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Abstract. The Ambartsumian equation in view of the q-calculus is investigated in this paper. This equation

is of practical interest in the theory of surface brightness in the Milky Way. Two approaches are applied to

obtain the closed form solution. The first approach implements a direct series assumption while the second

approach is based on the Adomian decomposition method. The two approaches lead to a unique power

series of arbitrary powers. Furthermore, the convergence of the obtained series is theoretically proven. In

addition, we showed that the present solution reduces to the results in the relevant literature when the

quantum calculus parameter tends to 1.

1. Introduction

In regular calculus, we usually use the limits to calculate the derivatives of any given real functions. While

the quantum calculus (q-calculus) provides the derivatives without implementing limits. Euler obtained the

basic formulae in q-calculus in the eighteenth century. However, the notion of the definite q-derivative and

q-integral were introduced by Jackson [1] to the first time. In the present time, there is a great interest in

the applications of the q-calculus in various fields such as mathematics, number theory, and combinatorics

[2]. Besides, Ernst [3, 4] pointed out that the majority of scientists who use q-calculus are physicists. In

addition, Baxter [5] introduced the exact solutions of several models in Statistical Mechanics. Also, Bettaibi
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and Mezlini [6] obtained the solutions of some q-heat/q-wave equations. In the literature [7-12], several

interesting results for the q-calculus have been discussed by several authors.

This paper considers a q-calculus model of the Ambartsumian delay equation (ADE) in the form:

(1.1)
dqy

dqt
= −y(t) +

1

ρ
y

(
t

ρ

)
, q ∈ (0, 1],

such that

(1.2) y(0) = λ,

where ρ > 1 and λ is a constant. The system (1-2) is a generalized form of the standard ADE which

describes the surface brightness in the Milky Way [13]. When q → 1, the system (1-2) was investigated by

the authors [14-15]. However, the fractional model was solved in [16] using the homotopy transform analysis

method by means of the Caputo’s definition. Here, we consider the q-derivative to deal with the present

model. In the literature, there are several analytical methods to deal with the system (1-2) such as the

Adomian decomposition method (ADM) [17-18], the homotopy perturbation method (HPM) [19-20], and

the homotopy analysis method (HAM) [16].

In this paper, two different approaches are suggested to analytically solve the system (1-2). The first

approach is a regular power series approach while the second is based on the ADM. Such approaches are

preferred here, especially, in proving the convergence of the resulting series solution. The paper is organized

as follows. The main aspects of the q-calculus are presented in Section 2. In addition, a basic lemma for

the integrals arise from the ADM is to be proved in Section 2. Sections 3 discusses the application of the

q-calculus to solving the current model. Section 4 is devoted to the application of the ADM. In addition it

will be shown that the present solution reduces to that one in the literature as q → 1. Section 5 includes an

analysis of convergence. Finally, section 6 outlines the conclusions.

2. Preliminaries

Let q ∈ R and n ∈ N, then [n]q is defined as (first chapter in [21])

(2.1) [n]q =
1− qn

1− q
,

and as q → 1, we have

(2.2) lim
q→1

[n]q = n.

The q-factorial [n]q! of a positive integer n is given by

(2.3) [n]q! = [1]q × [2]q × [3]q × · · · × [n]q ,
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and as q → 1, we have

lim
q→1

[n]q! = [1]1 × [2]1 × [3]1 × · · · × lim
q→1

[n]q ,

= 1× 2× 3× · · · × n = n!(2.4)

The definition of q-differential is dqf(t) = f(t) − f(qt) and the q-derivative of a function f(t) is defined by

[21]

(2.5) Dqf(t) :=
dqf(t)

dqt
=
f(t)− f(qt)

(1− q)t
, t 6= 0,

such that

(2.6) lim
q→1

Dqf(t) = f ′(t),

if f is differentiable at t, and we have at t = 0 that

(2.7) Dqf(0) = lim
t→0

Dqf(t).

According to (2.5) we have

(2.8) Dq t
n = [n]q t

n−1.

The definite Jackson q-integral is defined by

(2.9)

∫ t

0

f(τ) dqτ = (1− q)t
∞∑
j=0

qjf(qjt),

and hence,

(2.10)

∫ t

0

Dqf(τ) dqτ = f(t)− f(0).

In order to apply the ADM on the system (1.1-1.2), we need to introduce and prove the following lemma.

2.1. Lemma 1. For q ∈ (0, 1], we have

(2.11)

∫ t

0

τn dqτ =
tn+1

[n+ 1]q
.

Proof:
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From the definite Jackson q-integral given by Eq. (2.9), we obtain∫ t

0

τn dqτ = (1− q)t
∞∑
j=0

qj(qjt)n,

= (1− q)tn+1
∞∑
j=0

(
qn+1

)j
,

= (1− q)tn+1

(
1

1− qn+1

)
,

=
tn+1

[n+ 1]q
.(2.12)

3. Direct series solution

In order to solve Eq. (1.1), we assume the solution in the series form:

(3.1) y(t) =

∞∑
n=0

ant
n,

and therefore

dqy

dqt
=

∞∑
n=0

[n]qant
n−1,

=

∞∑
n=1

[n]qant
n−1, where [0]q = 0,

=

∞∑
n=0

[n+ 1]qan+1t
n.(3.2)

Substituting (3.1) and (3.2) into (1.1), yields

∞∑
n=0

[n+ 1]qan+1t
n = −

∞∑
n=0

ant
n +

1

ρ

∞∑
n=0

an

(
t

ρ

)n
,

= −
∞∑
n=0

ant
n +

∞∑
n=0

(
1

ρn+1

)
ant

n,

=

∞∑
n=0

(
1

ρn+1
− 1

)
ant

n,(3.3)

or

(3.4)

∞∑
n=0

[
[n+ 1]qan+1 −

(
1

ρn+1
− 1

)
an

]
tn = 0,

which requires that

(3.5) [n+ 1]qan+1 −
(

1

ρn+1
− 1

)
an = 0.
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Therefore

(3.6) an+1 =

(
ρ−(n+1) − 1

[n+ 1]q

)
an, n ≥ 0

From (3.6), we have

a1 =

(
ρ−1 − 1

[1]q

)
a0,

a2 =

(
ρ−2 − 1

[2]q

)
a1 =

(
(ρ−1 − 1)(ρ−2 − 1)

[1]q × [2]q

)
a0,

a3 =

(
ρ−3 − 1

[3]q

)
a2 =

(
(ρ−1 − 1)(ρ−2 − 1)(ρ−3 − 1)

[1]q × [2]q × [3]q

)
a0,

.

.

an =

(
(ρ−1 − 1)(ρ−2 − 1)(ρ−3 − 1) . . . (ρ−n − 1)

[1]q × [2]q × [3]q × · · · × [n]q

)
a0.(3.7)

This n-term coefficient can expressed in terms of the q-factorial [n]q! as

(3.8) an =
a0

[n]q!

n∏
i=1

(
ρ−i − 1

)
, n ≥ 1.

Thus

y(t) = a0 +

∞∑
n=1

ant
n,

= a0 + a0

∞∑
n=1

tn

[n]q!

n∏
i=1

(
ρ−i − 1

)
,

= a0

[
1 +

∞∑
n=1

tn

[n]q!

n∏
i=1

(
ρ−i − 1

)]
.(3.9)

Applying the initial condition (1.2) on (3.9), yields a0 = λ. Hence, the closed-form solution of the system

(1.1-1.2) is finally given by

(3.10) y(t) = λ

[
1 +

∞∑
n=1

tn

[n]q!

n∏
i=1

(
ρ−i − 1

)]
,

which is the solution of ADE in the q-calculus. Moreover, the solution (3.10) as q → 1 reduces to

y(t) = λ

[
1 + lim

q→1

∞∑
n=1

tn

[n]q!

n∏
i=1

(
ρ−i − 1

)]
,

= λ

[
1 +

∞∑
n=1

tn

(limq→1 [n]q!)

n∏
i=1

(
ρ−i − 1

)]
,

= λ

[
1 +

∞∑
n=1

tn

n!

n∏
i=1

(
ρ−i − 1

)]
,(3.11)

which is the same closed form solution obtained by the authors [14] for the standard model of Ambartsumian

equation.
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4. Application of the ADM

Integrating Eq. (1.1) and based on Eq. (2.10), we have

(4.1) y(t) = λ+

∫ t

0

(
1

ρ
y

(
τ

ρ

)
− y(τ)

)
dqτ.

Following the ADM [17-18], we assume that

(4.2) y(t) =

∞∑
k=0

yk(t),

and hence,

y0(t) = λ,

yk+1(t) =

∫ t

0

(
1

ρ
yk

(
τ

ρ

)
− yk(τ)

)
dqτ, k ≥ 1.(4.3)

At k = 1, Eq. (4.3) gives

y1(t) =

∫ t

0

(
1

ρ
y0

(
τ

ρ

)
− y0(τ)

)
dqτ,

= λ
(
ρ−1 − 1

) ∫ t

0

dqτ,

= λ
(
ρ−1 − 1

) t

[1]q
,(4.4)

where Lemma 1 is implemented to calculate the involved integral. Similarly, at k = 2, we have

y2(t) =

∫ t

0

(
1

ρ
y1

(
τ

ρ

)
− y1(τ)

)
dqτ,

= λ
(
ρ−1 − 1

) (
ρ−2 − 1

) ∫ t

0

τ

[1]q
dqτ,

= λ
(
ρ−1 − 1

) (
ρ−2 − 1

) t2

[1]q[2]q
.(4.5)

Proceeding as above, we obtain

(4.6) yk(t) = λ
(
ρ−1 − 1

) (
ρ−2 − 1

) (
ρ−3 − 1

)
. . .
(
ρ−k − 1

) tk

[1]q[2]q[3]q . . . [k]q
.

From Eq. (2.3), we can rewrite Eq. (4.6) as

(4.7) yk(t) = λ

k∏
j=1

(
ρ−j − 1

)( tk

[k]q!

)
, k ≥ 1.
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Thus

y(t) = y0(t) +

∞∑
k=1

yk(t),

= λ+ λ

∞∑
k=1

tk

[k]q!

k∏
j=1

(
ρ−j − 1

)
,

= λ

1 +

∞∑
k=1

tk

[k]q!

k∏
j=1

(
ρ−j − 1

) ,(4.8)

which is the same closed form series solution that was obtained in the previous section. The series (3.11)

which is equivalent to (4.8) will be proved for convergence in the next section.

5. Analysis of convergence

In order to proving the convergence of (3.11), we assume that

(5.1) an =
1

[n]q!

n∏
i=1

(
ρ−i − 1

)
, n ≥ 1.

Accordingly, we obtain the theorem below.

Theorem 1:

The radius of convergence of the series (3.11) is
(

1
1−q

)
∀ q ∈ (0, 1].

Proof:

Assume that µ is the radius of convergence. Therefore, we have from (5.1) and the ratio test that

1

µ
= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ,
= lim
n→∞

∣∣∣∣∣
∏n+1
i=1

(
ρ−i − 1

)
[n+ 1]q!

× [n]q!∏n
i=1 (ρ−i − 1)

∣∣∣∣∣ .(5.2)

From (2.3), we observe that

(5.3) [n+ 1]q! = [1]q × [2]q × [3]q × · · · × [n]q × [n+ 1]q = [n]q! [n+ 1]q.

Inserting (5.3) into (5.2), we obtain

(5.4)
1

µ
= lim
n→∞

∣∣∣∣∣
(
ρ−(n+1) − 1

)∏n
i=1

(
ρ−i − 1

)
[n]q! [n+ 1]q

× [n]q!∏n
i=1 (ρ−i − 1)

∣∣∣∣∣ .
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Simplifying (5.4), it then follows

1

µ
= lim
n→∞

∣∣∣∣ρ−(n+1) − 1

[n+ 1]q

∣∣∣∣ ,
=
∣∣∣ lim
n→∞

(
ρ−(n+1) − 1

)
/ lim
n→∞

([n+ 1]q)
∣∣∣ ,

=

∣∣∣∣−1/

(
1

1− q

)∣∣∣∣ , where ρ > 1,

= |1− q| ,

= 1− q ∀ q ∈ (0, 1],(5.5)

which completes the proof, where the following property:

(5.6) lim
n→∞

[n+ 1]q = lim
n→∞

(
1− qn+1

1− q

)
=

1

1− q
∀ q ∈ (0, 1],

was implemented in deducing (5.5). It is noticed from (5.6) that as q → 1 then 1
µ → 0. Hence, the series

(3.11) has an infinite radius of convergence at such special case which is in full agreement with the results

obtained by [14] for the standard ADE.

6. Conclusion

In this paper, the quantum calculus was applied to generalize the Ambartsumian equation. The resulting

q-differential equation was analytically solved via the power series approach and the ADM. The convergence

of the obtained power series was theoretically proven. The implemented approaches led to the same closed

form series solution. In addition, we showed that the present solution reduces to the results in the literature

when the quantum calculus parameter tends to 1. Finally, the present work can be further extended to

explore several physical models in view of the q-calculus.
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