APPLICATION AND GRAPHICAL INTERPRETATION OF A NEW TWO-DIMENSIONAL QUATERNION FRACTIONAL FOURIER TRANSFORM

KHINAL PARMAR*, V. R. LAKSHMI GORTY
NMIMS, MPSTME, Vile Parle - West, Mumbai - 400056, India
*Corresponding author: khinal.parmar@nmims.edu

Abstract

In this paper, a new two-dimensional quaternion fractional Fourier transform is developed. The properties such as linearity, shifting and derivatives of the quaternion-valued function are studied. The convolution theorem and inversion formula are also established. An example with graphical representation is solved. An application related to two-dimensional quaternion Fourier transform is also demonstrated.

1. Introduction

In 1853, quaternions were developed by W. R. Hamilton [10]. The necessity of enlarging the operations on three-dimensional vectors to include multiplication and division led Hamilton to introduce the fourdimensional algebra of quaternions. In 1993, Ell [6] introduced quaternion Fourier transform for application to two-dimensional linear time-invariant systems of partial differential equations. In 2001 [3], authors defined non-commutative hypercomplex Fourier transforms of multidimensional Signals. In 2007 [9], author introduced right side quaternion Fourier transform. In 2008 [8], the concept of fractional quaternion Fourier transform was presented. In [11], the author studied the uncertainty principle for the quaternion Fourier transform. Authors in [1] developed quaternion domain Fourier transforms and its application in mathematical statistics. In [4], Plancherel theorem and quaternion Fourier transform for square-integrable functions were studied.

Received April $7^{\text {th }}$, 2021; accepted May 13 ${ }^{\text {th }}$, 2021; published May $25^{\text {th }}, 2021$.
2010 Mathematics Subject Classification. 44A35, 44A05, 46S10.
Key words and phrases. quaternion fractional Fourier transform; convolution; operational calculus; graphical representation.

Quaternion Fourier transform transfers signals from the real-valued time domain to quaternion-valued frequency domain. But the proposed two-dimensional quaternion fractional Fourier transform will transfer the signal to unified time-frequency domains. Hence, it has a wide range of applications in the field of optics and signal processing.

The organization of the paper is as follows: In section 2, some basic facts of quaternions and quaternionvalued functions are illustrated. In section 3, the two-dimensional quaternion fractional Fourier transform is defined and its inversion formula and operational properties are developed. Graphical interpretation of two-dimensional quaternion fractional Fourier transform is also illustrated. In Section 4, the application of the two-dimensional quaternion fractional Fourier transform is shown.

2. Preliminary Results

In quaternions, every element is a linear combination of a real scalar and three imaginary units \mathbf{i}, \mathbf{j} and \mathbf{k} with real coefficients.

Let q be a quaternion defined in

$$
\begin{equation*}
\mathbb{H}=\left\{q=x_{0}+\mathbf{i} x_{1}+\mathbf{j} x_{2}+\mathbf{k} x_{3}: x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} \tag{2.1}
\end{equation*}
$$

be the division ring of quaternions, where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ satisfy Hamilton's multiplication rules (see, e.g. [9])

$$
\begin{equation*}
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i}, \mathbf{k i}=-\mathbf{i} \mathbf{k}=\mathbf{j}, \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1 \tag{2.2}
\end{equation*}
$$

The quaternion conjugate of q is defined by

$$
\begin{equation*}
\bar{q}=x_{0}-\mathbf{i} x_{1}-\mathbf{j} x_{2}-\mathbf{k} x_{3} ; x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

The norm of $q \in \mathbb{H}$ is defined as

$$
\begin{equation*}
|q|=\sqrt{q \bar{q}}=\sqrt{x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} . \tag{2.4}
\end{equation*}
$$

Alternatively, in [13] the quaternions are defined as

$$
\begin{equation*}
\mathbb{H}=\left\{q=q_{1}+j q_{2}: q_{1}, q_{2} \in \mathbb{C}\right\} \tag{2.5}
\end{equation*}
$$

where j is the imaginary number satisfying following conditions:
$j^{2}=-1, j r=r j, \forall r \in \mathbb{R}, j i=-i j$, where i is the imaginary number.
From [13] $f \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{H}\right)$, then the function is expressed as

$$
\begin{equation*}
f(u, v)=f_{0}(u, v)+\mathbf{i} f_{1}(u, v)+\mathbf{j} f_{2}(u, v)+\mathbf{k} f_{3}(u, v) \tag{2.6}
\end{equation*}
$$

For some applications the quaternions can be rewritten by replacing \mathbf{k} with $\mathbf{i j}$ as given in [9],

$$
q=x_{0}+\mathbf{i} x_{1}+\mathbf{j} x_{2}+\mathbf{i} x_{3} \mathbf{j} .
$$

Another way of rewritting quaternion is

$$
q=x_{+}+x_{-} ; x_{ \pm}=\frac{1}{2}(q \pm \mathbf{i} q \mathbf{j})
$$

$x_{ \pm}$can also be expressed as

$$
x_{ \pm}=\left\{x_{0} \pm x_{3}+\mathbf{i}\left(x_{1} \mp x_{2}\right)\right\} \frac{1 \pm \mathbf{k}}{2}=\frac{1 \pm \mathbf{k}}{2}\left\{x_{0} \pm x_{3}+\mathbf{j}\left(x_{2} \mp x_{1}\right)\right\}
$$

The real scalar part of the quaternion can be written as [9],

$$
\begin{equation*}
x_{0}=\langle q\rangle_{0} \tag{2.7}
\end{equation*}
$$

We can also rewrite the function $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ as [9],

$$
f=f_{0}+\mathbf{i} f_{1}+\mathbf{j} f_{2}+\mathbf{i} f_{3} \mathbf{j}
$$

We can also split the function as [9],

$$
f=f_{+}+f_{-} ; f_{+}=\frac{1}{2}(f+\mathbf{i} f \mathbf{j}), f_{-}=\frac{1}{2}(f-\mathbf{i} f \mathbf{j})
$$

For $f, g \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ and $\mathbf{u}=(u, v)=u e_{1}+v e_{2} \in \mathbb{R}^{2}$ with $\left\{e_{1}, e_{2}\right\}$ as the basis of \mathbb{R}^{2}, the quaternion-valued inner product is defined in [9] as

$$
\begin{equation*}
(f, g)=\int_{\mathbb{R}^{2}} f(\mathbf{u}) \bar{g}(\mathbf{u}) d^{2} \mathbf{u} \tag{2.8}
\end{equation*}
$$

with real symmetric part

$$
\begin{equation*}
\langle f, g\rangle=\frac{1}{2}[(f, g)+(g, f)]=\int_{\mathbb{R}^{2}}\langle f(\mathbf{u}) \bar{g}(\mathbf{u})\rangle_{0} d^{2} \mathbf{u} \tag{2.9}
\end{equation*}
$$

The norm of $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ is defined as

$$
\begin{equation*}
\|f\|=\sqrt{(f, f)}=\sqrt{\langle f, f\rangle}=\int_{\mathbb{R}^{2}}|f(\mathbf{u})|^{2} d^{2} \mathbf{u} \tag{2.10}
\end{equation*}
$$

3. Main Results

Definition 3.1. Let $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, then two-dimensional quaternion fractional Fourier transform (2DQFrFT) of particular order α, β using [9, 12] is defined as

$$
\begin{equation*}
\hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right)=F_{\alpha, \beta}\left[f(u, v) ; w_{1}, w_{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \tag{3.1}
\end{equation*}
$$

where $0<\alpha, \beta \leq 1$.
Analogous to [5, page 112], the integral will converge for values of w_{1} and w_{2} in the strips $-s_{1}<\operatorname{Im}\left(w_{1}\right)<s_{1}$ and $-s_{2}<\operatorname{Im}\left(w_{2}\right)<s_{2}$ respectively; where $s_{1}<\operatorname{Re}\left(p_{1}\right), s_{2}<\operatorname{Re}\left(p_{2}\right)$, for $p_{1}=i w_{1}, p_{2}=j w_{2}$.

The sufficient condition for $f(u, v)$ to have 2D-QFrFT is that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(u, v)| d u d v$ exists.
Inversion formula: Consider the inverse formula of quaternion Fourier transform as defined in [9]

$$
f(u, v)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\mathbf{i} x u} \hat{f}(x, y) e^{\mathbf{j} y v} d x d y
$$

Substituting $x=w_{1}^{\frac{1}{\alpha}}$ and $y=w_{2}^{\frac{1}{\beta}}$.
Then,

$$
\begin{aligned}
& f(u, v)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\mathbf{i} w_{1}^{\frac{1}{\alpha}} u w_{1}^{\frac{1}{\alpha}-1} \hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) e^{\mathbf{j} w_{2}^{\frac{1}{\beta}} v} w_{2}^{\frac{1}{\beta}-1} \frac{d w_{1}}{\alpha} \frac{d w_{2}}{\beta}} \\
& f(u, v)=\frac{1}{(2 \pi)^{2} \alpha \beta} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} w_{1}^{\frac{1-\alpha}{\alpha}} \hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) e^{\mathbf{j} w_{2}^{\frac{1}{\beta}} v} w_{2}^{\frac{1-\beta}{\beta}} d w_{1} d w_{2}
\end{aligned}
$$

Hence, the inversion formula is defined as

$$
\begin{align*}
& F_{\alpha, \beta}^{-1}\left[\hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right)\right]=f(u, v) \\
& =\frac{1}{(2 \pi)^{2} \alpha \beta} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} w_{1}^{\frac{1-\alpha}{\alpha}} \hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) e^{\mathbf{j} w_{2}^{\frac{1}{\beta}} v} w_{2}^{\frac{1-\beta}{\beta}} d w_{1} d w_{2} \tag{3.2}
\end{align*}
$$

Property 3.1 (Left linearity). For $f_{1}, f_{2} \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ and
$k_{1}, k_{2} \in\left\{q \mid q=x_{0}+\boldsymbol{i} x_{1}, x_{0}, x_{1} \in \mathbb{R}\right\} ;$

$$
\begin{equation*}
F_{\alpha, \beta}\left[k_{1} f_{1}(u, v)+k_{2} f_{2}(u, v)\right]=k_{1} F_{\alpha, \beta}\left[f_{1}(u, v)\right]+k_{2} F_{\alpha, \beta}\left[f_{2}(u, v)\right] \tag{3.3}
\end{equation*}
$$

Proof. For $f_{1}, f_{2} \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) ; k_{1}, k_{2} \in \mathbb{R}$ and using (3.1), we get

$$
\begin{aligned}
& F_{\alpha, \beta}\left[k_{1} f_{1}(u, v)+k_{2} f_{2}(u, v)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u}\left[k_{1} f_{1}(u, v)+k_{2} f_{2}(u, v)\right] e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =k_{1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u}\left[f_{1}(u, v)\right] e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& +k_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u}\left[f_{2}(u, v)\right] e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =k_{1} F_{\alpha, \beta}\left[f_{1}(u, v)\right]+k_{2} F_{\alpha, \beta}\left[f_{2}(u, v)\right]
\end{aligned}
$$

Property 3.2 (Right linearity). For $f_{1}, f_{2} \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ and
$k_{1}^{\prime}, k_{2}^{\prime} \in\left\{q \mid q=x_{0}+\boldsymbol{j} x_{2}, x_{0}, x_{2} \in \mathbb{R}\right\} ;$

$$
\begin{equation*}
F_{\alpha, \beta}\left[f_{1}(u, v) k_{1}^{\prime}+f_{2}(u, v) k_{2}^{\prime}\right]=F_{\alpha, \beta}\left[f_{1}(u, v)\right] k_{1}^{\prime}+F_{\alpha, \beta}\left[f_{2}(u, v)\right] k_{2}^{\prime} \tag{3.4}
\end{equation*}
$$

The proof is similar to property 3.1.

Property 3.3 (Shifting). For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ and $a, b \in \mathbb{R}$;

$$
\begin{equation*}
F_{\alpha, \beta}[f(u-a, v-b)]=e^{-i w_{1}^{\frac{1}{\alpha}} a} F_{\alpha, \beta}[f(u, v)] e^{-j w_{2}^{\frac{1}{\beta}} b} \tag{3.5}
\end{equation*}
$$

Proof. For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) ; a, b \in \mathbb{R}$ and using (3.1), we get

$$
F_{\alpha, \beta}[f(u-a, v-b)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u-a, v-b) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v
$$

Substituting $u-a=s$ and $v-b=t$ gives

$$
\begin{gathered}
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}}(s+a)} f(s, t) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}}(t+b)} d s d t \\
=e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} a} F_{\alpha, \beta}[f(s, t)] e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} b}
\end{gathered}
$$

Property 3.4 (2D-QFrFT of derivatives). For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, the two-dimensional quaternion fractional Fourier transform with derivatives of $f(u, v)$ are as follows:
i) $F_{\alpha, \beta}\left[\frac{\partial}{\partial u} f(u, v)\right]=\left(\boldsymbol{i} w_{1}^{\frac{1}{\alpha}}\right) F_{\alpha, \beta}[f(u, v)]$.
ii) $F_{\alpha, \beta}\left[\frac{\partial}{\partial v} f(u, v)\right]=F_{\alpha, \beta}[f(u, v)]\left(\boldsymbol{j} w_{2}^{\frac{1}{\beta}}\right)$.

In general
iv) $F_{\alpha, \beta}\left[\frac{\partial^{n}}{\partial u^{n}} f(u, v)\right]=\left(\boldsymbol{i} w_{1}^{\frac{1}{\alpha}}\right)^{n} F_{\alpha, \beta}[f(u, v)]$.
v) $F_{\alpha, \beta}\left[\frac{\partial^{n}}{\partial v^{n}} f(u, v)\right]=F_{\alpha, \beta}[f(u, v)]\left(\boldsymbol{j} w_{2}^{\frac{1}{\beta}}\right)^{n}$.
vi) $F_{\alpha, \beta}\left[\frac{\partial^{n}}{\partial u^{n}} \frac{\partial^{m}}{\partial v^{m}} f(u, v)\right]=\left(\boldsymbol{i} w_{1}^{\frac{1}{\alpha}}\right)^{n} F_{\alpha, \beta}[f(u, v)]\left(\boldsymbol{j} w_{2}^{\frac{1}{\beta}}\right)^{m}$.

Proof. i) For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, the first order derivative over $f(u, v)$ w.r.t. u is given by

$$
\begin{aligned}
& F_{\alpha, \beta}\left[\frac{\partial}{\partial u} f(u, v)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}}} u \frac{\partial}{\partial u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\int_{-\infty}^{\infty}\left\{\left[e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v)\right]-\int_{-\infty}^{\infty}-\mathbf{i} w_{1}^{\frac{1}{\alpha}} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) d u\right\} e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d v \\
& =\mathbf{i} w_{1}^{\frac{1}{\alpha}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right) F_{\alpha, \beta}[f(u, v)]
\end{aligned}
$$

ii) For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, the first order derivative over $f(u, v)$ w.r.t. v is given by

$$
\begin{aligned}
& F_{\alpha, \beta}\left[\frac{\partial}{\partial v} f(u, v)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial}{\partial v} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u}\left\{\left[f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v}\right]-\int_{-\infty}^{\infty} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v}\left(-\mathbf{j} w_{2}^{\frac{1}{\beta}}\right) d v\right\} d u \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v\left(\mathbf{j} w_{2}^{\frac{1}{\beta}}\right) \\
& =F_{\alpha, \beta}[f(u, v)]\left(\mathbf{j} w_{2}^{\frac{1}{\beta}}\right) .
\end{aligned}
$$

iii) For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$, the second order derivative over $f(u, v)$ w.r.t. u, v is given by

$$
\begin{aligned}
& F_{\alpha, \beta}\left[\frac{\partial^{2}}{\partial u \partial v} f(u, v)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial^{2}}{\partial u \partial v} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\int_{-\infty}^{\infty}\left\{\left[e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}}} u \frac{\partial}{\partial v} f(u, v)\right]-\int_{-\infty}^{\infty}-\mathbf{i} w_{1}^{\frac{1}{\alpha}} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial}{\partial v} f(u, v) d u\right\} e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d v \\
& =\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial}{\partial v} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right) \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u}\left\{\left[f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{B}} v}\right]-\int_{-\infty}^{\infty} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{B}} v}\left(-\mathbf{j} w_{2}^{\frac{1}{\beta}}\right) d v\right\} d u \\
& =\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{B}} v} d u d v\left(\mathbf{j} w_{2}^{\frac{1}{\beta}}\right) \\
& =\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right) F_{\alpha, \beta}[f(u, v)]\left(\mathbf{j} w_{2}^{\frac{1}{\beta}}\right) .
\end{aligned}
$$

iv) By using mathematical induction for $n=1$ by (3.6), we get

$$
F_{\alpha, \beta}\left[\frac{\partial}{\partial u} f(u, v)\right]=\mathbf{i} w_{1}^{\frac{1}{\alpha}} F_{\alpha, \beta}[f(u, v)] .
$$

For $n=2$, the result holds true.

$$
\begin{aligned}
& F_{\alpha, \beta}\left[\frac{\partial^{2}}{\partial u^{2}} f(u, v)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial^{2}}{\partial u^{2}} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\int_{-\infty}^{\infty}\left\{\left[e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial}{\partial u} f(u, v)\right]-\int_{-\infty}^{\infty}-\mathbf{i} w_{1}^{\frac{1}{\alpha}} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial}{\partial u} f(u, v) d u\right\} e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d v \\
& =\mathbf{i} w_{1}^{\frac{1}{\alpha}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial}{\partial u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\mathbf{i} w_{1}^{\frac{1}{\alpha}} \int_{-\infty}^{\infty}\left\{\left[e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v)\right]-\int_{-\infty}^{\infty}-\mathbf{i} w_{1}^{\frac{1}{\alpha}} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) d u\right\} e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d v \\
& =\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right)^{2} F_{\alpha, \beta}[f(u, v)] .
\end{aligned}
$$

For $n=k-1$,

$$
\begin{aligned}
& F_{\alpha, \beta}\left[\frac{\partial^{k-1}}{\partial u^{k-1}} f(u, v)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial^{k-1}}{\partial u^{k-1}} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
& =\int_{-\infty}^{\infty}\left\{\left[e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial^{k-2}}{\partial u^{k-2}} f(u, v)\right]-\int_{-\infty}^{\infty}-\mathbf{i} w_{1}^{\frac{1}{\alpha}} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial^{k-2}}{\partial u^{k-2}} f(u, v) d u\right\} e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d v \\
& =\mathbf{i} w_{1}^{\frac{1}{\alpha}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} \frac{\partial^{k-2}}{\partial u^{k-2}} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v .
\end{aligned}
$$

On repeating the integration by parts, we get

$$
F_{\alpha, \beta}\left[\frac{\partial^{k-1}}{\partial u^{k-1}} f(u, v)\right]=\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right)^{k-1} F_{\alpha, \beta}[f(u, v)]
$$

By method of mathematical induction, the result is true for all $n=k$.

$$
F_{\alpha, \beta}\left[\frac{\partial^{k}}{\partial u^{k}} f(u, v)\right]=\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right)^{k} F_{\alpha, \beta}[f(u, v)]
$$

Thus, it is true for all n.
Similarly, v) and $v i$) can be proved.

Property 3.5 (Power of $u, v)$. For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$

$$
\begin{align*}
& \text { i) } F_{\alpha, \beta}[u f(u, v)]=\left(i \frac{\alpha}{w_{1}^{\frac{1-\alpha}{\alpha}}}\right) \frac{\partial}{\partial w_{1}} F_{\alpha, \beta}[f(u, v)] . \tag{3.12}\\
& \text { ii) } F_{\alpha, \beta}[v f(u, v)]=\frac{\partial}{\partial w_{2}} F_{\alpha, \beta}[f(u, v)]\left(j \frac{\beta}{w_{2}^{\frac{1-\beta}{\beta}}}\right) . \tag{3.13}
\end{align*}
$$

Proof. For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ and using (3.1), we get

$$
\begin{aligned}
F_{\alpha, \beta}[u f(u, v)]= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} u f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\mathbf{i} \frac{\alpha}{w_{1}^{\frac{1-\alpha}{\alpha}}}\right) \frac{\partial}{\partial w_{1}} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
= & \left(\mathbf{i} \frac{\alpha}{w_{1}^{\frac{1-\alpha}{\alpha}}}\right) \frac{\partial}{\partial w_{1}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
= & \left(\mathbf{i} \frac{\alpha}{w_{1}^{\frac{1-\alpha}{\alpha}}}\right) \frac{\partial}{\partial w_{1}} F_{\alpha, \beta}[f(u, v)] \\
F_{\alpha, \beta}[v f(u, v)]= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} v f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) \frac{\partial}{\partial w_{2}} e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v}\left(\mathbf{j} \frac{\beta}{w_{2}^{\frac{1-\beta}{\beta}}}\right) d u d v \\
= & \frac{\partial}{\partial w_{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\beta}} v d u d v\left(\mathbf{j} \frac{\beta}{\frac{1-\beta}{\frac{1-\beta}{\beta}}}\right) \\
= & \frac{\partial}{\partial w_{2}} F_{\alpha, \beta}[f(u, v)]\left(\mathbf{j} \frac{\beta}{w_{2}^{\frac{1-\beta}{\beta}}}\right)
\end{aligned}
$$

Hence the proof.

Property 3.6 (Power of $\mathbf{i}, \mathbf{j})$. For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) ; m, n \in \mathbb{N}$

$$
\begin{equation*}
F_{\alpha, \beta}\left[i^{m} f(u, v) j^{n}\right]=i^{m} F_{\alpha, \beta}[f(u, v)] j^{n} . \tag{3.14}
\end{equation*}
$$

Proof. For $f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ and using (3.1), we get

$$
\begin{aligned}
F_{\alpha, \beta}\left[\mathbf{i}^{m} f(u, v) \mathbf{j}^{n}\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u \mathbf{i}^{m} f(u, v) \mathbf{j}^{n} e^{-\mathbf{j} w_{2}^{\frac{1}{B}} v} d u d v} \\
& =\mathbf{i}^{m} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} f(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} v} d u d v \mathbf{j}^{n} \\
& =\mathbf{i}^{m} F_{\alpha, \beta}[f(u, v)] \mathbf{j}^{n} .
\end{aligned}
$$

Hence the proof.

Definition 3.2. The convolution for the quaternion valued functions $f, g \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ is defined [14] by

$$
\begin{equation*}
f * g=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u, v) g(x-u, y-v) d u d v \tag{3.15}
\end{equation*}
$$

Theorem 3.7 (Convolution theorem). For $f, g \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$;

$$
\begin{equation*}
F_{\alpha, \beta}[f * g]=F_{\alpha, \beta}[f] F_{\alpha, \beta}[g] . \tag{3.16}
\end{equation*}
$$

Proof. For $f, g \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) ; X=\left(x_{1}, x_{2}\right), Y=\left(y_{1}, y_{2}\right)$ and $Z=\left(z_{1}, z_{2}\right)$;

$$
\begin{aligned}
F_{\alpha, \beta}[f * g] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} x_{1}}(f * g)(X) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} x_{2}} d X \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} x_{1}}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(Y) g(X-Y) d Y\right] e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} x_{2}} d X \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} x_{1}} f(Y)\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X-Y) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} x_{2}} d X\right] d Y .
\end{aligned}
$$

Substituting $Z=X-Y$, we get

$$
\begin{aligned}
F_{\alpha, \beta}[f * g] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}}\left(y_{1}+z_{1}\right)} f(Y)\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(Z) e^{-\mathbf{j} w_{2}^{\frac{1}{B}}\left(y_{2}+z_{2}\right)} d Z\right] d Y \\
& =\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} y_{1}} f(Y) e^{-\mathbf{j} w_{2}^{\frac{1}{B}} y_{2}} d Y\right)\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} z_{1}} g(Z) e^{-\mathbf{j} w_{2}^{\frac{1}{B}} z_{2}} d Z\right) \\
& =F_{\alpha, \beta}[f] F_{\alpha, \beta}[g] .
\end{aligned}
$$

Theorem 3.8. The scalar product of two quaternion-valued functions $f, g \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ is given by the scalar product of the corresponding 2D-QFrFTs \hat{f} and \hat{g} :

$$
\begin{equation*}
\langle f, g\rangle=\frac{1}{(2 \pi)^{2} \alpha \beta}\left\langle\mathcal{F}_{\alpha, \beta}\left(w_{1}, w_{2}\right), \mathcal{G}_{\alpha, \beta}\left(w_{1}, w_{2}\right)\right\rangle \tag{3.17}
\end{equation*}
$$

Proof. For $f, g \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ and using (2.8), we get

$$
\begin{aligned}
& \langle f, g\rangle=\int_{\infty}^{\infty} \int_{\infty}^{\infty}\langle f(u, v) \overline{g(u, v)}\rangle d u d v \\
& =\int_{\infty}^{\infty} \int_{\infty}^{\infty}\left\langle\frac{1}{(2 \pi)^{2} \alpha \beta} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} w_{1}^{\frac{1-\alpha}{\alpha}} \hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right)\right. \\
& \left.\times e^{\mathbf{j} w_{2}^{\frac{1}{\beta}} v} w_{2}^{\frac{1-\beta}{\beta}} d w_{1} d w_{2} \overline{g(u, v)}\right\rangle d u d v \\
& =\frac{1}{(2 \pi)^{2} \alpha \beta} \int_{\infty}^{\infty} \int_{\infty}^{\infty}\left\langle\hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} w_{1}^{\frac{1-\alpha}{\alpha}} e^{\mathbf{j} w_{2}^{\frac{1}{\beta}} v} w_{2}^{\frac{1-\beta}{\beta}}\right. \\
& \times \overline{g(u, v)} d u d v\rangle d w_{1} d w_{2} \\
& =\frac{1}{(2 \pi)^{2} \alpha \beta} \int_{\infty}^{\infty} \int_{\infty}^{\infty}\left\langle\hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) w_{1}^{\frac{1-\alpha}{\alpha}} w_{2}^{\frac{1-\beta}{\beta}}\right. \\
& \left.\times \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\mathbf{j} w_{2}^{\frac{1}{\beta}}} v \overline{g(u, v)} e^{\mathbf{i} w_{1}^{\frac{1}{\alpha}} u} d u d v\right\rangle d w_{1} d w_{2} \\
& =\frac{1}{(2 \pi)^{2} \alpha \beta} \int_{\infty}^{\infty} \int_{\infty}^{\infty}\left\langle\hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) w_{1}^{\frac{1-\alpha}{\alpha}} w_{2}^{\frac{1-\beta}{\beta}}\right. \\
& \left.\times \overline{\int_{-\infty}^{\infty}} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} v} g(u, v) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} u} d u d v\right\rangle d w_{1} d w_{2} \\
& =\frac{1}{(2 \pi)^{2} \alpha \beta} \int_{\infty}^{\infty} \int_{\infty}^{\infty}\left\langle w_{1}^{\frac{1-\alpha}{\alpha}} \hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) w_{2}^{\frac{1-\beta}{\beta}} \frac{\hat{g}_{\alpha, \beta}\left(w_{1}, w_{2}\right)}{}\right\rangle d w_{1} d w_{2} \\
& =\frac{1}{(2 \pi)^{2} \alpha \beta}\left\langle\mathcal{F}_{\alpha, \beta}\left(w_{1}, w_{2}\right), \mathcal{G}_{\alpha, \beta}\left(w_{1}, w_{2}\right)\right\rangle
\end{aligned}
$$

where
$\mathcal{F}_{\alpha, \beta}\left(w_{1}, w_{2}\right)=w_{1}^{\frac{1-\alpha}{\alpha}} \hat{f}_{\alpha, \beta}\left(w_{1}, w_{2}\right) ;$
$\mathcal{G}_{\alpha, \beta}\left(w_{1}, w_{2}\right)=w_{2}^{\frac{1-\beta}{\beta}} \overline{\hat{g}_{\alpha, \beta}\left(w_{1}, w_{2}\right)}$.
Thus, the theorem holds true.

Figure 1. Kernel of 2D-QFrFT at $\alpha=1$ and $\beta=1$.

Figure 2. Kernel of 2D-QFrFT at $\alpha=1 / 2$ and $\beta=1 / 2$.

Figure 1 shows the kernel of 2D-QFrFT for various values of w_{1}, w_{2} at order $\alpha=1$ and $\beta=1$ which is a particular case of the study developed in this paper. Figure 2 shows the kernel of $2 \mathrm{D}-\mathrm{QFrFT}$ for various values of w_{1}, w_{2} at order $\alpha=1 / 2$ and $\beta=1 / 2$. For both the figures the range of x and y is between -3 and 3. The 2D-QFrFT is superior in disparity estimation and analyzing genuine 2 D texture as compared to other fractional Fourier transforms and [7].

Figure 3. 2D-QFrFT Kernel. Left: Top row: $(1+\mathbf{i j}) / 2$ and $(\mathbf{i}-\mathbf{j}) / 2$ components. Bottom row: $(1-\mathbf{i} \mathbf{j}) / 2$ and $(\mathbf{i}+\mathbf{j}) / 2$ components at $\alpha=1, \beta=1$; Right: Top row: $(1+\mathbf{i j}) / 2$ and $(\mathbf{i}-\mathbf{j}) / 2$ components. Bottom row: $(1-\mathbf{i} \mathbf{j}) / 2$ and $(\mathbf{i}+\mathbf{j}) / 2$ components at $\alpha=1 / 2, \beta=1 / 2$

The components $(1+\mathbf{i} \mathbf{j}) / 2,(\mathbf{i}-\mathbf{j}) / 2,(1-\mathbf{i j}) / 2$ and $(\mathbf{i}+\mathbf{j}) / 2$ are shown in Figure 3 at $\alpha=1, \beta=1$ and $\alpha=1 / 2, \beta=1 / 2$ which represents 2D-QFT extended to 2D-QFrFT. We can also observe the scale-invariant feature of $2 \mathrm{D}-\mathrm{QFrFT}$.

Example 3.1. Find the quaternion fractional Fourier transform of the function:

$$
f(x, y)=\left\{\begin{array}{l}
1 ;|x|<1,|y|<1 \tag{3.18}\\
0 ; \text { otherwise }
\end{array}\right.
$$

By using (3.1), we get

$$
\begin{gathered}
F_{\alpha, \beta}[f(x, y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} x} f(x, y) e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} y} d x d y \\
F_{\alpha, \beta}[f(x, y)]=\int_{-1}^{1} \int_{-1}^{1} e^{-\mathbf{i} w_{1}^{\frac{1}{\alpha}} x} e^{-\mathbf{j} w_{2}^{\frac{1}{\beta}} y} d x d y
\end{gathered}
$$

$$
\begin{equation*}
F_{\alpha, \beta}[f(x, y)]=4 \frac{\sin w_{1}^{\frac{1}{\alpha}}}{w_{1}^{\frac{1}{\alpha}}} \cdot \frac{\sin w_{2}^{\frac{1}{\beta}}}{w_{2}^{\frac{1}{\beta}}} \tag{3.19}
\end{equation*}
$$

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained using $\alpha=1$ and $\beta=1$ in (3.19), is now a particular case of (3.1) which is represented in the following figure:

Figure 4. Graph of $F_{\alpha, \beta}[f(x, y)]$ with $\alpha=1$ and $\beta=1$.

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained using $\alpha=1 / 2$ and $\beta=1 / 2$ in (3.19) is represented in the following figure:

Figure 5. Graph of $F_{\alpha, \beta}[f(x, y)]$ with $\alpha=1 / 2$ and $\beta=1 / 2$.

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained using $\alpha=1 / 2$ and $\beta=1$ in (3.19) is represented in the following figure:

Figure 6. Graph of $F_{\alpha, \beta}[f(x, y)]$ with $\alpha=1 / 2$ and $\beta=1$.

Figures 1-3 are plotted using online freeware version of wolframalpha. Figures 4-6 are plotted using online freeware version 3D surface plotter of academo.

4. Application

Let us consider the initial value problem from [2]:

$$
\begin{equation*}
\frac{\partial h}{\partial t}-\nabla^{2} h=0, \text { on } \mathbb{R}^{0,2} \times(0, \infty) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
h(u, v)=f(u, v), f \in \mathcal{S}\left(\mathbb{R}^{0,2} ; \mathbb{H}\right) \text { at } t=0 \tag{4.2}
\end{equation*}
$$

where $\mathcal{S}\left(\mathbb{R}^{0,2} ; \mathbb{H}\right)$ is the quaternion Schwartz space and $\nabla^{2}=\frac{\partial^{2}}{\partial^{2} u}+\frac{\partial^{2}}{\partial^{2} v}$.
Applying the definition of 2D-QFrFT to both sides of (4.1), we get

$$
\begin{gathered}
F_{\alpha, \beta}\left[\frac{\partial h}{\partial t}\right]=\left(\mathbf{i} w_{1}^{\frac{1}{\alpha}}\right)^{2} F_{\alpha, \beta}[h]+F_{\alpha, \beta}[h]\left(\mathbf{j} w_{2}^{\frac{1}{\beta}}\right)^{2} \\
\frac{\partial}{\partial t} F_{\alpha, \beta}[h]=-\left(w_{1}^{\frac{2}{\alpha}}+w_{2}^{\frac{2}{\beta}}\right) F_{\alpha, \beta}[h] .
\end{gathered}
$$

The general solution of (4.3) is given by

$$
\begin{equation*}
F_{\alpha, \beta}[h]=C e^{-\left(w_{1}^{\frac{2}{\alpha}}+w_{2}^{\frac{2}{\beta}}\right) t} \tag{4.4}
\end{equation*}
$$

where C is a quaternion constant.
By using the initial value condition, we get

$$
\begin{equation*}
F_{\alpha, \beta}[h]=e^{-\left(w_{1}^{\frac{2}{\alpha}}+w_{2}^{\frac{2}{\beta}}\right) t} F_{\alpha, \beta}[f] . \tag{4.5}
\end{equation*}
$$

Analogous to [2, equation 6.6], we have

$$
\begin{equation*}
\frac{1}{4 \pi t} F_{\alpha, \beta}\left[e^{-\left(u^{\frac{2}{\alpha}}+v^{\frac{2}{\beta}}\right) / 4 t}\right]=e^{-\left(w_{1}^{\frac{2}{\alpha}}+w_{2}^{\frac{2}{\beta}}\right) t} \tag{4.6}
\end{equation*}
$$

Applying the inversion formula of 2D-QFrFT to (4.5), we get

$$
\begin{aligned}
h & =F_{\alpha, \beta}^{-1}\left[e^{-\left(w_{1}^{\frac{2}{\alpha}}+w_{2}^{\frac{2}{\beta}}\right) t} F_{\alpha, \beta}[f]\right] \\
& =F_{\alpha, \beta}^{-1}\left[\frac{1}{4 \pi t} F_{\alpha, \beta}\left[e^{-\left(u^{\frac{2}{\alpha}}+v^{\frac{2}{\beta}}\right) / 4 t}\right] F_{\alpha, \beta}[f]\right] .
\end{aligned}
$$

Using convolution theorem, we have

$$
\begin{equation*}
h=K_{t} * f \tag{4.7}
\end{equation*}
$$

where $K_{t}=\frac{1}{4 \pi t} e^{-\left(u^{\frac{2}{\alpha}}+v^{\frac{2}{\beta}}\right) / 4 t}$.

5. Conclusion

The authors developed a new two-dimensional quaternion fractional Fourier transform in this study. The properties such as linearity, shifting and derivatives of the quaternion-valued function are demonstrated. The convolution theorem and inversion formula are also established. An example is illustrated with graphical representation. In the concluding section, an application related to the two-dimensional quaternion Fourier transform is also demonstrated.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] M. Bahri, A.K. Amir, C. Lande, The quaternion domain Fourier transform and its application in mathematical statistics, IAENG Int. J. Appl. Math. 48 (2018), 1-7.
[2] M. Bahri, R. Ashino, R. Vaillancourt, Continuous quaternion Fourier and wavelet transforms, Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), 1460003.
[3] T. Bülow, M. Felsberg, G. Sommer, Non-commutative hyper complex Fourier transforms of multidimensional signals, In: G. Sommer (eds) Geometric Computing with Clifford Algebras, Springer, Berlin, Heidelberg, 2001.
[4] D. Cheng, K.I. Kou, Plancherel theorem and quaternion Fourier transform for square integrable functions, Complex Var. Elliptic Equ. 64 (2019), 223-242.
[5] B. Davies, Integral transforms and their Applications, Springer, New York, 1978.
[6] T.A. Ell, Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, in: Proceedings of 32nd IEEE Conference on Decision and Control, IEEE, San Antonio, TX, USA, 1993: pp. $1830-1841$.
[7] T.A. Ell, S.J. Sangwine, Hypercomplex Fourier Transforms of Color Images, IEEE Trans. Image Process. 16 (2007), 22-35.
[8] X. Guanlei, W. Xiaotong, X. Xiaogang, Fractional quaternion Fourier transform, convolution and correlation, Signal Processing. 88 (2008), 2511-2517.
[9] E.M.S. Hitzer, Quaternion Fourier Transform on Quaternion Fields and Generalizations, Adv. Appl. Clifford Alg. 17 (2007), 497-517.
[10] A.C. Lewis, William Rown Hamilton, Lectures on quaternions (1853), in: Landmark Writings in Western Mathematics 1640-1940, Elsevier, 2005: pp. 460-469.
[11] P. Lian, Uncertainty principle for the quaternion Fourier transform, J. Math. Anal. Appl. 467 (2018), $1258-1269$.
[12] L. Romero, R. Cerutti, L. Luque, A new Fractional Fourier Transform and convolutions products, Int. J. Pure Appl. Math. 66 (2011), 397-408.
[13] R. Roopkumar, Quaternionic one-dimensional fractional Fourier transform, Optik, 127 (2016), 11657-11661.
[14] A.H. Zemanian, Generalized integral transformations, John Wiley Sons Inc., New York, 1968.

