ON FIRMLY NON-EXPANSIVE MAPPINGS

JOSEPH FRANK GORDON ${ }^{1, *}$, ESTHER OPOKU GYASI ${ }^{2}$
${ }^{1}$ Department of Mathematics Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Kumasi, Ghana
${ }^{2}$ Department of Mathematical Sciences, University of Mines and Technology, Tarkwa, Ghana
*Corresponding author: josephfrankgordon@gmail.com

AbStract. In this paper, it is shown that for a closed convex subset \mathcal{C} and to every non-expansive mapping $T: \mathcal{C} \rightarrow \mathcal{C}$, one can associate a firmly non-expansive mapping with the same fixed point set as T in a given Banach space.

1. Introduction

The study of non-expansive mappings in the sixties have experimented a boost, basically motivated by Browder's work on the relationship between monotone operators, non-expansive mappings [1-3,3-5] and the seminal paper by Kirk [6], where the significance of the geometric properties of the norm for the existence of fixed points for non-expansive mappings was highlighted.

Now the history of firmly non-expansive mappings goes back to the paper by Minty [7], where he implicitly used this class of mappings to study the resolvent of a monotone operator. Browder [3] first introduced firmly non-expansive mappings in the concept of Hilbert spaces \mathcal{H}. That is, given a \mathcal{C} closed convex subset of a Hilbert space \mathcal{H}, a mapping $F: \mathcal{C} \rightarrow \mathcal{H}$ is firmly non-expansive if for all $x, y \in \mathcal{C}$

$$
\begin{equation*}
\|F x-F y\|^{2} \leq\langle x-y, F x-F y\rangle . \tag{1.1}
\end{equation*}
$$

Received March $13^{\text {th }}, 2021$; accepted April 20 ${ }^{\text {th }}$, 2021; published May $11^{\text {th }}, 2021$.
2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. non-expansive mappings; firmly non-expansive mappings; metric projection; fixed points.

In his study of non-expansive projections on subsets of Banach spaces, Bruck [8] defined a firmly nonexpansive mapping $F: \mathcal{C} \rightarrow \mathcal{X}$, where \mathcal{C} is a closed convex subset of a real Banach space \mathcal{X}, to be a mapping such that for all $x, y \in \mathcal{C}$ and $\alpha \geq 0$,

$$
\begin{equation*}
\|F x-F y\| \leq\|\alpha(x-y)+(1-\alpha)(F x-F y)\| . \tag{1.2}
\end{equation*}
$$

It is clear that equation (1.2) reduces to equation (1.1) when in Hilbert spaces and also when $\alpha=1, F$ becomes a non-expansive mappings, that is, for each x and y in \mathcal{C}, we have $\|F x-F y\| \leq\|x-y\|$. A trivial example of equation (1.2) is the identity mapping. A non-trivial example of equation (1.2) in a Hilbert space is given by the metric projection

$$
\begin{equation*}
P_{\mathcal{C}} x=\operatorname{argmin}_{y \in \mathcal{C}}\{\|x-y\|\} . \tag{1.3}
\end{equation*}
$$

To see this, recall that in a real Hilbert space $\mathcal{H}, \forall x, y \in \mathcal{H}$, then $\langle x, y\rangle \geq 0$ if and only if

$$
\begin{equation*}
\|x\| \leq\|x+a y\| \tag{1.4}
\end{equation*}
$$

for all $a \geq 0$. Now equation (1.2) can be written as

$$
\begin{equation*}
\|F x-F y\| \leq\|F x-F y+\alpha(x-y-F x+F y)\| \tag{1.5}
\end{equation*}
$$

Now applying equation (1.4) on equation (1.5), we obtain the following

$$
\begin{aligned}
\langle F x-F y, x-y-F x+F y\rangle & \geq 0 \\
\langle x-y-F x+F y, F x-F y\rangle & \geq 0 \\
\langle x-y-(F x-F y), F x-F y\rangle & \geq 0 \\
\langle x-y, F x-F y\rangle-\langle F x-F y, F x-F y\rangle & \geq 0 \\
\langle x-y, F x-F y\rangle & \geq\langle F x-F y, F x-F y\rangle, \\
\langle x-y, F x-F y\rangle & \geq\|F x-F y\|^{2}
\end{aligned}
$$

Hence we have that in a real Hilbert space, a firmly non-expansive mapping F can be written as

$$
\begin{equation*}
\|F x-F y\|^{2} \leq\langle x-y, F x-F y\rangle . \tag{1.6}
\end{equation*}
$$

But in a real Hilbert space, equation (1.3) satisfies the following inequality

$$
\begin{equation*}
\left\|P_{\mathcal{C}} x-P_{\mathcal{C}} y\right\|^{2} \leq\left\langle x-y, P_{\mathcal{C}} x-P_{\mathcal{C}} y\right\rangle \tag{1.7}
\end{equation*}
$$

This means that from equations (1.6) and (1.7), we can simply conclude that $F=P_{\mathcal{C}}$ and so the metric projection $P_{\mathcal{C}}$ is a firmly non-expansive mapping in a real Hilbert space.

In this paper, we give a simple proof showing that to any non-expansive self-mapping $T: \mathcal{C} \rightarrow \mathcal{C}$ that has fixed points, one can associate a large family of firmly non-expansive mappings having the same fixed point set as T. That is, from the point of view of the existence of fixed points on closed convex sets, non-expansive and firmly non-expansive mappings exhibit a similar behavior. However, this is no longer true in non-convex domains [9].

2. Main Results

Let T be a non-expansive mapping defined on a closed convex subset \mathcal{C} of a normed space \mathcal{X}, thus, $T: \mathcal{C} \rightarrow \mathcal{C}$. For a fixed $r \in \mathbb{R}_{>1}$, we can define the following mapping

$$
\begin{equation*}
T_{r}: \mathcal{C} \rightarrow \mathcal{C} \quad \text { by } \quad x \mapsto\left(1-\frac{1}{r}\right) x+\frac{1}{r} T\left(T_{r} x\right) \tag{2.1}
\end{equation*}
$$

Now we observe that equation (2.1) (the new mapping T_{r}) always exist. To see this, one can create an internal contraction $F: \mathcal{C} \rightarrow \mathcal{C}$ such that

$$
F(y)=\left(1-\frac{1}{r}\right) x+\frac{1}{r} T y, \quad \text { where } \quad x \quad \text { is fixed. }
$$

Now $\|F(y)-F(z)\|=\frac{1}{r}\|T y-T z\| \leq \frac{1}{r}\|y-z\|$. Hence F is a contraction mapping and by the Banach contraction mapping theorem [10], there exists $u \in \mathcal{C}$ such that $F(u)=u$, thus, $u=\left(1-\frac{1}{r}\right) x+\frac{1}{r} T u$. Since for every $x \in \mathcal{C}$, we can find a unique u such that $u=T_{r} x$, then equation (2.1) always exists. Now we have the following claims.

Claim 1: T_{r} is a non-expansive mapping. To see this, we have the following:

$$
\begin{aligned}
\left\|T_{r} x-T_{r} y\right\| & =\left\|\left(1-\frac{1}{r}\right)(x-y)+\frac{1}{r}\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right)\right\| \\
& \leq\left(1-\frac{1}{r}\right)\|x-y\|+\frac{1}{r}\left\|T\left(T_{r} x-T\left(T_{r} y\right)\right)\right\| \\
& \left.\leq\left(1-\frac{1}{r}\right)\|x-y\|+\frac{1}{r} \| T_{r} x-T_{r} y\right) \| \\
\left\|T_{r} x-T_{r} y\right\|-\frac{1}{r}\left\|T_{r} x-T_{r} y\right\| & \leq\left(1-\frac{1}{r}\right)\|x-y\| \\
\left(1-\frac{1}{r}\right)\left\|T_{r} x-T_{r} y\right\| & \leq\left\|\left(1-\frac{1}{r}\right)\right\|\|x-y\|
\end{aligned}
$$

So we have that T_{r} is a non-expansive mapping since $r>1$.

Claim 2: Now we prove that $T_{r} x$ is a firmly non-expansive mapping.
Now for $r>1, \alpha \in(0,1)$ and $\beta>0$, we have the following evaluation:

$$
\begin{aligned}
\left\|T_{r} x-T_{r} y\right\|= & \| \beta\left[\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right]-\beta \alpha(x-y) \\
& +\left(T_{r} x-T_{r} y\right)-\beta(1-\alpha)\left(T_{r} x-T_{r} y\right) \|
\end{aligned}
$$

But

$$
\begin{aligned}
\left(T_{r} x-T_{r} y\right)-\beta(1-\alpha)\left(T_{r} x-T_{r} y\right)= & \left(1-\frac{1}{r}\right)(x-y)+\frac{1}{r}\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right) \\
& -\beta(1-\alpha)\left[\left(1-\frac{1}{r}\right)(x-y)+\frac{1}{r}\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right)\right] \\
= & \left(1-\frac{1}{r}\right)(x-y)-\beta(1-\alpha)\left(1-\frac{1}{r}\right)(x-y)+\frac{1}{r}\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right) \\
& -\beta(1-\alpha) \frac{1}{r}\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right) \\
= & \left(1-\frac{1}{r}\right)(x-y)[1-\beta(1-\alpha)] \\
& +\frac{1}{r}(1-\beta(1-\alpha))\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|T_{r} x-T_{r} y\right\|= & \| \beta\left[\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right]-\beta \alpha(x-y)+\left(1-\frac{1}{r}\right)(x-y)[1-\beta(1-\alpha)] \\
& +\frac{1}{r}(1-\beta(1-\alpha))\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right) \| \\
= & \| \beta\left[\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right]+\left[-\beta \alpha+\left(1-\frac{1}{r}\right)(1-\beta(1-\alpha))\right](x-y) \\
& +\frac{1}{r}\left(1-\beta(1-\alpha)\left(T\left(T_{r} x\right)-T\left(T_{r} y\right)\right) \|\right.
\end{aligned}
$$

Now let $-\beta \alpha+\left(1-\frac{1}{r}\right)(1-\beta(1-\alpha))=0$. This implies that

$$
\begin{aligned}
\beta & =\frac{r-1}{\alpha r+(\alpha-1)(r-1)} \\
\frac{1}{r}(1-\beta(1-\alpha)) & =\frac{\alpha}{\alpha r+(1-\alpha)(r-1)}
\end{aligned}
$$

Hence we have

$$
\left\|T_{r} x-T_{r} y\right\| \leq \beta\left\|\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right\|+\frac{\alpha}{\alpha r+(1-\alpha)(r-1)}\left\|T\left(T_{r} x\right)-T\left(T_{r} y\right)\right\|
$$

So by the non-expansiveness of T, The above inequality becomes

$$
\begin{aligned}
\left\|T_{r} x-T_{r} y\right\| \leq & \beta\left\|\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right\|+\frac{\alpha}{\alpha r+(1-\alpha)(r-1)}\left\|T_{r} x-T_{r} y\right\| \\
= & \frac{r-1}{\alpha r+(1-\alpha)(r-1)}\left\|\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right\| \\
& +\frac{\alpha}{\alpha r+(1-\alpha)(r-1)}\left\|T_{r} x-T_{r} y\right\| .
\end{aligned}
$$

After simplifying we obtain the following results

$$
\begin{aligned}
\left\|T_{r} x-T_{r} y\right\|-\frac{\alpha}{\alpha r+(1-\alpha)(r-1)}\left\|T_{r} x-T_{r} y\right\| & \leq \frac{r-1}{\alpha r+(1-\alpha)(r-1)}\left\|\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right\|, \\
{\left[1-\frac{\alpha}{\alpha r+(1-\alpha)(r-1)}\right]\left\|T_{r} x-T_{r} y\right\| } & \leq \frac{r-1}{\alpha r+(1-\alpha)(r-1)}\left\|\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right\|, \\
\frac{r-1}{\alpha r+(1-\alpha)(r-1)}\left\|T_{r} x-T_{r} y\right\| & \leq \frac{r-1}{\alpha r+(1-\alpha)(r-1)}\left\|\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right\|, \\
\left\|T_{r} x-T_{r} y\right\| & \leq\left\|\alpha(x-y)+(1-\alpha)\left(T_{r} x-T_{r} y\right)\right\|,
\end{aligned}
$$

since $\beta=\frac{r-1}{\alpha r+(1-\alpha)(r-1)}>0$. Hence T_{r} is firmly non-expansive mapping.

Claim 3: We have that z is a fixed point of T if and only if it is also a fixed point of T_{r}.

Proof. Now suppose that $T z=z$. Then we have the following evaluation:

$$
\begin{aligned}
\left\|T_{r} z-z\right\| & =\left\|\left(1-\frac{1}{r}\right) z+\frac{1}{r} T\left(T_{r} z\right)-z\right\| \\
& =\left\|\frac{1}{r} T\left(T_{r} z\right)-\frac{1}{r} z\right\| \\
& =\frac{1}{r}\left\|T\left(T_{r} z\right)-z\right\| \\
& =\frac{1}{r}\left\|T\left(T_{r} z\right)-T z\right\| \\
& \leq \frac{1}{r}\left\|T_{r} z-z\right\|
\end{aligned}
$$

Hence $\left\|T_{r} z-z\right\| \leq \frac{1}{r}\left\|T_{r} z-z\right\|$ which is not possible since $r>1$. it is possible when $\left\|T_{r} z-z\right\|=0 \Rightarrow T_{r} z=z$. So z is a fixed point of $T_{r} z$. On the other hand, let us suppose that $T_{r} z=z$, that is z is a fixed point of T_{r}.
Then

$$
\begin{aligned}
z & =T_{r} z \\
& =\left(1-\frac{1}{r}\right) z+\frac{1}{r} T\left(T_{r} z\right), \\
& =\left(1-\frac{1}{r}\right) z+\frac{1}{r} T(z)
\end{aligned}
$$

This gives us

$$
\left[1-\left(1-\frac{1}{r}\right)\right] z=\frac{1}{r} T(z)
$$

Hence z is a fixed point of T and that concludes our main result.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] F.E. Browder, Nonlinear monotone operators and convex sets in banach spaces. Bull. Amer. Math. Soc. 71(5) (1965), 780-785.
[2] F.E. Browder, Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA, 54(4) (1965), 1041 -1044.
[3] F.E. Browder, Convergence theorems for sequences of nonlinear operators in banach spaces. Math. Zeitschr. 100(3) (1976), 201-225.
[4] F.E. Browder, W.V. Petryshyn. The solution by iteration of nonlinear functional equations in banach spaces. Bull. Amer. Math. Soc. 72(3) (1966), 571-575.
[5] F.E. Browder, W.V. Petryshyn. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20(2) (1967), 197-228.
[6] W. Kirk. A fixed point theorem for mappings which do not increase distances. Amer. Math. Mon. 72(9) (1965), 1004-1006.
[7] J. George, Minty et al. Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3) (1962), 341-346.
[8] R. Bruck. Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 47(2) (1973), 341-355.
[9] R. Smarzewski. On firmly nonexpansive mappings. Proc. Amer. Math. Soc. 113(3) (1991), 723-725.
[10] S. Banach, H. Steinhaus. Sur le principe de la condensation de singularités. Fundam. Math. 1(9) (1927), 50-61.

