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Abstract. In this paper, a new two-dimensional quaternion fractional Fourier transform is developed. The

properties such as linearity, shifting and derivatives of the quaternion-valued function are studied. The

convolution theorem and inversion formula are also established. An example with graphical representation

is solved. An application related to two-dimensional quaternion Fourier transform is also demonstrated.

1. Introduction

In 1853, quaternions were developed by W. R. Hamilton [10]. The necessity of enlarging the operations

on three-dimensional vectors to include multiplication and division led Hamilton to introduce the four-

dimensional algebra of quaternions. In 1993, Ell [6] introduced quaternion Fourier transform for application

to two-dimensional linear time-invariant systems of partial differential equations. In 2001 [3], authors de-

fined non-commutative hypercomplex Fourier transforms of multidimensional Signals. In 2007 [9], author

introduced right side quaternion Fourier transform. In 2008 [8], the concept of fractional quaternion Fourier

transform was presented. In [11], the author studied the uncertainty principle for the quaternion Fourier

transform. Authors in [1] developed quaternion domain Fourier transforms and its application in mathemat-

ical statistics. In [4], Plancherel theorem and quaternion Fourier transform for square-integrable functions

were studied.
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Quaternion Fourier transform transfers signals from the real-valued time domain to quaternion-valued fre-

quency domain. But the proposed two-dimensional quaternion fractional Fourier transform will transfer the

signal to unified time-frequency domains. Hence, it has a wide range of applications in the field of optics

and signal processing.

The organization of the paper is as follows: In section 2, some basic facts of quaternions and quaternion-

valued functions are illustrated. In section 3, the two-dimensional quaternion fractional Fourier transform

is defined and its inversion formula and operational properties are developed. Graphical interpretation of

two-dimensional quaternion fractional Fourier transform is also illustrated. In Section 4, the application of

the two-dimensional quaternion fractional Fourier transform is shown.

2. Preliminary results

In quaternions, every element is a linear combination of a real scalar and three imaginary units i, j and k

with real coefficients.

Let q be a quaternion defined in

(2.1) H = {q = x0 + ix1 + jx2 + kx3 : x0, x1, x2, x3 ∈ R}

be the division ring of quaternions, where i, j,k satisfy Hamilton’s multiplication rules (see, e.g. [9])

(2.2) ij = −ji = k, jk = −kj = i,ki = −ik = j, i2 = j2 = k2 = ijk = −1.

The quaternion conjugate of q is defined by

(2.3) q̄ = x0 − ix1 − jx2 − kx3; x0, x1, x2, x3 ∈ R.

The norm of q ∈ H is defined as

(2.4) |q| =
√
qq̄ =

√
x20 + x21 + x22 + x23.

Alternatively, in [13] the quaternions are defined as

(2.5) H = {q = q1 + jq2 : q1, q2 ∈ C}

where j is the imaginary number satisfying following conditions:

j2 = −1, jr = rj, ∀ r ∈ R, ji = −ij, where i is the imaginary number.

From [13] f ∈ L2(R2;H), then the function is expressed as

(2.6) f(u, v) = f0(u, v) + if1(u, v) + jf2(u, v) + kf3(u, v).

For some applications the quaternions can be rewritten by replacing k with ij as given in [9],

q = x0 + ix1 + jx2 + ix3j.
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Another way of rewritting quaternion is

q = x+ + x−; x± =
1

2
(q ± iqj) .

x± can also be expressed as

x± = {x0 ± x3 + i(x1 ∓ x2)} 1± k

2
=

1± k

2
{x0 ± x3 + j(x2 ∓ x1)} .

The real scalar part of the quaternion can be written as [9],

(2.7) x0 = 〈q〉0 .

We can also rewrite the function f ∈ L2(R2,H) as [9],

f = f0 + if1 + jf2 + if3j.

We can also split the function as [9],

f = f+ + f−; f+ =
1

2
(f + if j) , f− =

1

2
(f − if j) .

For f, g ∈ L2(R2,H) and u = (u, v) = ue1 + ve2 ∈ R2 with {e1, e2} as the basis of R2, the quaternion-valued

inner product is defined in [9] as

(2.8) (f, g) =

∫
R2

f(u)ḡ(u)d2u,

with real symmetric part

(2.9) 〈f, g〉 =
1

2
[(f, g) + (g, f)] =

∫
R2

〈f(u)ḡ(u)〉0 d
2u.

The norm of f ∈ L2(R2,H) is defined as

(2.10) ||f || =
√

(f, f) =
√
〈f, f〉 =

∫
R2

|f(u)|2d2u.

3. Main Results

Definition 3.1. Let f ∈ L2(R2,H), then two-dimensional quaternion fractional Fourier transform (2D-

QFrFT) of particular order α, β using [9, 12] is defined as

(3.1) f̂α,β (w1, w2) = Fα,β [f (u, v) ;w1, w2] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf (u, v) e−jw

1
β
2 vdudv

where 0 < α, β ≤ 1.

Analogous to [5, page 112],the integral will converge for values of w1 and w2 in the strips −s1 < Im(w1) < s1

and −s2 < Im(w2) < s2 respectively; where s1 < Re(p1), s2 < Re(p2), for p1 = iw1, p2 = jw2.
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The sufficient condition for f(u, v) to have 2D-QFrFT is that
∞∫
−∞

∞∫
−∞
|f(u, v)|dudv exists.

Inversion formula: Consider the inverse formula of quaternion Fourier transform as defined in [9]

f(u, v) =
1

(2π)
2

∞∫
−∞

∞∫
−∞

eixuf̂(x, y)ejyvdxdy.

Substituting x = w
1
α
1 and y = w

1
β

2 .

Then,

f(u, v) =
1

(2π)
2

∞∫
−∞

∞∫
−∞

eiw
1
α
1 uw

1
α−1
1 f̂α,β (w1, w2) ejw

1
β
2 vw

1
β−1
2

dw1

α

dw2

β

f(u, v) =
1

(2π)
2
αβ

∞∫
−∞

∞∫
−∞

eiw
1
α
1 uw

1−α
α

1 f̂α,β (w1, w2) ejw
1
β
2 vw

1−β
β

2 dw1dw2.

Hence, the inversion formula is defined as

(3.2)

F−1α,β

[
f̂α,β (w1, w2)

]
= f(u, v)

=
1

(2π)
2
αβ

∞∫
−∞

∞∫
−∞

eiw
1
α
1 uw

1−α
α

1 f̂α,β (w1, w2) ejw
1
β
2 vw

1−β
β

2 dw1dw2.

Property 3.1 (Left linearity). For f1, f2 ∈ L2(R2,H) and

k1, k2 ∈ {q|q = x0 + ix1, x0, x1 ∈ R};

(3.3) Fα,β [k1f1(u, v) + k2f2(u, v)] = k1Fα,β [f1(u, v)] + k2Fα,β [f2(u, v)] .

Proof. For f1, f2 ∈ L2(R2,H); k1, k2 ∈ R and using (3.1), we get

Fα,β [k1f1(u, v) + k2f2(u, v)]

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u [k1f1(u, v) + k2f2(u, v)] e−jw

1
β
2 vdudv

= k1

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u [f1(u, v)] e−jw

1
β
2 vdudv

+ k2

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u [f2(u, v)] e−jw

1
β
2 vdudv

= k1Fα,β [f1(u, v)] + k2Fα,β [f2(u, v)] .

�

Property 3.2 (Right linearity). For f1, f2 ∈ L2(R2,H) and

k′1, k
′
2 ∈ {q|q = x0 + jx2, x0, x2 ∈ R};

(3.4) Fα,β [f1(u, v)k′1 + f2(u, v)k′2] = Fα,β [f1(u, v)] k′1 + Fα,β [f2(u, v)] k′2.
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The proof is similar to property 3.1.

Property 3.3 (Shifting). For f ∈ L2(R2,H) and a, b ∈ R;

(3.5) Fα,β [f(u− a, v − b)] = e−iw
1
α
1 aFα,β [f(u, v)] e−jw

1
β
2 b

Proof. For f ∈ L2(R2,H); a, b ∈ R and using (3.1), we get

Fα,β [f(u− a, v − b)] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf(u− a, v − b)e−jw

1
β
2 vdudv.

Substituting u− a = s and v − b = t gives

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 (s+a)f(s, t)e−jw

1
β
2 (t+b)dsdt

= e−iw
1
α
1 aFα,β [f(s, t)] e−jw

1
β
2 b.

�

Property 3.4 (2D-QFrFT of derivatives). For f ∈ L2(R2,H), the two-dimensional quaternion fractional

Fourier transform with derivatives of f(u, v) are as follows:

(3.6) i) Fα,β

[
∂

∂u
f(u, v)

]
=
(
iw

1
α
1

)
Fα,β [f(u, v)] .

(3.7) ii) Fα,β

[
∂

∂v
f(u, v)

]
= Fα,β [f(u, v)]

(
jw

1
β

2

)
.

(3.8) iii) Fα,β

[
∂2

∂u∂v
f(u, v)

]
=
(
iw

1
α
1

)
Fα,β [f(u, v)]

(
jw

1
β

2

)
.

In general

(3.9) iv) Fα,β

[
∂n

∂un
f(u, v)

]
=
(
iw

1
α
1

)n
Fα,β [f(u, v)] .

(3.10) v) Fα,β

[
∂n

∂vn
f(u, v)

]
= Fα,β [f(u, v)]

(
jw

1
β

2

)n
.

(3.11) vi) Fα,β

[
∂n

∂un
∂m

∂vm
f(u, v)

]
=
(
iw

1
α
1

)n
Fα,β [f(u, v)]

(
jw

1
β

2

)m
.
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Proof. i) For f ∈ L2(R2,H), the first order derivative over f(u, v) w.r.t. u is given by

Fα,β

[
∂

∂u
f(u, v)

]

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂

∂u
f(u, v)e−jw

1
β
2 vdudv

=

∞∫
−∞


[
e−iw

1
α
1 uf(u, v)

]
−
∞∫
−∞

−iw
1
α
1 e
−iw

1
α
1 uf(u, v)du

 e−jw
1
β
2 vdv

= iw
1
α
1

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf(u, v)e−jw

1
β
2 vdudv

=
(
iw

1
α
1

)
Fα,β [f(u, v)] .

ii) For f ∈ L2(R2,H), the first order derivative over f(u, v) w.r.t. v is given by

Fα,β

[
∂

∂v
f(u, v)

]

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂

∂v
f(u, v)e−jw

1
β
2 vdudv

=

∞∫
−∞

e−iw
1
α
1 u


[
f(u, v)e−jw

1
β
2 v

]
−
∞∫
−∞

f(u, v)e−jw
1
β
2 v

(
−jw

1
β

2

)
dv

 du

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf(u, v)e−jw

1
β
2 vdudv

(
jw

1
β

2

)

= Fα,β [f(u, v)]

(
jw

1
β

2

)
.

iii) For f ∈ L2(R2,H), the second order derivative over f(u, v) w.r.t. u, v is given by

Fα,β

[
∂2

∂u∂v
f(u, v)

]

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂2

∂u∂v
f(u, v)e−jw

1
β
2 vdudv

=

∞∫
−∞


[
e−iw

1
α
1 u ∂

∂v
f(u, v)

]
−
∞∫
−∞

−iw
1
α
1 e
−iw

1
α
1 u ∂

∂v
f(u, v)du

 e−jw
1
β
2 vdv

=
(
iw

1
α
1

) ∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂

∂v
f(u, v)e−jw

1
β
2 vdudv
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=
(
iw

1
α
1

) ∞∫
−∞

e−iw
1
α
1 u


[
f(u, v)e−jw

1
β
2 v

]
−
∞∫
−∞

f(u, v)e−jw
1
β
2 v

(
−jw

1
β

2

)
dv

 du

=
(
iw

1
α
1

) ∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf(u, v)e−jw

1
β
2 vdudv

(
jw

1
β

2

)

=
(
iw

1
α
1

)
Fα,β [f(u, v)]

(
jw

1
β

2

)
.

iv) By using mathematical induction for n = 1 by (3.6), we get

Fα,β

[
∂

∂u
f(u, v)

]
= iw

1
α
1 Fα,β [f(u, v)] .

For n = 2, the result holds true.

Fα,β

[
∂2

∂u2
f(u, v)

]

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂

2

∂u2
f(u, v)e−jw

1
β
2 vdudv

=

∞∫
−∞


[
e−iw

1
α
1 u ∂

∂u
f(u, v)

]
−
∞∫
−∞

−iw
1
α
1 e
−iw

1
α
1 u ∂

∂u
f(u, v)du

 e−jw
1
β
2 vdv

= iw
1
α
1

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂

∂u
f(u, v)e−jw

1
β
2 vdudv

= iw
1
α
1

∞∫
−∞


[
e−iw

1
α
1 uf(u, v)

]
−
∞∫
−∞

−iw
1
α
1 e
−iw

1
α
1 uf(u, v)du

 e−jw
1
β
2 vdv

=
(
iw

1
α
1

)2 ∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf(u, v)e−jw

1
β
2 vdudv

=
(
iw

1
α
1

)2
Fα,β [f(u, v)] .

For n = k − 1,

Fα,β

[
∂k−1

∂uk−1
f(u, v)

]

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂

k−1

∂uk−1
f(u, v)e−jw

1
β
2 vdudv

=

∞∫
−∞


[
e−iw

1
α
1 u ∂

k−2

∂uk−2
f(u, v)

]
−
∞∫
−∞

−iw
1
α
1 e
−iw

1
α
1 u ∂

k−2

∂uk−2
f(u, v)du

 e−jw
1
β
2 vdv

= iw
1
α
1

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 u ∂

k−2

∂uk−2
f(u, v)e−jw

1
β
2 vdudv.
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On repeating the integration by parts, we get

Fα,β

[
∂k−1

∂uk−1
f(u, v)

]
=
(
iw

1
α
1

)k−1
Fα,β [f(u, v)] .

By method of mathematical induction, the result is true for all n = k.

Fα,β

[
∂k

∂uk
f(u, v)

]
=
(
iw

1
α
1

)k
Fα,β [f(u, v)] .

Thus, it is true for all n.

Similarly, v) and vi) can be proved. �

Property 3.5 (Power of u, v). For f ∈ L2(R2,H)

(3.12) i) Fα,β [uf(u, v)] =

(
i

α

w
1−α
α

1

)
∂

∂w1
Fα,β [f(u, v)] .

(3.13) ii) Fα,β [vf(u, v)] =
∂

∂w2
Fα,β [f(u, v)]

j
β

w
1−β
β

2

 .

Proof. For f ∈ L2(R2,H) and using (3.1), we get

Fα,β [uf(u, v)] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uuf (u, v) e−jw

1
β
2 vdudv

=

∞∫
−∞

∞∫
−∞

(
i

α

w
1−α
α

1

)
∂

∂w1
e−iw

1
α
1 uf (u, v) e−jw

1
β
2 vdudv

=

(
i

α

w
1−α
α

1

)
∂

∂w1

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf (u, v) e−jw

1
β
2 vdudv

=

(
i

α

w
1−α
α

1

)
∂

∂w1
Fα,β [f(u, v)] .

Fα,β [vf(u, v)] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uvf (u, v) e−jw

1
β
2 vdudv

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf (u, v)

∂

∂w2
e−jw

1
β
2 v

j
β

w
1−β
β

2

 dudv

=
∂

∂w2

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf (u, v) e−jw

1
β
2 vdudv

j
β

w
1−β
β

2


=

∂

∂w2
Fα,β [f(u, v)]

j
β

w
1−β
β

2

 .

Hence the proof. �
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Property 3.6 (Power of i, j). For f ∈ L2(R2,H); m,n ∈ N

(3.14) Fα,β [imf(u, v)jn] = imFα,β [f(u, v)] jn.

Proof. For f ∈ L2(R2,H) and using (3.1), we get

Fα,β [imf(u, v)jn] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uimf(u, v)jne−jw

1
β
2 vdudv

= im
∞∫
−∞

∞∫
−∞

e−iw
1
α
1 uf(u, v)e−jw

1
β
2 vdudvjn

= imFα,β [f(u, v)] jn.

Hence the proof. �

Definition 3.2. The convolution for the quaternion valued functions f, g ∈ L2(R2,H) is defined [14] by

(3.15) f ∗ g =

∞∫
−∞

∞∫
−∞

f(u, v)g(x− u, y − v)dudv.

Theorem 3.7 (Convolution theorem). For f, g ∈ L2(R2,H);

(3.16) Fα,β [f ∗ g] = Fα,β [f ]Fα,β [g] .

Proof. For f, g ∈ L2(R2,H); X = (x1, x2), Y = (y1, y2) and Z = (z1, z2);

Fα,β [f ∗ g] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 x1 (f ∗ g) (X) e−jw

1
β
2 x2dX

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 x1

 ∞∫
−∞

∞∫
−∞

f(Y )g(X − Y )dY

 e−jw 1
β
2 x2dX

=

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 x1f(Y )

 ∞∫
−∞

∞∫
−∞

g(X − Y )e−jw
1
β
2 x2dX

 dY .
Substituting Z = X − Y , we get

Fα,β [f ∗ g] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 (y1+z1)f(Y )

 ∞∫
−∞

∞∫
−∞

g(Z)e−jw
1
β
2 (y2+z2)dZ

 dY
=

 ∞∫
−∞

∞∫
−∞

e−iw
1
α
1 y1f(Y )e−jw

1
β
2 y2dY

 ∞∫
−∞

∞∫
−∞

e−iw
1
α
1 z1g(Z)e−jw

1
β
2 z2dZ


= Fα,β [f ]Fα,β [g] .

�
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Theorem 3.8. The scalar product of two quaternion-valued functions f, g ∈ L2(R2,H) is given by the scalar

product of the corresponding 2D-QFrFTs f̂ and ĝ:

(3.17) 〈f, g〉 =
1

(2π)
2
αβ
〈Fα,β(w1, w2),Gα,β(w1, w2)〉 .

Proof. For f, g ∈ L2(R2,H) and using (2.8), we get

〈f, g〉 =

∫ ∞
∞

∫ ∞
∞

〈
f(u, v)g(u, v)

〉
dudv

=

∫ ∞
∞

∫ ∞
∞

〈
1

(2π)
2
αβ

∞∫
−∞

∞∫
−∞

eiw
1
α
1 uw

1−α
α

1 f̂α,β (w1, w2)

× ejw
1
β
2 vw

1−β
β

2 dw1dw2g(u, v)

〉
dudv

=
1

(2π)
2
αβ

∫ ∞
∞

∫ ∞
∞

〈
f̂α,β(w1, w2)

∞∫
−∞

∞∫
−∞

eiw
1
α
1 uw

1−α
α

1 ejw
1
β
2 vw

1−β
β

2

× g(u, v)dudv
〉
dw1dw2

=
1

(2π)
2
αβ

∫ ∞
∞

∫ ∞
∞

〈
f̂α,β(w1, w2)w

1−α
α

1 w
1−β
β

2

×
∞∫
−∞

∞∫
−∞

ejw
1
β
2 vg(u, v)eiw

1
α
1 ududv

〉
dw1dw2

=
1

(2π)
2
αβ

∫ ∞
∞

∫ ∞
∞

〈
f̂α,β(w1, w2)w

1−α
α

1 w
1−β
β

2

×
∞∫
−∞

∞∫
−∞

e−iw
1
α
1 vg(u, v)e−jw

1
β
2 ududv

〉
dw1dw2

=
1

(2π)
2
αβ

∫ ∞
∞

∫ ∞
∞

〈
w

1−α
α

1 f̂α,β(w1, w2)w
1−β
β

2 ĝα,β(w1, w2)

〉
dw1dw2

=
1

(2π)
2
αβ
〈Fα,β(w1, w2),Gα,β(w1, w2)〉

where

Fα,β(w1, w2) = w
1−α
α

1 f̂α,β(w1, w2);

Gα,β(w1, w2) = w
1−β
β

2 ĝα,β(w1, w2).

Thus, the theorem holds true. �



Int. J. Anal. Appl. 19 (4) (2021) 571

Figure 1. Kernel of 2D-QFrFT at α = 1 and β = 1.

Figure 2. Kernel of 2D-QFrFT at α = 1/2 and β = 1/2.

Figure 1 shows the kernel of 2D-QFrFT for various values of w1, w2 at order α = 1 and β = 1 which is

a particular case of the study developed in this paper. Figure 2 shows the kernel of 2D-QFrFT for various

values of w1, w2 at order α = 1/2 and β = 1/2. For both the figures the range of x and y is between −3

and 3. The 2D-QFrFT is superior in disparity estimation and analyzing genuine 2D texture as compared to

other fractional Fourier transforms and [7].
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Figure 3. 2D-QFrFT Kernel. Left: Top row: (1 + ij)/2 and (i− j)/2 components. Bottom

row: (1− ij)/2 and (i + j)/2 components at α = 1, β = 1 ; Right: Top row: (1 + ij)/2 and

(i− j)/2 components. Bottom row: (1− ij)/2 and (i+ j)/2 components at α = 1/2, β = 1/2

The components (1 + ij)/2, (i− j)/2, (1− ij)/2 and (i + j)/2 are shown in Figure 3 at α = 1, β = 1 and

α = 1/2, β = 1/2 which represents 2D-QFT extended to 2D-QFrFT. We can also observe the scale-invariant

feature of 2D-QFrFT.

Example 3.1. Find the quaternion fractional Fourier transform of the function:

(3.18) f(x, y) =


1; |x| < 1, |y| < 1

0; otherwise.

By using (3.1), we get

Fα,β [f(x, y)] =

∞∫
−∞

∞∫
−∞

e−iw
1
α
1 xf (x, y) e−jw

1
β
2 ydxdy.

Fα,β [f(x, y)] =

1∫
−1

1∫
−1

e−iw
1
α
1 xe−jw

1
β
2 ydxdy

Fα,β [f(x, y)] = 4
sinw

1
α
1

w
1
α
1

· sinw
1
β

2

w
1
β

2

.(3.19)

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained

using α = 1 and β = 1 in (3.19), is now a particular case of (3.1) which is represented in the following figure:
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Figure 4. Graph of Fα,β [f(x, y)] with α = 1 and β = 1.

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained

using α = 1/2 and β = 1/2 in (3.19) is represented in the following figure:

Figure 5. Graph of Fα,β [f(x, y)] with α = 1/2 and β = 1/2.

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained

using α = 1/2 and β = 1 in (3.19) is represented in the following figure:

Figure 6. Graph of Fα,β [f(x, y)] with α = 1/2 and β = 1.



Int. J. Anal. Appl. 19 (4) (2021) 574

Figures 1-3 are plotted using online freeware version of wolframalpha. Figures 4-6 are plotted using online

freeware version 3D surface plotter of academo.

4. Application

Let us consider the initial value problem from [2]:

(4.1)
∂h

∂t
− O2h = 0, on R0, 2 × (0,∞),

and

(4.2) h(u, v) = f(u, v), f ∈ S(R0, 2; H) at t = 0,

where S(R0, 2; H) is the quaternion Schwartz space and O2 =
∂2

∂2u
+

∂2

∂2v
.

Applying the definition of 2D-QFrFT to both sides of (4.1), we get

Fα,β

[
∂h

∂t

]
=
(
iw

1
α
1

)2
Fα,β [h] + Fα,β [h]

(
jw

1
β

2

)2

(4.3)
∂

∂t
Fα,β [h] = −

(
w

2
α
1 + w

2
β

2

)
Fα,β [h].

The general solution of (4.3) is given by

(4.4) Fα,β [h] = Ce
−
(
w

2
α
1 +w

2
β
2

)
t

,

where C is a quaternion constant.

By using the initial value condition, we get

(4.5) Fα,β [h] = e
−
(
w

2
α
1 +w

2
β
2

)
t

Fα,β [f ] .

Analogous to [2, equation 6.6], we have

(4.6)
1

4πt
Fα,β

[
e
−
(
u

2
α +v

2
β

)
/4t

]
= e
−
(
w

2
α
1 +w

2
β
2

)
t

.

Applying the inversion formula of 2D-QFrFT to (4.5), we get

h = F−1α,β

e−
(
w

2
α
1 +w

2
β
2

)
t

Fα,β [f ]


= F−1α,β

[
1

4πt
Fα,β

[
e
−
(
u

2
α +v

2
β

)
/4t

]
Fα,β [f ]

]
.

Using convolution theorem, we have

(4.7) h = Kt ∗ f
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where Kt =
1

4πt
e
−
(
u

2
α +v

2
β

)
/4t

.

5. Conclusion

The authors developed a new two-dimensional quaternion fractional Fourier transform in this study. The

properties such as linearity, shifting and derivatives of the quaternion-valued function are demonstrated. The

convolution theorem and inversion formula are also established. An example is illustrated with graphical

representation. In the concluding section, an application related to the two-dimensional quaternion Fourier

transform is also demonstrated.
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