	290.017	.235	1.799	.132
.5000	.90453	12		x4	885.500	290.017	.399	3.053	.028
.5000	.90453	12		x5	1510.500	290.017	.681	5.208	.003
				x6	260.500	290.017	.117	.898	.410

FIGURE 4. Final model for Example 3.2

Tests of Normality													
	Kolmogorov-Smirnov ^a Shapiro-Wilk												
	Statistic	df	Sig.	Statistic	df	Sig.							
Unstandardized Residual .110 12 .200 [°] .976 12 .9													
+ T I: :													

FIGURE 5. Test of normal for Example 3.2

Example 3.3. Let n = 6 and the natural factors and climate (earth quick) x_1 , landowners monopolization of the lands and not investing in them x_2 , the poor system of the current housing plans x_3 , the limited availability of the residential lands and their usability x_4 , The lack of the governmental service facilities x_5 and The rural exodus that has conquered the cities x_6 .

Run	x_1	x_2	x_3	x_4	x_5	x_6	Υ
1	+	+	-	+	+	+	3000
2	-	+	+	+	+	+	2500
3	+	-	+	+	+	+	10000
4	-	-	-	+	-	+	5000
5	-	-	-	+	+	-	800
6	-	-	-	-	+	+	6000
7	-	+	-	+	+	+	5000
8	-	-	+	+	+	+	14000
9	+	-	-	+	+	+	7000
10	-	-	-	-	-	+	10000
11	-	-	-	+	-	-	5600
12	-	-	-	-	+	-	10000

TABLE 4. One replicate for Example 3.3.

Now an analysis data in Table 4 (using liner regression) with the software package SPSS. According to the findings of the final model it tends to be seen that the p-value from the Analysis of Variances table (Figure 6) is under 0.05 that revealed there is active variable x_1 the lack of the governmental service facilities and give an estimated liner model $Y = -703.33 - 4022x_1 + \epsilon$, with $R - sg = 86.6\%\epsilon$ of mean 5061.66 and standard deviation $\sigma = 4777.55$. Also from the result, the residual is normal because p-value (0.983) is more than 0.05(See figure 7).

x1 x2 x3 x4 x5

Model Summary ^b														
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate										
1	.866 ^a	.750	.451	3541.07856										
-														

a. Predictors: (Constant), x6, x5, x4, x3, x2, x1 b. Dependent Variable: v

ehei	iueni	variable.	у

ANOVAª												
Model		Sum of Squares	df	Mean Square	F	Sig.						
1	Regression	188373780.0	6	31395630.00	2.504	.166 ^b						
	Residual	62696186.67	5	12539237.33								
	Total	251069966.7	11									
a Dependent Variable: v												

b. Predictors: (Constant), x6, x5, x4, x3, x2, x1

						Coefficients							
Descrip	tive Statistics		. [l in standardina	d Coofficiente	Standardized					
Mean	Std. Deviation	N				Unstandardize	a Coefficients	Coefficients					
5061.6667	4777.50379	12		Model		В	Std. Error	Beta	t	Sig.			
5000	.90453	12		1	(Constant)	-703.333	3232.548		218	.836			
5000	.90453	12			x1	-4022.000	1481.339	761	-2.715	.042			
5000	.90453	12			x2	-1022.000	1481.339	193	690	.521			
.5000	.90453	12			х3	768.000	1481.339	.145	.518	.626			
.5000	.90453	12			x4	1243.000	1481.339	.235	.839	.440			
.5000	.90453	12			x5	3518.000	1481.339	.666	2.375	.064			
			1		x6	2493.000	1481.339	.472	1.683	.153			

FIGURE 6. Final model for Example 3.3

Tests of Normality													
	Koln	nogorov-Smi	irnov ^a	Shapiro-Wilk									
	Statistic	df	Sig.	Statistic	df	Sig.							
Unstandardized Residual .130 12 .200 [°] .980 12 .1													
*. This is a lower bound of the true significance.													

a. Lilliefors Significance Correction

FIGURE 7. Test of normal for Example 3.3

Moreover, from the model and research, it can be concluded that the examination with the edge plans and regression analysis given results that are associated and just like the investigation that is performed with the whole data. In this manner, the poor system of the current housing plans, the poor system of the current housing plans , the limited availability of the residential lands and their usability, the rural exodus that has conquered the cities , and the lack of the housing units offered and the lack of the governmental service facilities are the factor that driven to the housing crisis in Saudi society. 3.2. Application of the supersaturated designs in screening experiments. Statistical significance was analyzed using supersaturated designs with the SPSS computer software to determine the actual causes that led to of the housing crisis in Saudi society. [6]who presented a technique for examining SSDs that utilizing another agreements based strategy. Supersaturated plans are partial factorial plans in which the run size (n) is too little to even consider assessing every one of the fundamental impacts. Under the impact sparsity supposition, the utilization of supersaturated plan can give the minimal effort distinguishing proof of the trivial few, potentially ruling components (screening). In order to address these ethical concerns, the following example are taken.

Example 3.4.

In this example, we assume n = 16 that shown in Table 5. Examination of these information (Forward TABLE 5. Supersaturated design(SSD) for Example 3.4.

Run	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	Y
1	-	+	-	-	-	-	+	-	+	-	+	-	+	+	-	+	0
2	+	+	-	-	-	+	+	+	+	+	+	+	-	-	+	+	9400
3	+	+	-	+	+	+	+	+	+	+	+	-	+	-	-	+	7000
4	+	+	-	+	+	+	+	-	+	-	-	+	+	+	+	+	1500
5	+	-	-	-	+	+	-	-	+	+	+	+	+	-	+	+	0
6	-	+	-	+	-	+	-	+	+	+	-	-	-	-	-	+	0
7	+	-	-	+	-	+	-	-	-	-	-	-	+	-	+	-	12000
8	+	-	-	+	-	+	-	-	-	-	-	-	+	-	+	-	12000
9	-	-	-	+	+	+	-	-	+	-	-	-	-	-	-	-	8700
10	-	-	-	-	+	-	-	-	-	+	-	+	+	+	-	-	0
11	+	+	+	+	+	+	-	-	-	-	-	-	-	-	-	+	9000
12	-	-	-	-	+	+	+	+	-	-	-	-	-	-	-	+	6000
13	+	-	-	+	+	+	-	+	+	+	-	-	+	+	+	+	0
14	-	-	+	-	-	-	+	-	-	-	-	+	-	-	-	-	34000

determination) with program bundle SPSS. According to the findings of the final model it tends to be seen that the p-value from the Analysis of Variances table (Figure 8) is under 0.05 that uncovers as dynamic factors $x_3, x_{16}, x_7, x_{14}, x_{15}$ and x_8 , an assessed direct demonstrate is:

 $y = 15113.78 + 8046.65x_3 - 6461.90x_{16} + 4094.22x_7 - 2459.401x_{14} + 2116.295x_{15} + 2003.552x_8 + \varepsilon + 2003.552x_8 + 0003.552x_8 + 0003.$

with ϵ of mean 7114.28 and standard deviation $\sigma = 9062.67$. Also from the result, the residual is normal because p-value (0.384) is more than 0.05(See figure 9).

		Unstandardize	ed Coefficients	Coefficients						
Model		В	Std. Error	Beta	t	Sig.				
1	(Constant)	13108.333	2665.969		4.917	.000				
	х3	8391.667	2665.969	.672	3.148	.008				
2	(Constant)	13801.316	2218.846		6.220	.000				
	х3	7698.684	2218.846	.617	3.470	.005				
	x16	-4157.895	1620.416	456	-2.566	.026				
3	(Constant)	14346.916	1713.747		8.372	.000				
	x3	7153.084	1713.747	.573	4.174	.002				
	x16	-5546.696	1330.712	609	-4.168	.002		Descrip	tive Statistics	
	x7	3769.604	1281.103	.427	2.942	.015		Mean	Std. Deviation	N
4	(Constant)	12262.879	1435.585		8.542	.000	Y	7114.2857	9062.67554	14
	x3	6145.118	1306.215	.492	4.705	.001	x1	.1429	1.02711	14
	x16	-5301.515	984.804	582	-5.383	.000	x2	1429	1.02711	14
	x7	3987.542	947.628	.452	4.208	.002	x3	7143	.72627	14
	x14	-3092.003	1009.568	320	-3.063	.014	×4	.1429	1.02711	14
5	(Constant)	13198.152	1246.564		10.588	.000	x5	.1429	1.02711	14
	x3	7000.924	1134.906	.561	6.169	.000	x6	.5714	.85163	14
	x16	-5411.547	810.228	594	-6.679	.000	x7	1429	1.02711	14
	x7	4293.187	789.450	.487	5.438	.001	x8	2857	.99449	14
	x14	-3116.455	829.236	322	-3.758	.006	x9	.1429	1.02711	14
	x15	1815.531	785.493	.206	2.311	.050	x10	1429	1.02711	14
6	(Constant)	15113.788	1250.538		12.086	.000	x11	4286	.93761	14
	х3	8046.657	986.299	.645	8.158	.000	x12	2857	.99449	14
	x16	-6461.908	765.795	709	-8.438	.000	x13	.1429	1.02711	14
	x7	4094.220	624.037	.464	6.561	.000	x14	4286	.93761	14
	x14	-2459.401	702.915	254	-3.499	.010	x15	1429	1.02711	14
	x15	2116.295	627.726	.240	3.371	.012	x16	.2857	.99449	14
	x8	2003.552	816.383	.220	2.454	.044				

FIGURE 8. Final model for Example 3.4

Tests of Normality

	Kolm	nogorov-Smi	rnov ^a	Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.		
Unstandardized Residual	.152	14	.200	.937	14	.384		

FIGURE 9. Test of normal for Example 3.4

Example 3.5.

Run	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	Y
1	-	+	+	+	+	-	-	-	-	-	-	-	-	+	-	-	22000
2	+	+	-	-	-	-	-	-	-	-	-	+	-	-	-	-	15000
3	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	9000
4	+	-	+	-	-	-	-	+	+	-	-	-	+	+	-	-	3000
5	+	+	-	+	+	+	-	+	+	+	+	+	+	-	+	+	3200
6	+	-	-	-	+	+	-	+	-	-	-	-	-	-	+	-	1000
7	-	+	-	-	+	+	+	+	+	-	-	+	+	+	+	+	1000
8	-	-	-	-	+	+	+	+	-	-	-	-	-	-	-	+	6000
9	+	-	-	+	+	+	-	+	+	+	-	-	-	+	+	+	990
10	+	+	+	-	+	-	-	-	-	+	-	-	+	-	+	+	5600
11	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	12344
12	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2000
13	+	+	+	+	+	-	+	+	+	+	+	+	+	-	+	+	8700
14	+	+	-	+	+	+	+	+	-	+	+	+	-	+	+	+	2600

TABLE 6. Supersaturated design(SSD) for Example 3.5.

Analysis of these data based on forward selection on Table 6, according to the findings of the final model it tends to be seen that the p-value from the Analysis of Variances table (Figure 10) is under 0.05 that there are two active variables $x_{2}andx_{15}$. The estimated linear model:

$$y = 8348.688 - 4875.313x_{15} + 3325.75x_2 + \varepsilon.$$

with ϵ of mean 6602.42 and standard deviation $\sigma = 6251.82$. Also from the result, the residual is normal because p-value (0.590) is more than 0.05(See figure 11).

	Descrip	tive Statistics								
	Mean	Std. Deviation	Ν							
Υ	6602.4286	6251.86467	14							
x1	.4286	.93761	14							
x2	.2857	.99449	14							
х3	1429	1.02711	14							
x4	.0000	1.03775	14							
x5	.7143	.72627	14							
x6	.1429	1.02711	14							
х7	1429	1.02711	14				Coefficients ^a			
x8	.4286	.93761	14					Oton doubles d		1
х9	.0000	1.03775	14			Unstandardize	d Coefficients	Coefficients		
x10	.0000	1.03775	14	Mod	ما	в	Std. Error	Beta	t	
x11	2857	.99449	14	1	(Constant)	7180.125	1313.303		5.467	
x12	.0000	1.03775	14		x15	-4043.875	1313.303	664	-3.079	
x13	.0000	1.03775	14	2	(Constant)	6348.688	1035.998		6.128	
x14	.0000	1.03775	14		x15	-4875.313	1035.998	801	-4.706	
x15	.1429	1.02711	14		x2	3325.750	1069.974	.529	3.108	
x16	.2857	.99449	14	a	. Dependent Vari	able: Y	1			

FIGURE 10. Final model for Example 3.5

Tests of Normality												
	Koln	nogorov-Smi	irnov ^a	5	Shapiro-Wilk							
	Statistic	df	Sig.	Statistic	df	Sig.						
Unstandardized Residual	.180	14	.200	.952	14	.590						
		1.00										

FIGURE 11. Test of normal for Example 3.5

Example 3.6.

TABLE 7. Su	upersaturated	design(SSD)) for	Example	3.6.
-------------	---------------	-------------	-------	---------	------

Run	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	Y	
1	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-	-	1000	
2	-	-	-	-	-	-	+	-	-	-	-	+	-	-	-	-	3000	
3	-	-	+	-	-	-	+	-	-	-	-	-	+	-	-	-	0	
4	-	-	-	-	-	-	-	-	-	+	-	+	-	-	+	+	0	
5	-	-	+	-	-	-	+	-	-	-	-	-	+	-	-	-	0	
6	+	+	-	-	+	+	-	+	+	+	-	+	+	-	+	+	0	
7	-	+	-	-	+	+	+	+	+	+	+	-	-	+	+	+	12670	
8	-	+	-	-	+	+	-	+	+	+	+	-	+	+	+	+	0	
9	-	+	-	+	+	+	-	+	-	+	+	-	+	+	+	+	10000	
10	-	+	-	-	+	+	-	+	+	+	-	+	-	+	+	+	0	
11	+	-	-	-	+	-	-	-	-	-	-	-	+	+	+	+	5500	
12	+	-	+	+	+	+	-	-	-	-	-	-	-	+	+	+	0	
13	+	-	-	-	+	+	-	+	+	+	+	+	+	+	+	+	10000	
14	-	+	-	+	+	+	-	+	+	+	-	+	+	+	+	+	10000	

Analysis of these data based on forward selection on Table 7, according to the findings of the final model it tends to be seen that the p-value from the Analysis of Variances table (Figure 12) is under 0.05 that there is active variable x_{11} . The estimated linear model: with ϵ of mean 3762.42 and standard deviation $\sigma = 4854.58$. Also from the result, the residual is normal because p-value (0.197) is more than 0.05(See figure 13).

	Descrip	tive Statistics							
	Mean	Std. Deviation	Ν						
Y	3726.4286	4854.58642	14						
x1	4286	.93761	14						
(2	1429	1.02711	14						
к3	5714	.85163	14						
x4	4286	.93761	14						
x5	.2857	.99449	14						
x6	.1429	1.02711	14						
(7	2857	.99449	14						
(8	.0000	1.03775	14						
(9	1429	1.02711	14						
(10	.1429	1.02711	14			Coefficients	L. C.		
x11	4286	.93761	14				Oto a disa disa d		Т
x12	1429	1.02711	14		Unstandardize	d Coefficients	Coefficients		
x13	.1429	1.02711	14	Model	В	Std. Error	Beta	t	
<14	.1429	1.02711	14	1 (Constant)	5058,750	1195,239		4.232	t
(15	.4286	.93761	14	x11	3108.750	1195.239	.600	2.601	
x16	.4286	.93761	14	a Dependent Vari	able: Y		1		

FIGURE 12. Final model for Example 3.6

Tests of Normality												
	Kolm	nogorov-Sm	irnov ^a	:	Shapiro-Wilk							
	Statistic	df	Sig.	Statistic	Sig.							
Unstandardized Residual	.236	14	.033	.917	14	.197						
a. Lilliefors Significance Correction												

FIGURE 13. Test of normal for Example 3.6

Moreover, from the model and research, it can be concluded that the examination with the Supersaturated design and regression analysis given results that are associated and just like the investigation that is performed with the whole data. In this manner the lack of the citizen's culture of the importance of house owning, the religion contributed in the housing crisis by prohibiting the works of the banks, the natural factors and climate (earth quick), landowners monopolization of the lands and not investing in them, The absence of the supervision over offices and real estate companies, the increasing of building materials and manpower prices and real estate developer's' exploitation of residential lands and the lack of the governmental service facilities are the factor that driven to the housing crisis in Saudi society.

4. Discussion

During this examination, it was noticed that there has been a lessening in the course of the most recent couple of years in the quantity of scholarly investigations being embraced that emphasis on the examination of this issue according to the perspective of the inhabitants and their cravings. One of the points of this consider was to consider the genuine causes that driven to the spread of the actual causes of the housing crisis .Statistical signi

cance was dissected utilizing edge design, Supersaturated design with the regression examination utilizing the SPSS computer computer program to decide the actual causes that driven to the actual causes of the housing crisis in Saudi society. I can say that the examination with the edge plans and Supersaturated design given results that are associated and just like the investigation that is performed with the whole data. In this manner, the lack of the governmental service facilities is the factor that driven to the housing crisis in Saudi society. On this premise, it is suggested that Saudi wellbeing experts create an operational arrange to consider the maladies and crises that the housing crisis. On this basis, it is recommended that Saudi government develop an operational plan to study these causes. In future investigations, it might be possible for data to use supersaturated designs, where many factors are investigated using only a few experimental runs. Furthermore, there is a requirement for more research thinks about that address different parts of diabetes in the Saudi setting, for example, the extent of this phenomenon with three levels (+,0,-).

Acknowledgment. I might want to thank the University of Ha'il in Saudi Arabia for monetarily supporting my exploration project.

Ethics endorsement and agree to participate. Not relevant

Availability of information and material. The information upholds the finding of this investigation are accessible inside the article and its advantageous material.

Funding. Not relevant

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- C. Susilawati, M. Al Surf, Challenges facing sustainable housing in saudi arabia: a current study showing the level of public awareness, in: Proceedings of the 17th Annual Pacific Rim Real Estate Society Conference, Pacific Rim Real Estate Society, 2011, pp. 1–12.
- [2] Ministry of Municipal & Rural Affairs, Saudi cities report 2019, https://unhabitat.org/saudi-cities-report-2019, (2019).
- [3] M.H. Aldebasi, N.A. Alsobaie, A.Y. Aldayel, K.M. Alwusaidi, T. Alasbali, Public Awareness regarding the Differences between Ophthalmologists and Optometrists among Saudi Adults Living in Riyadh: A Quantitative Study, J. Ophthalmol. 2018 (2018), 7418269.

- [4] C. Elster, A. Neumaier, Screening by conference designs, Biometrika, 82(3) (1995), 589–602.
- [5] T. Alanazi, S. Georgiou, S. Stylianou, Construction and analysis of edge designs from skew-symmetric supplementary difference sets, Commun. Stat.-Theory Meth. 47(20) (2018), 5064–5076.
- [6] C. Koukouvinos, S. Stylianou, A Method for Analyzing Supersaturated Designs, Commun. Stat.-Simul. Comput. 34 (2005), 929–937.