International Journal of Analysis and Applications Volume 18, Number 6 (2020), 957-964 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-18-2020-957

GENERALIZED ABSOLUTE RIESZ SUMMABILITY OF INFINITE SERIES AND FOURIER SERIES

BAĞDAGÜL KARTAL*

Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey

* Corresponding author: bagdagulkartal@erciyes.edu.tr

ABSTRACT. In this paper, two known theorems dealing with $|\bar{N}, p_n|_k$ summability of infinite series and Fourier series have been generalized to $\varphi - |\bar{N}, p_n; \beta|_k$ summability.

1. INTRODUCTION

A sequence (A_n) is said to be δ -quasi-monotone if $A_n \to 0$, $A_n > 0$ ultimately and $\Delta A_n \ge -\delta_n$, where $\Delta A_n = A_n - A_{n+1}$ and $\delta = (\delta_n)$ is a sequence of positive numbers (see [1]). A sequence (g_n) is said to be of bounded variation, denoted by $(g_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta g_n| < \infty$. Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . Let (φ_n) be a sequence of positive real numbers. The series $\sum a_n$ is said to be summable $\varphi - |\bar{N}, p_n; \beta|_k, k \ge 1$ and $\beta \ge 0$, if (see [22])

$$\sum_{n=1}^{\infty} \varphi_n^{\beta k+k-1} |u_n - u_{n-1}|^k < \infty$$

where (p_n) is a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \quad as \quad n \to \infty \quad \left(P_{-i} = p_{-i} = 0, \quad i \ge 1\right),$$

O2020 Authors retain the copyrights

Received August 13th, 2020; accepted September 1st, 2020; published September 14th, 2020.

²⁰¹⁰ Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.

Key words and phrases. absolute summability; Fourier series; Hölder's inequality; infinite series; Minkowski's inequality; Riesz mean; summability factor.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

and

$$u_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v.$$

For $\varphi_n = \frac{p_n}{p_n}$ and $\beta = 0$, $\varphi - |\bar{N}, p_n; \beta|_k$ summability reduces to $|\bar{N}, p_n|_k$ summability (see [2]). Taking $\varphi_n = n, \beta = 0$ and $p_n = 1$ for all values of $n, \varphi - |\bar{N}, p_n; \beta|_k$ summability reduces to $|C, 1|_k$ summability (see [8]).

If we write $X_n = \sum_{v=1}^{n} p_v / P_v$, then (X_n) is a positive increasing sequence tending to infinity with n. In [3], the following theorem on δ -quasi-monotone sequences has been proved.

Theorem 1.1. Let $(\lambda_n) \to 0$ as $n \to \infty$ and (p_n) be a sequence of positive numbers such that $P_n = O(np_n)$ as $n \to \infty$. Suppose that there exists a sequence of numbers (A_n) which is δ -quasi-monotone with $\sum nX_n\delta_n < \infty$, $\sum A_nX_n$ is convergent, and $|\Delta\lambda_n| \le |A_n|$ for all n. If the condition

(1.1)
$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad as \qquad m \to \infty$$

is satisfied, where (t_n) is the n-th (C, 1) mean of the sequence (na_n) , then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

Lemma 1.1. [3] Under the conditions of Theorem 1.1, we have that

(1.2)
$$|\lambda_n|X_n = O(1) \quad as \quad n \to \infty,$$

(1.3)
$$nX_nA_n = O(1) \quad as \quad n \to \infty,$$

(1.4)
$$\sum_{n=1}^{\infty} nX_n |\Delta A_n| < \infty.$$

2. Main Result

There are some papers on absolute summability (see [4–6,9–12,16–18,23–25]). Now we generalize Theorem 1.1 as in the following form.

Theorem 2.1. Let (φ_n) be a sequence of positive real numbers such that

(2.1)
$$\varphi_n p_n = O(P_n),$$

(2.2)
$$\sum_{n=v+1}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}} = O\left(\varphi_v^{\beta k} \frac{1}{P_v}\right) \quad as \quad m \to \infty.$$

If all conditions of Theorem 1.1 are satisfied with the condition (1.1) replaced by

(2.3)
$$\sum_{n=1}^{m} \varphi_n^{\beta k-1} |t_n|^k = O(X_m) \quad as \quad m \to \infty,$$

then the series $\sum a_n \lambda_n$ is summable $\varphi - |\bar{N}, p_n; \beta|_k$, $k \ge 1$ and $0 \le \beta < 1/k$.

3. Proof of Theorem 2.1

Let (I_n) indicates (\overline{N}, p_n) mean of the series $\sum a_n \lambda_n$. Then, for $n \ge 1$, we obtain

$$\bar{\Delta}I_n = I_n - I_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v \lambda_v = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n \frac{P_{v-1} \lambda_v}{v} v a_v.$$

Applying Abel's transformation, we get

$$\bar{\Delta}I_n = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} \frac{\lambda_{v+1}}{v} P_v t_v - \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} \frac{v+1}{v} p_v \lambda_v t_v$$
$$+ \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} \frac{v+1}{v} P_v t_v \Delta \lambda_v + \frac{(n+1)}{n P_n} p_n \lambda_n t_n$$
$$= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}.$$

For the proof of Theorem 2.1, it is sufficient to show that

$$\sum_{n=1}^{\infty} \varphi_n^{\beta k+k-1} \mid I_{n,r} \mid^k < \infty, \quad for \quad r = 1, 2, 3, 4.$$

First,

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,1} \mid^k &\leq \sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k \left(\sum_{v=1}^{n-1} P_v \left| t_v \right| \frac{|\lambda_{v+1}|}{v} \right)^k \\ &= \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \left(\frac{\varphi_n p_n}{P_n} \right)^k \frac{1}{P_{n-1}^k} \left(\sum_{v=1}^{n-1} P_v \left| t_v \right| \frac{|\lambda_{v+1}|}{v} \right)^k. \end{split}$$

Here (2.1) gives $\left(\frac{\varphi_n p_n}{P_n}\right)^k = O(1)$, also using Hölder's inequality, we obtain

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,1} \mid^k = O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}} \left(\sum_{v=1}^{n-1} P_v \mid t_v \mid^k \frac{|\lambda_{v+1}|^k}{v} \right) \left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \frac{P_v}{v} \right)^{k-1}.$$

Now using the fact that $P_v = O(vp_v)$,

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,1} \mid^k = O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}} \left(\sum_{v=1}^{n-1} p_v \left| t_v \right|^k \left| \lambda_{v+1} \right|^k \right) \left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right)^{k-1}.$$

Then, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,1} \mid^k &= O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \left| t_v \right|^k \left| \lambda_{v+1} \right|^k \\ &= O(1) \sum_{v=1}^m p_v \left| \lambda_{v+1} \right|^{k-1} \left| \lambda_{v+1} \right| \left| t_v \right|^k \sum_{n=v+1}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}}. \end{split}$$

Here, by using (2.2) and (1.2),

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} | I_{n,1} |^k = O(1) \sum_{v=1}^m \varphi_v^{\beta k} \frac{p_v}{P_v} |\lambda_{v+1}| |t_v|^k$$
$$= O(1) \sum_{v=1}^m \varphi_v^{\beta k-1} \left(\frac{\varphi_v p_v}{P_v}\right) |\lambda_{v+1}| |t_v|^k.$$

Again, from (2.1), we obtain

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} | I_{n,1} |^k = O(1) \sum_{v=1}^m \varphi_v^{\beta k-1} |\lambda_{v+1}| |t_v|^k.$$

Hence, we get

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,1} \mid^k &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_{v+1}| \sum_{r=1}^v \varphi_r^{\beta k-1} |t_r|^k + O(1) |\lambda_{m+1}| \sum_{v=1}^m \varphi_v^{\beta k-1} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} |A_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} = O(1) \quad as \quad m \to \infty, \end{split}$$

by using Abel's transformation, hypotheses of Theorem 2.1, and Lemma 1.1.

Now, we have

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,2} \mid^k = O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k \left(\sum_{v=1}^{n-1} p_v \left| \lambda_v \right| \left| t_v \right| \right)^k$$
$$= O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \left(\frac{\varphi_n p_n}{P_n} \right)^k \frac{1}{P_{n-1}^k} \left(\sum_{v=1}^{n-1} p_v \left| \lambda_v \right| \left| t_v \right| \right)^k$$
$$= O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}^k} \left(\sum_{v=1}^{n-1} p_v \left| \lambda_v \right| \left| t_v \right| \right)^k.$$

Using Hölder's inequality, we get

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,2} \mid^k = O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}} \left(\sum_{v=1}^{n-1} p_v \left| \lambda_v \right|^k \left| t_v \right|^k \right) \left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right)^{k-1}$$
$$= O(1) \sum_{v=1}^m p_v \left| \lambda_v \right|^k \left| t_v \right|^k \sum_{n=v+1}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}}.$$

By (2.2), (2.1) and (1.2), we get

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,2} \mid^k = O(1) \sum_{v=1}^m \varphi_v^{\beta k-1} |\lambda_v| |t_v|^k.$$

Here, using Abel's transformation as in $I_{n,1}$, we have

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,2} \mid^k = O(1) \quad as \quad m \to \infty.$$

Again, using Hölder's inequality, we have

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,3} \mid^k = O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \left(\frac{p_n}{P_n P_{n-1}}\right)^k \left(\sum_{v=1}^{n-1} P_v \left| t_v \right| \left| \Delta \lambda_v \right| \right)^k$$

$$= O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \left(\frac{\varphi_n p_n}{P_n}\right)^k \frac{1}{P_{n-1}^k} \left(\sum_{v=1}^{n-1} P_v \left| t_v \right| \left| A_v \right| \right)^k$$

$$= O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}} \left(\sum_{v=1}^{n-1} p_v \left| t_v \right|^k (v \left| A_v \right|)^k\right) \left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right)^{k-1}$$

$$= O(1) \sum_{n=2}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \left| t_v \right|^k (v \left| A_v \right|)^{k-1} (v \left| A_v \right|).$$

Using (1.3), we get $(v |A_v|)^{k-1} = O(1)$, then

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,3} \mid^k = O(1) \sum_{v=1}^m p_v |t_v|^k v |A_v| \sum_{n=v+1}^{m+1} \varphi_n^{\beta k-1} \frac{1}{P_{n-1}}.$$

Now using the conditions (2.2) and (2.1), we get

$$\sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,3} \mid^k = O(1) \sum_{v=1}^m \varphi_v^{\beta k-1} |t_v|^k v |A_v|$$

Then, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{\beta k+k-1} \mid I_{n,3} \mid^k &= O(1) \sum_{v=1}^{m-1} \Delta(v \mid A_v \mid) \sum_{r=1}^v \varphi_r^{\beta k-1} \mid t_r \mid^k + O(1)m \mid A_m \mid \sum_{v=1}^m \varphi_v^{\beta k-1} \mid t_v \mid^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v \mid A_v \mid) X_v + O(1)m \mid A_m \mid X_m \\ &= O(1) \sum_{v=1}^{m-1} v X_v \mid \Delta A_v \mid + O(1) \sum_{v=1}^{m-1} \mid A_{v+1} \mid X_{v+1} + O(1)m \mid A_m \mid X_m \\ &= O(1) \ as \quad m \to \infty, \end{split}$$

by using Abel's transformation, hypotheses of Theorem 2.1, and Lemma 1.1.

Finally, we get

$$\sum_{n=1}^{m} \varphi_n^{\beta k+k-1} | I_{n,4} |^k = O(1) \sum_{n=1}^{m} \varphi_n^{\beta k+k-1} \left(\frac{p_n}{P_n}\right)^k |\lambda_n|^{k-1} |\lambda_n| |t_n|^k$$
$$= O(1) \sum_{n=1}^{m} \varphi_n^{\beta k-1} |\lambda_n| |t_n|^k.$$

Here, as in $I_{n,1}$, we get

$$\sum_{n=1}^{m} \varphi_n^{\beta k+k-1} \mid I_{n,4} \mid^k = O(1) \quad as \quad m \to \infty$$

Hence, the proof of Theorem 2.1 is completed.

4. Applications

There are some different papers dealing with applications of Fourier series (see [14, 15, 19–21]). Let f be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. The trigonometric Fourier series of f is defined as

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} C_n(x)$$

where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \quad \text{and} \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

Write

$$\phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \}$$

and

$$\phi_1(t) = \frac{1}{t} \int_0^t \phi(u) du.$$

If $\phi_1(t) \in \mathcal{BV}(0,\pi)$, then $t_n(x) = O(1)$, where $t_n(x)$ is the n-th (C,1) mean of the sequence $(nC_n(x))$ (see [7]). By using this, the following theorem has been obtained in [3].

Theorem 4.1. If $\phi_1(t) \in \mathcal{BV}(0,\pi)$, and the sequences (p_n) , (λ_n) and (X_n) satisfy the conditions of Theorem 1.1, then the series $\sum C_n(x)\lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

The following theorem gives a generalization of Theorem 4.1 for $\varphi - |\bar{N}, p_n; \beta|_k$ summability.

Theorem 4.2. If $\phi_1(t) \in \mathcal{BV}(0,\pi)$, and the sequences (p_n) , (λ_n) , (A_n) , (φ_n) and (X_n) satisfy the conditions of Theorem 2.1, then the series $\sum C_n(x)\lambda_n$ is summable $\varphi - |\bar{N}, p_n; \beta|_k$, $k \ge 1$ and $0 \le \beta < 1/k$.

5. Conclusions

If we take $\varphi_n = \frac{P_n}{p_n}$ and $\beta = 0$ in Theorem 2.1, then the condition (2.3) reduces to the condition (1.1), and the conditions (2.1) and (2.2) are provided. Thus, Theorem 2.1 reduces to Theorem 1.1. If we take $\varphi_n = n, \beta = 0$ and $p_n = 1$ for all values of n, then we have a result for $|C, 1|_k$ summability of an infinite series (see [13]). Also, if we take $\varphi_n = \frac{P_n}{p_n}$ and $\beta = 0$ in Theorem 4.2, then we get Theorem 4.1.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] R.P. Boas, Quasi-positive sequences and trigonometric series, Proc. Lond. Math. Soc. s3-14A (1965), 38-46.
- [2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1) (1985), 147–149.
- [3] H. Bor, On quasi-monotone sequences and their applications, Bull. Austral. Math. Soc. 43 (2) (1991), 187-192.
- [4] H. Bor, H. S. Özarslan, On absolute Riesz summability factors, J. Math. Anal. Appl. 246 (2) (2000), 657-663.
- [5] H. Bor, H. S. Özarslan, A note on absolute summability factors, Adv. Stud. Contemp. Math. (Kyungshang) 6 (1) (2003), 1-11.
- [6] H. Bor, H. Seyhan, On almost increasing sequences and its applications, Indian J. Pure Appl. Math. 30 (10) (1999), 1041-1046.
- [7] K.K. Chen, Functions of bounded variation and the Cesàro means of a Fourier series, Acad. Sinica Science Record 1 (1945), 283-289.
- [8] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. s3-7 (1957), 113-141.
- [9] A. Karakaş, A note on absolute summability method involving almost increasing and δ-quasi-monotone sequences, Int. J. Math. Comput. Sci. 13 (1) (2018), 73-81.
- [10] A. Karakaş, A new factor theorem for generalized absolute Riesz summability, Carpathian Math. Publ. 11 (2) (2019), 345-349.
- [11] B. Kartal, On generalized absolute Riesz summability method, Commun. Math. Appl. 8 (3) (2017), 359-364.
- [12] B. Kartal, New results for almost increasing sequences, Ann. Univ. Paedagog. Crac. Stud. Math. 18 (2019), 85-91.
- [13] S.M. Mazhar, On generalized quasi-convex sequence and its applications, Indian J. Pure Appl. Math. 8 (7) (1977), 784-790.
- [14] H.S. Özarslan, A note on $|\bar{N}, p_n; \delta|_k$ summability factors, Erc. Üni. Fen Bil. Enst. Derg., cilt. 16 (2000), 95-100.
- [15] H.S. Özarslan, A note on $|\bar{N}, p_n^{\alpha}|_k$ summability factors, Soochow J. Math. 27 (1) (2001), 45-51.
- [16] H.S. Özarslan, On almost increasing sequences and its applications, Int. J. Math. Math. Sci. 25 (5) (2001), 293-298.
- [17] H.S. Özarslan, A note on $|\bar{N}, p_n; \delta|_k$ summability factors, Indian J. Pure Appl. Math. 33 (3) (2002), 361–366.
- [18] H.S. Özarslan, On $|\bar{N}, p_n; \delta|_k$ summability factors, Kyungpook Math. J. 43 (1) (2003), 107–112.
- [19] H.S. Özarslan, A note on $|\bar{N}, p_n|_k$ summability factors, Int. J. Pure Appl. Math. 13 (4) (2004), 485–490.
- [20] H.S. Özarslan, On the local properties of factored Fourier series, Proc. Jangjeon Math. Soc. 9 (2) (2006), 103-108.
- [21] H.S. Özarslan, Local properties of factored Fourier series, Int. J. Comp. Appl. Math. 1 (1) (2006), 93-96.
- [22] H. Seyhan, On the local property of $\varphi |\bar{N}, p_n; \delta|_k$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sin. 25 (4) (1997), 311-316.

- [23] H. Seyhan, A note on absolute summability factors, Far East J. Math. Sci. 6 (1) (1998), 157-162.
- [24] H. Seyhan, On the absolute summability factors of type (A,B), Tamkang J. Math. 30 (1) (1999), 59-62.
- [25] H. Seyhan, A. Sönmez, On $\varphi \left| \bar{N}, p_n; \delta \right|_k$ summability factors, Portugal. Math. 54 (4) (1997), 393–398.