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Abstract. Topological indices and domination in graphs are the essential topics in the theory of graphs.

A set of vertices D ⊆ V (G) is said to be a dominating set for G if any vertex v ∈ V −D is adjacent to some

vertex u ∈ D. In this research work, we define a new degree of each vertex v ∈ V (G), called the domination

degree of v and denoted by dd(v), along with this new degree some domination indices based on domination

degree are introduced. We study some basic properties of the domination degree function. Exact values and

bounds for domination Zagreb indices of some families of graphs including the join and corona product are

obtained. Finally, we generalize the domination degree of the vertex and new general indices are defined.

1. Introduction

In this research article, we assume that G = (V,E) is a connected simple graph. In the field of chemistry,

graph theory has provided many useful tools, such as topological indices. Chem-informatics is one of the

latest concepts which is a join of chemistry, mathematics, and information science.

Topological indices are numerical parameters of the graph, such that these parameters are the same for the

Received September 21st, 2020; accepted October 20th, 2020; published November 24th, 2020.

2010 Mathematics Subject Classification. 05C69, 05C90, 05C35.

Key words and phrases. domination Zagreb indices; domination degree; minimal dominating set; total number of minimal

domination sets.

©2021 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

47

https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-19-2021-47


Int. J. Anal. Appl. 19 (1) (2021) 48

graph which they are isomorphism. Some of the major classes of topological indices are distance based-

topological indices (see [2], [3]) and degree- based-topological indices (see [5], [20], [23]). Degree based-

topological indices are of great significance. The Wiener index W (G) is the old index and the first distance-

based, introduced by chemist Wiener [24] in 1974. After the introduction of the Wiener index, many

another distance-based topological indices, have been proposition and take into consideration in chemical

and mathematical chemical literature. For example, Harary index [17] and eccentric connectivity index [22].

presently a great number of vertex-degree-based graph invariants are being studied in mathematical and

mathematical chemical literature ( [8], [9]). Among them, the Zagreb indices M1(G) and M2(G) are the

most widely investigated. Those have been inserted more than forty years ago ( [11], [12]), which are defined

as follows:

M1(G) =
∑

v∈V (G)

d2(v) =
∑

uv∈E(G)

d(u) + d(v)

M2(G) =
∑

uv∈E(G)

d(u)d(v).

For properties of the two Zagreb indices see [10] and the papers cited therein. The Zagreb co-indices defined

in [21], and are given by :

M1(G) =
∑
d(u) + d(v) and M2(G) =

∑
d(u)d(v), where uv is not an edge in E(G). The degree of a

vertex u in G, d(u) is the number of edges that are incident to u in G. The maximum and minimum degrees of

vertices of a graph G are denoted by ∆(G) and δ(G) respectively. G is the complement of a graph G, having

the same vertex set of G so that two vertices of G are neighboring if and only if they are not neighboring

in G. If for every two vertices u, v ∈ V, there exists a (u, v)-path in G, then G is connected, otherwise, G is

said to be disconnected. A set D ⊆ V is said to be a dominating set of G, if for any vertex v ∈ V −D there

exists a vertex u ∈ D such that u and v are adjacent. The domination number γ(G) of G is the minimum

cardinality of a minimal dominating set in G. The upper domination number Γ(G) of G is the maximum

cardinality of a minimal dominating set in G [4]. For a survey of domination in graphs, refer to ( [14], [15]).

A dominating-set D = {v1, v2, ..., vr} is minimal if D− vi is not a dominating set. We use Tm to denote the

number of minimal dominating sets. In [7] a graph has at most O(1.7159n) minimal dominating-sets and

there exist graphs with at leastO(1.5705n) minimal dominating-sets. For more definitions or properties, we

refer to ( [7], [18], [19]).

2. Domination Degree in Graphs

In this partition, we sitting the definition of domination degree of the vertex v. We consider the lower

and upper bound for this degree, and we study some basic properties of the domination degree.

Definition 2.1.
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For each vertex v ∈ V (G), the domination degree denoted by dd(v) and defined as the number of minimal

dominating sets of G which contains v.

The minimum domination and maximum domination degree of G are denoted by δd(G) = δd and ∆d(G) =

∆d respectively, where

δd = min{dd(v) : v ∈ V (G)} and ∆d = max{dd(v) : v ∈ V (G)}.

Let v ∈ V (G) and v
′ ∈ G′

. Then ddG(v) = ddG′ (v
′
) if G ∼= G

′
.

The domination degree function is obviously invariant under isomorphism.

Observation 2.1.

1 ≤ dd(v) ≤ Tm(G), where Tm(G) denotes the total number of minimal dominating sets.

Observation 2.2.

Suppose G is a graph of n ≥ 2 vertices having ∆(G) = n − 1. Then γ(G) = 1 and dd(v) ≥ 1, for any

v ∈ V (G). Also, dd(v) = 1 if and only if d(v) = n− 1.

Corollary 2.1.

If G ∼= Kn and G is the complement of G, then

dd G(v) = dd G(v), and Tm(G) = 1.

Observation 2.3.

Let G(V,E) be a graph with minimal dominating sets S1, S2, ..., St. Then

tγ(G) ≤
∑

v∈V (G) dd(v) ≤ tΓ(G).

We use the notion ρ(G) =
∑

v∈V (G) dd(v).

Proposition 2.1.

Let G be the complete bipartite graph Kr,s. Then dd G(v) = dG(v).

Proof. Let the bipartite sets of Kr,s be A and B, where A contains the vertices of degree s and B contains

the vertices of degree r. Also Tm(G) = rs, such that if v ∈ A ⇒ dd G(v) = s. similarly if v ∈ B ⇒

dd G(v) = r. �

Observation 2.4.

Let G =
⋃t

i=1Gi be the disjoint union of graphs G1, G2,...,Gt. Then γ(G) =
∑t

i=1 γ(Gi) and Tm(G) =∏t
i=1 Tm(Gi). For v ∈ V (Gi), ddG(v) = ddGi

(v)
∏t

j=1 Tm(Gj), j 6= i.

Proposition 2.2.

Given H is a spanning subgraph of G with V (H) is the same as V (G). If the domination number of H is

the same as the domination number of G, then Tm(H) ≤ Tm(G).
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Proof. Use the first presumption, every dominating set for H is also a dominating set of G. As γ(H) = γ(G),

its ensured that every minimal dominating set of minimum cardinality for H is also a minimal dominating

set of minimum cardinality for G. �

Definition 2.2.

The graph G is called k−domination regular graph if and only if dd(v) = k for all v ∈ V (G).

Example 2.1. Sr and Kn are 1−domination regular graph.

Proposition 2.3.

Let G be the double star graph Sr,s . Then

Tm(G) = 4, and any double star graph is 2−domination regular graph.

Proof. Let {v, v1, ..., vr−1, w, w1, ..., ws−1} be the set of all vertices of G with {v, w} be the center ver-

tices. There are four type of minimal dominating sets as following: {v, w}, {v1, v2, ..., vr−1, w1, w2, ..., ws−1},

{v, w1, w2, ..., ws−1} and {w, v1, v2, ..., vr−1}.

⇒ Tm(G) = 4. From this we get, dd(v) = 2 for all v ∈ V (G). �

3. Domination Zagreb Indices of a graph

Definition 3.1.

Let G be a simple connected graph, the first domination, second domination Zagreb and modified first Zagreb

indices are define as :

DM1(G) =
∑

v∈V (G)

d2d(v) ,

DM2(G) =
∑

uv∈E(G)

dd(u)dd(v) ,

DM∗1 =
∑

uv∈E(G)

[dd(u) + dd(v)] .

Lemma 3.1.

Tm(Sr) = 2 and Tm(Kn) = n.

For all v ∈ V (Sr) or v ∈ V (Kn), we get dd(v) = 1.

Proposition 3.1.

(1) For the star graph Sr, with r + 1 vertices.

DM1(Sr) = r + 1 , DM2(Sr) = r and DM∗1 (Sr) = 2r.

(2) For the complete graph Kn

DM1(Kn) = n , DM2(Kn) =
n(n− 1)

2
and DM∗1 (Kn) = n(n− 1).
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(3) For the double star graph Sr,s

DM1(Sr,s) = 4(r + s+ 2) DM2(Sr,s) = 4(r + s+ 1) and DM∗1 (Sr,s) = 4(r + s+ 1).

Lemma 3.2.

Tm(Kr,s) = rs+ 2 and dd(v) =

 r + 1;

s+ 1.

for all v ∈ V (Kr,s).

Theorem 3.1.

If G ∼= Kr,s, then

DM1(G) = r(r + 1)2 + s(s+ 1)2 ,

DM2(G) = (r + 1)(s+ 1)rs ,

DM∗1 (G) = rs(r + s+ 2).

Proof. By using the definition of domination Zagreb indices and lemma 3.2, we get the results. �

Corollary 3.1.

Let G be the complete bipartite Kr,s. Then

(1) DM1(G) = M1(G) + 4rs+ (r + s).

(2) DM2(G) = M2(G) +M1(G) + rs.

(3) DM∗1 (G) = M1(G) + 2rs.

Proof. In the complete bipartite Kr,s, we can see that dd(vi) = d(vi) + 1 for all i = 1, 2, ..., r + s

DM1(G) =
∑

v∈V (G)

d2d(v) =
∑

v∈V (G)

(d(v) + 1)2

= M1(G) + 4rs+ (r + s)

And,

DM2(G) =
∑

uv∈E(G)

dd(u)dd(v) =
∑

uv∈E(G)

(d(u) + 1)(d(v) + 1)

= M2(G) +M1(G) + rs,

DM∗1 (G) =
∑

uv∈E(G)

[dd(u) + dd(v)] =
∑

uv∈E(G)

[(d(u) + 1) + (d(v) + 1)]

= M1(G) + 2rs.

�

Proposition 3.2.
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If G ∼= Kr,s, then

(1) DM1(G) = DM∗1 (G) = M1(G).

(2) DM2(G) = M2(G).

Proof. See proposition 2.1. �

Lemma 3.3.

Let G be the Windmill graph Wdsr. Then Tm(Wdsr) = (r − 1)s + 1. And

dd(v) =

 1, if v is the center vertex;

(r − 1)s−1, otherwise.

Theorem 3.2.

If G ∼= Wdsr, then

DM1(G) = 1 + s(r − 1)2s−1,

DM2(G) = s((r − 1)s + (r − 1)2s−1(
r − 2

2
)),

DM∗1 (G) = s(r − 1)(1 + (r − 1)s).

Proof.

DM1(G) =
∑

v∈V (G)

d2d(v) = 1 +
∑

v∈V (G)−1

d2d(v)

= 1 + (r − 1)2(s−1)(|V (G)| − 1)

= 1 + s(r − 1)2s−1.

Let E1 denote the set of all edges which are incident with the center vertex and E2 be the set of all edges of

the complete graph, then

DM2(G) =
∑

uv∈E(G)

dd(u)dd(v) =
∑

uv∈E1

dd(u)dd(v) +
∑

uv∈E2

dd(u)dd(v)

= (r − 1)s−1|E1|+ s(r − 1)2s−2|E2|

= s((r − 1)s + (r − 1)2s−1(
r − 2

2
)),

DM∗1 (G) =
∑

uv∈E(G)

[dd(u) + dd(v)] =
∑

uv∈E1

[dd(d) + dd(v)] +
∑

uv∈E2

[dd(u) + dd(v)]

= (1 + (r − 1)s−1)|E1|+ 2s(r − 1)s−1|E2|

= s(r − 1)(1 + (r − 1)s).

�
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Proposition 3.3.

If G is K−domination regular graph with n vertices, and m edges, then

DM1(G) = nK2, DM2(G) = mK2 and DM∗1 (G) = 2mK.

Definition 3.2.

Let P3 be the 3 vertex tree, is rooted in one of its terminal vertices . For k = 2, 3, 4, ... build the rooted tree

Bk by identifying the roots of k-copies of P3. The vertex obtained by identifying the roots of P3−trees is the

root of Bk [16].

Definition 3.3.

Let d ≥ 2 be an integer. Let β1, β2, ..., βd be as specified in Definition 3.2 i.e., β1, β2, ..., βd ∈ {B2, B3, ...}.

A Kragujevac tree T is a tree has a vertex of degree d, neighboring to the roots of β1, β2, ..., βd. This vertex

be the central- vertex of T , where d is the degree of the tree T . The subgraphs β1, β2, ..., βd are the branches

of T . Recall that some (or all) branches of T may be mutually isomorphic [16].

The branch Bk has 2k + 1 vertices. Therefore, if in the Kragujevac tree T, specified in Definition 3.3,

βi ∼= βki , i = 1, 2, ..., d then its order is n(T ) = 1 +
∑d

i=1(2ki + 1).

Proposition 3.4.

Let T be the Kragujevac tree of order n(T ) = 1 +
∑d

i=1(2ki + 1) and size m. Then

DM1(T ) = 4[1 +

d∑
i=1

(2ki + 1)],

DM2(T ) = DM∗1 (T ) = 4m.

Proof. It is easy to see that, in the Kragujevac tree of order n(T ) = 1 +
∑d

i=1(2ki + 1) and size m there are

four types of minimal dominating sets. The set which contains the center vertex and all pendent vertices, the

set which contains the center vertex and all vertices adjacent to the pendent vertices, the set which contains

the roots of β1, β2, ..., βd and all pendent vertices, and the set which contains the roots of β1, β2, ..., βd and

all vertices adjacent to the pendent vertices. Hence, dd(v) = 2 for all v ∈ V (T ). So by using the definition

of domination Zagreb indices we get the result. �

Definition 3.4.

Let G1 and G2 be any two graphs. The Cartesian product G1 ×G2 is defined as [6] the graph has vertex set

(V (G1)× V (G2)) such that any two vertices u = (u1, u2) and v = (v1, v2) are adjacent if and only if either

([u1 = v1 and {u2, v2} ∈ E(G2)]) or ([u2 = v2 and {u1, v1} ∈ E(G1)]).

Definition 3.5.
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Book graph Br is a Cartesian product of a star and single edge Sr+1 × P2. The generalization of the book

graph to n “stacked“ is the (r, s)−Stacked book graph [13].

Lemma 3.4.

If G ∼= Br, then Tm(G) = 2r + 3. Further, for any vertex v ∈ V (Br)

dd(v) =

 3, if v is the center vertex;

2r−1 + 1, otherwise.

Proof. Let uv be the center edge in book graph such that {u, v} is the set of center vertices. Let {v1, v2, ..., vr}

be the set of all vertices which are adjacent with the center vertex v. Similarly {u1, u2, ..., ur} be the set of

all vertices which are adjacent with the center vertex u. There are four types of minimal dominating sets.

First type is{u, v}. Second type is {v, u1, u2, ..., ur} and {u, v1, v2, ..., vr}. Third type is {u, u1, u2, ..., ur}

and {v, v1, v2, ..., vr}. Fourth type is only those minimal dominating sets which are formed by taking one

vertex from each section other than u and v. So there are 2r − 2 minimal dominating sets of fourth type.

Hence, Tm(Br) = 2r + 3 and for all v ∈ V (Br) we get

dd(v) =

 3, if v is the center vertex;

2r−1 + 1, otherwise.
�

Theorem 3.3.

Let G be a book graph Br where r ≥ 3. Then

DM1(Br) = 2r(2r−1 + 1)2 + 18 ,

DM2(Br) = r(2r−1 + 1)[2r−1 + 7] + 9 ,

DM∗1 (Br) = 2r+1r + 2r(4 + 2r−1) + 6 .

Proof.

DM1(Br) =
∑

w∈V (Br)

d2d(w) =
∑

w∈V (Br−{u,v})

(2r−1 + 1)2 +
∑

w∈{u,v}

32

= 2r(2r−1 + 1)2 + 18.

There are three type of edges in the book graph.

Let E1 denote the set of r edges (uivi) with initial and terminal vertices of the same domination degree

2r−1 + 1, E2 denote the set containing only one edge (uv) with initial and terminal vertices of the same

domination degree 3, and E3 denote the set of 2r edges of initial vertices of the domination degree 3 and

terminal vertices of domination degree 2r−1 + 1. Hence,



Int. J. Anal. Appl. 19 (1) (2021) 55

DM2(Br) =
∑

uv∈E(Br)

dd(u)dd(v)

=
∑

uv∈E1

(2r−1 + 1)2 +
∑

un∈E2

9 +
∑

uv∈E3

3(2r−1 + 1)

= r(2r−1 + 1)[2r−1 + 7] + 9 ,

DM∗1 (Br) =
∑

uv∈E(Br)

[dd(u) + dd(v)]

=
∑

uv∈E1

[(2r−1 + 1) + (2r−1 + 1)] +
∑

uv∈E2

[3 + 3] +
∑

uv∈E3

[3 + 2r−1 + 1]

= 2r+1 + 2r(4 + 2r−1) + 6.

�

Lemma 3.5.

Let G ∼= Kn1,n2,...,nk
. Then

Tm(G) =

k∑
i=2

n1ni +

k∑
i=3

n2ni + ...+ nk−1nk + k .

Theorem 3.4.

If G ∼= Kn1,n2,...,nk
, then

DM1(G) = M1(G) + 4(Tm(G)− k) +

k∑
i=1

ni ,

DM2(G) = M2(G) +M1(G) + Tm(G)− k ,

DM∗1 (G) = M1(G) + 2(Tm(G)− k) .

Proof. Suppose G ∼= Kn1,n2,...,nk
, note that for any vertex v ∈ G we have dd(v) = d(v) + 1, and |E(G)| =

Tm(G)− k. So, by the definition of domination Zagreb indices we get the result. �

Lemma 3.6.

For any connected graph G with n1 vertices and m1 edges. Let H ∼= G◦Kn2
, where Kn2

is the complete graph

of n2 vertices and m2 edges. There are (n2 + 1)n1 minimal domination sets in H, and dd(v) = (n2 + 1)n1−1.

Theorem 3.5.

For any connected graph G of n1 vertices and m1 edges, we have

DM1(G ◦Kn2) = (n1 + n1n2)(n2 + 1)2(n1−1) ,

DM2(G ◦Kn2
) = (n2 + 1)2(n1−1)[2m1 + n2(n2 + 2n1 − 1)] ,

DM∗1 (G ◦Kn2) = 4(n2 + 1)n1−1[2m1 + n2(n2 + 2n1 − 1)] .
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Proof. Note that |V (G ◦Kn2
)| = n1 + n1n2. Hence, by the definition of first domination Zagreb indices and

Lemma 3.6, we get

DM1(G ◦Kn2
) = (n1 + n1n2)(n2 + 1)2(n1−1).

There are three types of edges in G ◦Kn2 . All edges of G, all edges of Kn2 and let E1 denote the set of all

edges that connect vertex from G and vertex from Kn2
. So, we have

DM2(G ◦Kn2) =
∑

uv∈E(GoKn2
)

dd(u)dd(v)

=
∑

uv∈E(G)

dd(u)dd(v) +
∑

uv∈E(Kn2
)

dd(u)dd(v) +
∑

uv∈E1

dd(u)dd(v)

= m1(n2 + 1)2(n1−1) + (n2 + 1)2(n1−1)|E(Kn2)|+ n1n2(n2 + 1)2(n1−1)

= (n2 + 1)2n1−2[m1 +
n2(n2 − 1)

2
+ n1n2]

= (n2 + 1)2(n1−1)[2m1 + n2(n2 + 2n1 − 1)],

DM∗1 (G ◦Kn2) =
∑

uv∈E(G◦Kn2
)

[dd(u) + dd(v)]

=
∑

uv∈E(G)

2(n2 + 1)n1−1 +
∑

uv∈E(Kn2
)

2(n2 + 1)n1−1 +
∑

uv∈E1

2(n2 + 1)n1−1

= 4(n2 + 1)n1−1[2m1 + n2(n2 + 2n1 − 1)].

�

Lemma 3.7.

Let H ∼= G ◦Kn2 , where G be any connected graph of order n1. Then

Tm(H) =

n1∑
i=0

(
n1
i

)
.

Theorem 3.6.

If G be a graph of order n1 and size m1. Let H ∼= G ◦Kn2
then

DM1(H) = (Tm(H)− 2n1−1)2(n1 + n1n2) ,

DM2(H) = (Tm(H)− 2n1−1)2(m1 + n1n2) ,

DM∗1(H) = (2Tm(H)− 2n1)(m1 + n1n2) .

Proof. For any vertex v ∈ V (H), it is not easy to see that H ∼= G ◦Kn2
is domination regular graph. Every

v ∈ V (H) is contained in every minimal dominating sets of H except



Int. J. Anal. Appl. 19 (1) (2021) 57

(
n1−1

0

)
+
(
n1−1

1

)
+ ...+

(
n1−1
n1−2

)
+
(
n1−1
n1−1

)
= 2n1−1 minimal dominating sets.

Hence, ddH(v) = Tm(H)− 2n1−1 and

DM1(H) = (Tm(H)− 2n1−1)2(n1 + n1n2) ,

DM2(H) = (Tm(H)− 2n1−1)2(m1 + n1n2) ,

DM∗1(H) = (2Tm(H)− 2n1)(m1 + n1n2) .

�

A join of two graphs G1 and G2 is denoted by G1 +G2, with disjoint vertex sets V1 and V2 is the graph

on the vertex set V1 ∪ V2 and the edge set E1 ∪ E2 ∪ {u1u2 : u1 ∈ V1, u2 ∈ V2} [1].

Lemma 3.8.

Let G1 and G2 be any non complete graphs of n1, n2 vertices respectively. Then

Tm(G1 +G2) = Tm(G1) + Tm(G2) + n1n2, and

ddG1+G2(v) =

 ddG1
(v) + n2, if v ∈ V (G1);

ddG2(v) + n1, if v ∈ V (G2).

Proof. There are three types of minimal dominating sets in G1 +G2 graph:

The minimal-dominating sets of G1, all the minimal dominating sets of G2 and the sets of size two of all

minimal dominating sets containing one vertex from G1 and another vertex from G2.

Hence, Tm(G1 +G2) = Tm(G1) + Tm(G2) + n1n2, and

ddG1+G2(v) =

 ddG1
(v) + n2, if v ∈ V (G1);

ddG2(v) + n1, if v ∈ V (G2).
�

Theorem 3.7.

Let G1 and G2 be any non complete graphs having n1, n2 vertices and m1, m2 edges respectively. Then

(1)

DM1(G1 +G2) = DM1(G1) +DM2(G2) + 2n2ρ(G1)

+ 2n1ρ(G2) + n1(n22 + n2n1),

(2)

DM2(G1 +G2) = DM2(G1)(1 + n2) +m1n
2
2 +DM2(G2)(1 + n1) +m2n

2
1

+ [n1n2 + ρ(G1)][n1n2 + ρ(G2)],
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(3)

DM∗1 (G1 +G2) = DM∗1 (G1) +DM∗1 (G2) + 2m1n2 + 2n1m2

+ (ρ(G2) + n2(n1 + 1))(ρ(G1) + n1n2).

Proof.

DM1(G1 +G2) =
∑

v∈V (G1+G2)

d2dG1+G2
(v)

=
∑

v∈V (G1)

(ddG1(v) + n2)2 +
∑

v∈V (G2)

(ddG2(v) + n1)2

=
∑

v∈V (G1)

ddG1(v)2 + 2n2
∑

v∈V (G1)

ddG1(v) + n22
∑

v∈V (G1)

1

+
∑

v∈V (G2)

ddG2
(v)2 + 2n1

∑
v∈V (G2)

ddG2
(v) + n21

∑
v∈V (G1)

1

= DM1(G1) +DM2(G2) + 2n2
∑

v∈V (G1)

ddG1
(v)

+ 2n1
∑

v∈V (G2)

ddG2
(v) + n1(n22 + n2n1)

= DM1(G1) +DM2(G2) + 2n2ρ(G1)

+ 2n1ρ(G2) + n1(n22 + n2n1).

And,

DM2(G1 +G2) =
∑

uv∈E(G1+G2)

ddG1+G2(u)ddG1+G2(v)

=
∑

uv∈E(G1)

ddG1+G2(u)ddG1+G2(v) +
∑

uv∈E(G2)

ddG1+G2(u)ddG1+G2(v)

+
∑

u∈V (G1),v∈V (G2)

ddG1+G2
(u)ddG1+G2

(v)

We will find every part independently

(1)

∑
uv∈E(G1)

ddG1+G2
(u)ddG1+G2

(v) =
∑

uv∈E(G1)

(ddG1
(u) + n2)(ddG1

(v) + n2)

= DM2(G1)(1 + n2) +m1n
2
2
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(2) ∑
uv∈E(G2)

ddG1+G2
(u)ddG1+G2

(v) =
∑

uv∈E(G2)

(ddG2
(u) + n1)(ddG2

(v) + n1)

= DM2(G2)(1 + n1) +m2n
2
1

(3) ∑
u∈V (G1),v∈V (G2)

ddG1+G2
(u)ddG1+G2

(v) = (ddG1
(u1) + n2)(ddG2

(v1) + n1) + ...

+ (ddG1
(u1) + n2)(ddG2

(vn2
) + n1)

+ (ddG1(u2) + n2)(ddG2(v1) + n1) + ...

+ (ddG1
(u2) + n2)(ddG2

(vn2
) + n1)

+ ...

+ (ddG1
(un1

) + n2)(ddG2
(v1) + n1) + ...

+ (ddG1
(un1

) + n2)(ddG2
(vn2

) + n1)

= (ddG1(u1) + n2)[
∑

v∈V (G2)

(ddG2(v) + n1)] + ...

+ (ddG1(un1) + n2)[
∑

v∈V (G2)

(ddG2(v) + n1)]

= [
∑

u∈V (G1)

(ddG1
(u) + n2)][

∑
v∈V (G2)

(ddG2
(v) + n1)]

= [n1n2 +
∑

u∈V (G1)

ddG1
(u)][n1n2 +

∑
v∈V (G2)

ddG2
(v)]

= [n1n2 + ρ(G1)][n1n2 + ρ(G2)]

Hence,

DM2(G1 +G2) = DM2(G1)(1 + n2) +m1n
2
2 +DM2(G2)(1 + n1) +m2n

2
1

+ [n1n2 + ρ(G1)][n1n2 + ρ(G2)].

And,

DM∗1 (G1 +G2) =
∑

uv∈E(G1+G2)

[ddG1+G2
(u) + ddG1+G2

(v)]

=
∑

uv∈E(G1)

[ddG1+G2
(u) + ddG1+G2

(v)] +
∑

uv∈E(G2)

[ddG1+G2
(u) + ddG1+G2

(v)]

+
∑

u∈V (G1),v∈V (G2)

[ddG1+G2
(u) + ddG1+G2

(v)].
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We will find every part independently

(1)

∑
uv∈E(G1)

[ddG1+G2(u) + ddG1+G2(v)] =
∑

uv∈E(G1)

(ddG1(u) + n2) + (ddG1(v) + n2)

= DM∗1 (G1) + 2m1n2,

(2)

∑
uv∈E(G2)

[ddG1+G2
(u) + ddG1+G2

(v)] =
∑

uv∈E(G2)

(ddG2
(u) + n1) + (ddG2

(v) + n1)

= DM∗1 (G2) + 2n1m2,

(3)

∑
u∈V (G1),v∈V (G2)

[ddG1+G2
(u) + ddG1+G2

(v)] = (ddG1
(u1) + n2) + (ddG2

(v1) + n1) + ...

+ (ddG1
(u1) + n2) + (ddG2

(vn2
) + n1)

+ (ddG1(u2) + n2) + (ddG2(v1) + n1) + ...

+ (ddG1
(u2) + n2) + (ddG2

(vn2
) + n1)

+ ...

+ (ddG1
(un1

) + n2) + (ddG2
(v1) + n1) + ...

+ (ddG1
(un1

) + n2) + (ddG2
(vn2

) + n1)

= (ddG1(u1) + n2)[
∑

v∈V (G2)

(ddG2(v) + n1) + n2] + ...

+ (ddG1(un1) + n2)[
∑

v∈V (G2)

(ddG2(v) + n1) + n2]

= [
∑

v∈V (G2)

(ddG2
(v)) + n2(n1 + 1)][

∑
u∈V (G1)

(ddG1
(u)) + n1n2)]

= (ρ(G2) + n2(n1 + 1))(ρ(G1) + n1n2).

Hence,

DM∗1 (G1 +G2) = DM∗1 (G1) +DM∗1 (G2) + 2m1n2 + 2n1m2

+ (ρ(G2) + n2(n1 + 1))(ρ(G1) + n1n2).

�
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Corollary 3.2.

DM1(G1 +G2) ≤ DM1(G1) +DM2(G2) + 2n1Γ(G1)Tm(G1)

+ 2n1Γ(G2)Tm(G2) + n1(n22 + n2n1).

Corollary 3.3.

DM2(G1 +G2) ≤ DM2(G1)(1 + n2) +m1n
2
2 +DM2(G2)(1 + n1) +m2n

2
1

+ [n1n2 + Γ(G1)Tm(G1)][n1n2 + Γ(G2)Tm(G2)].

Corollary 3.4.

DM∗1 (G1 +G2) ≤ DM∗1 (G1) +DM∗1 (G2) + 2m1n2 + 2n1m2

+ (Γ(G2)Tm(G2) + n2(n1 + 1))(Γ(G1)Tm(G1) + n1n2).

4. Some bounds of domination Zagreb indices

Theorem 4.1.

Let G be a graph of order n. Then

DM1(G) ≥ 1
n (ρ(G))2. Equality hold if and only if G is one-domination regular graph.

Proof. We have DM1(G) =
∑

v∈V (G) d
2
d(v) = d2d(v1) + d2d(v2) + ...+ d2d(vn)

We use Cauchy-schwartz inequality on vectors (dd(v1), dd(v2), ..., dd(vn)) and (1, 1, ..., 1) to get

DM1(G).n = (d2d(v1), d2d(v2), ..., d2d(vn))(12, 12, ..., 12)

≥ (dd(v1).1 + dd(v2).1 + ...+ dd(vn).1)2

= (

n∑
i=1

dd(vi))
2

= (ρ(G))2.

To prove the equality, suppose G is one domination regular graph ⇒ dd(vi) = 1 for all 1 ≤ i ≤ n. And

DM1(G) = n. Conversely if DM1(G) = 1
n (
∑n

i=1 dd(vi))
2 ⇒ DM1(G).n = (

∑n
i=1 d(vi))

2, hence G is one

domination regular graph. �

Theorem 4.2.

Let G be a graph with n vertices. Then

DM1(G) ≤ (
∑

v∈V (G)

√
dd(v))2.
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Proof. DM1(G) =
∑

v∈V (G) d
2
d(v) = d2d(v1) + d2d(v2) + ...+ d2d(vn)

As dd(v1), dd(v2), ..., dd(vn) is positive integers so, we get

DM1(G) ≤ (
∑

v∈V (G)

√
dd(v))2.

�

Proposition 4.1.

If G be any graph such that |V (G)| = n, then

n ≤ DM1(G) ≤ n(Tm(G))2 ,

ρ(G) + n ≤ DM∗1 (G) ≤ nTm(G) + ρ(G).

Proof. see Observation 2.1. �

Theorem 4.3.

Let G be a graph such that G 6∼= K2. Then DM2(G) ≥ γ(G)Tm(G)

Equality hold if and only if G ∼= P3.

Proof. Note that dd(v) ≥ 1, so,
∑

uv∈E(G) dd(u)dd(v) ≥
∑

u∈V (G) dd(u). From Observation 2.3, we get

DM2(G) ≥ γ(G)Tm(G). �

Theorem 4.4.

Suppose G is a connected simple graph. Then

DM2(G) ≤ Γ(G)(Tm(G))2.

Proof. We have dd(v) ≤ Tm(G), so
∑

uv∈E(G) dd(u)dd(v) ≤ Tm(G)
∑

u∈V (G) dd(u).

By Observation 2.3, DM2(G) ≤ Γ(G)(Tm(G))2. �

Finally, we can generalize the definition of the domination degree of the vertex by using any subset of

vertices with property P like an independent set, independent dominating set, total dominating set, hup set,

edge dominating set, different distance set,... so on.

Definition 4.1.

Let G = (V,E) be a graph and let S be any subset of vertices with property P . Then for any vertex v, the P

set degree of the vertex v denoted by

dP (v) = |{S ⊆ V (G) : S has property P and v ∈ S}|.
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And we can define the Zagreb and Forgotten indices as following

PM1(G) =
∑

v∈V (G)

d2P (v) ,

PM∗1 (G) =
∑

uv∈E(G)

dP (u) + dP (v) ,

PM2(G) =
∑

uv∈E(G)

dP (u)dP (v) ,

PF (G) =
∑

v∈V (G)

d3P (v) ,

PF ∗(G) =
∑

uv∈E(G)

d2P (u) + d2P (v) .

5. Conclusion

In this research work, we define new topological indices based on the minimal dominating sets. The

authors are working now in some of the other types of topological indices by replacing the standers degree

of the vertex by the domination degree of the vertex.

Finally we have the following open problems for research:

(1) Is there any relation between the normal degree and domination degree of the graph.

(2) What is the necessary and sufficient conditions in a graph to become domination regular graph.

(3) What is the natural relation between the domination indices.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication

of this paper.
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