SURFACES AS GRAPHS OF FINITE TYPE IN $\mathbb{H}^{2} \times \mathbb{R}$

AHMED AZZI ${ }^{1, *}$, ZOUBIR HANIFI ${ }^{2}$, MOHAMMED BEKKAR ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Oran 1, Ahmed Benbella Algeria
${ }^{2}$ Ecole Nationale Polytechnique d'Oran, Département de Mathématiques, et Informatique B.P 1523 El M'Naour, Oran, Algérie

*Corresponding author: azzi.mat@hotmail.fr

Abstract

In this paper, we prove that $\Delta X=2 \mathrm{H}$ where Δ is the Laplacian operator, $r=(x, y, z)$ the position vector field and H is the mean curvature vector field of a surface \mathcal{S} in $\mathbb{H}^{2} \times \mathbb{R}$ and we study surfaces as graphs in $\mathbb{H}^{2} \times \mathbb{R}$ which has finite type immersion.

1. Introduction

The $\mathbb{H}^{2} \times \mathbb{R}$ geometry is one of eight homogeneous Thurston 3 -geometries

$$
E^{3}, S^{3}, H^{3}, S^{2} \times \mathbb{R}, H^{2} \times \mathbb{R}, S \widetilde{L(2, \mathbb{R})}, \text { Nil, Sol. }
$$

The Riemannian manifold (M, g) is called homogeneous if for any $x, y \in M$ there exists an isometry $\phi: M \rightarrow M$ such that $y=\phi(x)$. The two and three-dimensional homogeneous geometries are discussed in detail in [6] .

A Euclidean submanifold is said to be of finite Chen-type if its coordinate functions are a finite sum of eigenfunctions of its Laplacian [3]. B. Y. Chen posed the problem of classifying the finite type surfaces in the

Received May $24^{\text {th }}, 2020$; accepted July $1^{\text {st }}, 2020$; published July $27^{\text {th }}, 2020$.
2010 Mathematics Subject Classification. 53B05, 53B21, 53C30.
Key words and phrases. Laplacian operator; $\mathbb{H}^{2} \times \mathbb{R}$ geometry; surfaces of coordinate finite type; minimal surfaces.

3-dimensional Euclidean space \mathbb{E}^{3}. Further, the notion of finite type can be extended to any smooth function on a submanifold of a Euclidean space or a pseudo-Euclidean space.

Let \mathcal{S} be a 2 -dimensional surface of the Euclidean 3 -space \mathbb{E}^{3}. If we denote by r, H and Δ the position vector field, the mean curvature vector field and the Laplace operator of \mathcal{S} respectively, then it is well-known that [3]

$$
\begin{equation*}
\Delta r=-2 H \tag{1.1}
\end{equation*}
$$

A well-known result due to Takahashi states that minimal surfaces and spheres are the only surfaces in \mathbb{E}^{3} satisfying the condition $\Delta r=\lambda r$ for a real constant λ. From (1.1), we know that minimal surfaces and spheres also verify the condition

$$
\begin{equation*}
\Delta H=\lambda H, \lambda \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

Equation (1.1) shows that \mathcal{S} is a minimal surface of \mathbb{E}^{3} if and only if its coordinate functions are harmonic. In [9], D. W. Yoon studied surfaces invariant under the 1-parameter subgroup in Sol $_{3}$.

In 2012, M. Bekkar and B. Senoussi [1] studied the translation surfaces in the 3-dimensional Euclidean and Lorentz-Minkowski space under the condition

$$
\Delta^{I I I} r_{i}=\mu_{i} r_{i}, \mu_{i} \in \mathbb{R}
$$

where $\Delta^{I I I}$ denotes the Laplacian of the surface with respect to the third fundamental form $I I I$.

A surface \mathcal{S} in the Euclidean 3 -space \mathbb{E}^{3} is called minimal when locally each point on the surface has a neighborhood which is the surface of least area with respect to its boundary [5]. In 1775, J. B. Meusnier showed that the condition of minimality of a surface in \mathbb{E}^{3} is equivalent with the vanishing of its mean curvature function, $H=0$.

Let $z=f(x, y)$ define a graph \mathcal{S} in the Euclidean 3 -space \mathbb{E}^{3}. If \mathcal{S} is minimal, the function f satisfies

$$
\left(1+\left(f_{y}\right)^{2}\right) f_{x x}-2 f_{x y} f_{x} f_{y}+\left(1+\left(f_{x}\right)^{2}\right) f_{y y}=0
$$

which was obtained by J. L. Lagrange in 1760.
In 1835, H. F. Scherk studied translation surfaces in \mathbb{E}^{3} and proved that, besides the planes, the only minimal translation surfaces are given by

$$
z(x, y)=\frac{1}{\lambda} \log |\cos (\lambda x)|-\frac{1}{\lambda} \log |\cos (\lambda y)|,
$$

where λ is a non-zero constant. In 1991, F. Dillen, L. Verstraelen and G. Zafindratafa. [4] generalized this result to higher-dimensional Euclidean space.

In 2015 , D. W. Yoon [8] studied translation surfaces in the product space $\mathbb{H}^{2} \times \mathbb{R}$ and classified translation surfaces with zero Gaussian curvature in $\mathbb{H}^{2} \times \mathbb{R}$.

In 2019, B. Senoussi, M. Bekkar [7] studied translation surfaces of finite type in H_{3} and S_{3} and the authors gived some theorems.

A surface $\mathcal{S}\left(\gamma_{1}, \gamma_{2}\right)$ in $\mathbb{H}^{2} \times \mathbb{R}$ is a surface parametrized by

$$
\mathcal{S}: \Omega \subseteq \mathbb{R}^{2} \rightarrow \mathbb{H}^{2} \times \mathbb{R}, \quad X(s, t)=\gamma_{1}(s) * \gamma_{2}(t) \text { or } X(s, t)=\gamma_{2}(t) * \gamma_{1}(s)
$$

where γ_{1} and γ_{2} are any generating curves in \mathbb{R}^{3}. Since the multiplication $*$ is not commutative.
In this work we study the surfaces as graphs of functions $\varphi=f(s, t))$ in $\mathbb{H}^{2} \times \mathbb{R}$ satisfy the condition

$$
\begin{equation*}
\Delta x_{i}=\lambda_{i} x_{i}, \quad \lambda_{i} \in \mathbb{R} \tag{1.3}
\end{equation*}
$$

2. Preliminaries

Let \mathbb{H}^{2} be represented by the upper half-plane model $\{(x, y) \in \mathbb{R} \mid y>0\}$ equipped with the metric $g_{\mathbb{H}}=\frac{\left(d x^{2}+d y^{2}\right)}{y^{2}}$. The space \mathbb{H}^{2}, with the group structure derived by the composition of proper affine maps, is a Lie group and the metric $g_{\mathbb{H}}$ is left invariant.

Therefore, the product space $\mathbb{H}^{2} \times \mathbb{R}$ is a Lie group with the left invariant product metric

$$
g=\frac{\left(d x^{2}+d y^{2}\right)}{y^{2}}+d z^{2}
$$

we can define the multiplication law on $\mathbb{H}^{2} \times \mathbb{R}$ as follows

$$
(x, y, z) *(\bar{x}, \bar{y}, \bar{z})=(y \bar{x}+x, y \bar{y}, z+\bar{z})
$$

The left identity is $(0,1,0)$ and the inverse of (x, y, z) is $\left(-\frac{x}{y}, \frac{1}{y},-z\right)$, on $\mathbb{H}^{2} \times \mathbb{R}$ a left-invariant metric

$$
d s^{2}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}+\left(\omega^{3}\right)^{2}
$$

where

$$
\omega^{1}=\frac{d x}{y}, \quad \omega^{2}=\frac{d y}{y}, \quad \omega^{3}=d z
$$

is the orthonormal coframe associated with the orthonormal frame

$$
e_{1}=y \frac{\partial}{\partial x}, \quad e_{2}=y \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z}
$$

The corresponding Lie brackets are

$$
\left[e_{1}, e_{2}\right]=-e_{1}, \quad\left[e_{i}, e_{i}\right]=\left[e_{3}, e_{1}\right]=\left[e_{2}, e_{3}\right]=0, \forall i=1,2,3
$$

The Levi-Civita connection ∇ of $\mathbb{H}^{2} \times \mathbb{R}$ is given by

$$
\left(\begin{array}{c}
\nabla_{e_{1}} e_{1} \\
\nabla_{e_{1}} e_{2} \\
\nabla_{e_{1}} e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right), \quad \nabla_{e_{2}} e_{i}=\nabla_{e_{3}} e_{i}=0, \quad \forall i=1,2,3
$$

Let \mathcal{S} be an immersed surface in $\mathbb{H}^{2} \times \mathbb{R}$ given as the graph of the function $z=f(x, y)$. Hence, the position vector is described by $r(x, y)=(x, y, f(x, y))$ and the tangent vectors $r_{x}=\frac{\partial r}{\partial x}$ and $r_{y}=\frac{\partial r}{\partial y}$ in terms of the orthonormal frame $\left(e_{1}, e_{2}, e_{3}\right)$ are described by

$$
\begin{align*}
& r_{x}=\frac{\partial}{\partial x}+f_{r} \frac{\partial}{\partial z}=\frac{1}{y} e_{1}+f_{x} e_{3} \tag{2.1}\\
& r_{y}=\frac{\partial}{\partial y}+f_{y} \frac{\partial}{\partial z}=\frac{1}{y} e_{2}+f_{y} e_{3} \tag{2.2}
\end{align*}
$$

Definition 2.1. [3] The immersion (S, r) is said to be of finite Chen-type k if the position vector X admits the following spectral decomposition

$$
r=r_{0}+\sum_{i=1}^{k} r_{i}
$$

where r_{i} are \mathbb{E}^{3}-valued eigenfunctions of the Laplacian of $(S, r): \Delta r_{i}=\lambda_{i} r_{i}, \lambda_{i} \in \mathbb{R}, i=1,2, . ., k$. If λ_{i} are different, then \mathcal{S} is said to be of k-type.

For the matrix $G=\left(g_{i j}\right)$ consisting of the components of the induced metric on \mathcal{S}, we denote by $G^{-1}=$ $\left(g^{i j}\right)$ (resp. $\left.D=\operatorname{det}\left(g_{i j}\right)\right)$ the inverse matrix (resp. the determinant) of the matrix $\left(g_{i j}\right)$. The Laplacian Δ on \mathcal{S} is, in turn, given by

$$
\begin{equation*}
\Delta=\frac{-1}{\sqrt{|D|}} \sum_{i j} \frac{\partial}{\partial r^{i}}\left(\sqrt{|D|} g^{i j} \frac{\partial}{\partial r^{j}}\right) \tag{2.3}
\end{equation*}
$$

If $r=r(x, y)=\left(r_{1}=r_{1}(x, y), r_{2}=r_{2}(x, y), r_{3}=r_{3}(x, y)\right)$ is a function of class C^{2} then we set

$$
\Delta r=\left(\Delta r_{1}, \Delta r_{2}, \Delta r_{3}\right)
$$

3. Surfaces as graphs of finite type in $\mathbb{H}^{2} \times \mathbb{R}$

Let \mathcal{S} be a graph of a smooth function

$$
f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

We consider the following parametrization of \mathcal{S}

$$
r(x, y)=(x, y, f(x, y)), \quad(x, y) \in \Omega
$$

Theorem 3.1. A Beltrami formula in $\mathbb{H}^{2} \times \mathbb{R}$ is given by the following:

$$
\Delta r=2 \mathbf{H}
$$

where Δ is the Laplacian of the surface and \mathbf{H} is the mean curvature vector field of \mathcal{S}.
Proof. A basis of the tangent space $T_{p} \mathcal{S}$ associated to this parametrization is given by

$$
\begin{aligned}
& r_{x}=\frac{\partial}{\partial x}+f_{x} \frac{\partial}{\partial z}=\frac{1}{y} e_{1}+f_{x} e_{3}, \\
& r_{y}=\frac{\partial}{\partial y}+f_{y} \frac{\partial}{\partial z}=\frac{1}{y} e_{2}+f_{y} e_{3},
\end{aligned}
$$

The coefficients of the first fundamental form of \mathcal{S} are given by

$$
E=g\left(r_{x}, r_{x}\right)=\frac{1}{y^{2}}+f_{x}^{2}, \quad F=g\left(r_{x}, r_{y}\right)=f_{x} f_{y}, \quad G=g\left(r_{y}, r_{y}\right)=\frac{1}{y^{2}}+f_{y}^{2} .
$$

The unit normal vector field \mathbf{N} on \mathcal{S} is given by

$$
\mathbf{N}=\frac{1}{W}\left(-\frac{1}{y} f_{x} e_{1}-\frac{1}{y} f_{y} e_{2}+\frac{1}{y^{2}} e_{3}\right),
$$

where $W=\sqrt{\frac{1}{y^{4}}+\frac{1}{y^{2}} f_{x}^{2}+\frac{1}{y^{2}} f_{y}^{2}}$.
To compute the second fundamental form of \mathcal{S}, we have to calculate the following

$$
\begin{align*}
r_{x x} & =\nabla_{r_{x}} r_{x}=\frac{1}{y^{2}} e_{2}+f_{x x} e_{3}, \\
r_{x y} & =\nabla_{r_{x}} r_{y}=\nabla_{r_{y}} r_{x}=-\frac{1}{y^{2}} e_{1}+f_{x y} e_{3}, \tag{3.1}\\
r_{y y} & =\nabla_{r_{y}} r_{y}=-\frac{1}{y^{2}} e_{2}+f_{y y} e_{3} .
\end{align*}
$$

So, the coefficients of the second fundamental form of \mathcal{S} are given by

$$
\begin{aligned}
L & =g\left(\nabla_{r_{x}} r_{x}, \mathbf{N}\right)=\frac{1}{W y^{2}}\left(f_{x x}-\frac{1}{y} f_{y}\right), \\
M & =g\left(\nabla_{r_{x}} r_{y}, \mathbf{N}\right)=\frac{1}{W y^{2}}\left(f_{x y}+\frac{1}{y} f_{x}\right), \\
N & =g\left(\nabla_{r_{y}} r_{y}, \mathbf{N}\right)=\frac{1}{W y^{2}}\left(f_{y y}+\frac{1}{y} f_{y}\right),
\end{aligned}
$$

where $W=\sqrt{\frac{1}{y^{4}}+\frac{1}{y^{2}} f_{x}^{2}+\frac{1}{y^{2}} f_{y}^{2}}$.

Thus, the mean curvature H of \mathcal{S} is given by

$$
\begin{gathered}
H=\frac{E N-2 F M+G L}{2 W^{2}} . \\
H=\frac{1}{2 W^{3} y^{2}}\left[\frac{1}{y^{2}}\left(f_{x x}+f_{y y}\right)+\left(f_{x}^{2} f_{y y}+f_{y}^{2} f_{x x}\right)-\frac{1}{y}\left(f_{x}^{2} f_{y}+f_{y}^{3}\right)-2 f_{x} f_{y} f_{x y}\right] .
\end{gathered}
$$

By (2.3), the Laplacian operator Δ of r can be expressed as

$$
\begin{equation*}
\Delta=-\frac{1}{W^{4}}\left[W^{2}\left(G \frac{\partial^{2}}{\partial x^{2}}-2 F \frac{\partial^{2}}{\partial x \partial y}+E \frac{\partial^{2}}{\partial y^{2}}\right)+\Delta_{1} \frac{\partial}{\partial x}+\Delta_{2} \frac{\partial}{\partial y}\right] \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta_{1}= & \frac{2}{y^{2}} f_{y} f_{x}^{2} f_{x y}-\frac{1}{y^{4}} f_{x} f_{x x}-\frac{1}{y^{2}} f_{x} f_{y}^{2} f_{x x}-\frac{1}{y^{4}} f_{x} f_{y y}-\frac{1}{y^{2}} f_{x}^{3} f_{y y} \\
& -\frac{2}{y^{5}} f_{x} f_{y}-\frac{1}{y^{3}} f_{x}^{3} f_{y}-\frac{1}{y^{3}} f_{x} f_{y}^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta_{2}= & \frac{2}{y^{2}} f_{x} f_{y}^{2} f_{x y}-\frac{1}{y^{4}} f_{y} f_{y y}-\frac{1}{y^{2}} f_{x}^{2} f_{y} f_{y y}-\frac{1}{y^{4}} f_{y} f_{x x}-\frac{1}{y^{2}} f_{y}^{3} f_{x x} \\
& -\frac{1}{y^{5}} f_{y}^{2}+\frac{1}{y^{5}} f_{x}^{2}+\frac{1}{y^{3}} f_{x}^{4}+\frac{1}{y^{3}} f_{x}^{2} f_{y}^{2}
\end{aligned}
$$

By a straightforward computation, the Laplacian operator Δ of r with the help of (3.1) and (3.2) turns out to be

$$
\begin{aligned}
& {\left[\left(\frac{2}{y^{3}} f_{x}^{2} f_{y} f_{x y}-\frac{1}{y^{5}} f_{x} f_{x x}-\frac{1}{y^{3}} f_{x} f_{y}^{2} f_{x x}-\frac{1}{y^{5}} f_{x} f_{y y}-\frac{1}{y^{3}} f_{x}^{3} f_{y y}+\frac{1}{y^{4}} f_{x}^{3} f_{y}+\frac{1}{y^{4}} f_{x} f_{y}^{3}\right) e_{1}\right.} \\
& \Delta r=-\frac{1}{W^{4}}+\left(\frac{2}{y^{3}} f_{x} f_{y}^{2} f_{x y}-\frac{1}{y^{5}} f_{y} f_{y y}-\frac{1}{y^{3}} f_{x}^{2} f_{y} f_{y y}-\frac{1}{y^{5}} f_{y} f_{x x}-\frac{1}{y^{3}} f_{y}^{3} f_{x x}+\frac{1}{y^{4}} f_{x}^{2} f_{y}^{2}+\frac{1}{y^{4}} f_{y}^{4}\right) e_{2}, \\
& \left.+\left(-\frac{2}{y^{4}} f_{x} f_{y} f_{x y}-\frac{1}{y^{5}} f_{x}^{2} f_{y}-\frac{1}{y^{5}} f_{y}^{3}+\frac{1}{y^{6}} f_{x x}+\frac{1}{y^{4}} f_{y}^{2} f_{x x}+\frac{1}{y^{6}} f_{y y}+\frac{1}{y^{4}} f_{x}^{2} f_{y y}\right) e_{3}\right] \\
& {\left[\begin{array}{c}
\left(\frac{-f_{x}}{W y}\right) \frac{1}{W^{3} y^{2}}\left(\frac{1}{y^{2}}\left(f_{x x}+f_{y y}\right)+\left(f_{x}^{2} f_{y y}+f_{y}^{2} f_{x x}\right)-\frac{1}{y}\left(f_{x}^{2} f_{y}+f_{y}^{3}\right)-2 f_{x} f_{y} f_{x y}\right) e_{1}
\end{array}\right.} \\
& \Delta r=\quad+\left(\frac{-f_{y}}{W y}\right) \frac{1}{W^{3} y^{2}}\left(\frac{1}{y^{2}}\left(f_{x x}+f_{y y}\right)+\left(f_{x}^{2} f_{y y}+f_{y}^{2} f_{x x}\right)-\frac{1}{y}\left(f_{x}^{2} f_{y}+f_{y}^{3}\right)-2 f_{x} f_{y} f_{x y}\right) e_{2} \quad, \\
& {\left[+\left(\frac{1}{W y^{2}}\right) \frac{1}{W^{3} y^{2}}\left(\frac{1}{y^{2}}\left(f_{x x}+f_{y y}\right)+\left(f_{x}^{2} f_{y y}+f_{y}^{2} f_{x x}\right)-\frac{1}{y}\left(f_{x}^{2} f_{y}+f_{y}^{3}\right)-2 f_{x} f_{y} f_{x y}\right) e_{3}\right]} \\
& \Delta r=\quad \frac{1}{W^{3} y^{2}}\left(\frac{1}{y^{2}}\left(f_{x x}+f_{y y}\right)+\left(f_{x}^{2} f_{y y}+f_{y}^{2} f_{x x}\right)-\frac{1}{y}\left(f_{x}^{2} f_{y}+f_{y}^{3}\right)-2 f_{x} f_{y} f_{x y}\right)\left(\begin{array}{c}
\left(\frac{-f_{x}}{W y}\right) e_{1} \\
+\left(\frac{-f_{y}}{W y}\right) \\
+\left(\frac{1}{W y^{2}}\right) \\
+
\end{array}\right),
\end{aligned}
$$

thus we get

$$
\begin{align*}
\Delta r & =2 H N \tag{3.3}\\
& =2 \mathbf{H}
\end{align*}
$$

where \mathbf{H} is the mean curvature vector field of \mathcal{S}.
\mathcal{S} is a minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ if and only if its coordinate functions are harmonic .
4. Surfaces as graphs in $\mathbb{H}^{2} \times \mathbb{R}$ satisfying $\triangle x_{i}=\lambda_{i} x_{i}$

Let \mathcal{S} be an immersed surface in $\mathbb{H}^{2} \times \mathbb{R}$ given as the graph of function $z=f(x, y)$. Hence, the vector position is described by $r(x, y)=(x, y, f(x, y))$.

We have

$$
r_{x}=\frac{1}{y} e_{1}+f_{x} e_{3}, \quad r_{y}=\frac{1}{y} e_{2}+f_{y} e_{3}
$$

where $r_{x}=\frac{\partial r}{\partial x}, r_{y}=\frac{\partial r}{\partial x}$, and $f_{x}=\frac{\partial f}{\partial x}, f_{y}=\frac{\partial f}{\partial y}$.

From an earlier results the mean curvature H of \mathcal{S} and the unit normal vector field \mathbf{N} on \mathcal{S} are given by

$$
H=\frac{1}{2 W^{3} y^{2}}\left[\frac{1}{y^{2}}\left(f_{x x}+f_{y y}\right)+\left(f_{x}^{2} f_{y y}+f_{y}^{2} f_{x x}\right)-\frac{1}{y}\left(f_{x}^{2} f_{y}+f_{y}^{3}\right)-2 f_{x} f_{y} f_{x y}\right],
$$

and

$$
\begin{equation*}
\mathbf{N}=\frac{1}{W}\left(-\frac{1}{y} f_{x} e_{1}-\frac{1}{y} f_{y} e_{2}+\frac{1}{y^{2}} e_{3}\right) \tag{4.1}
\end{equation*}
$$

where $W=\sqrt{\frac{1}{y^{4}}+\frac{1}{y^{2}} f_{x}^{2}+\frac{1}{y^{2}} f_{y}^{2}}$.

If the vector position on the tangent space $T_{p} \mathcal{S}$ is described by $r=(x, y, f(x, y))$

$$
r(x, y)=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+f(x, y) \frac{\partial}{\partial z}
$$

then

$$
\begin{equation*}
r(x, y)=\frac{x}{y} e_{1}+e_{2}+f(x, y) e_{3} \tag{4.2}
\end{equation*}
$$

The equation (1.3) by means of (3.3), (4.1) and (4.2) gives rise to the following system of ordinary differential equations

$$
\begin{align*}
\left(\frac{2 H}{W}\right) f_{x} & =-\lambda_{1} x \tag{4.3}\\
\left(\frac{2 H}{W}\right) f_{y} & =-\lambda_{2} y \tag{4.4}\\
\frac{2 H}{W} & =\lambda_{3} y^{2} f \tag{4.5}
\end{align*}
$$

Therefore, the problem of classifying the surfaces \mathcal{S} of (1.3) is reduced to the integration of this system of ordinary differential equations.

Next we study it according to the constants λ_{1}, λ_{2} and λ_{3}.
Case 1. Let $\lambda_{3}=0$. In this case the system (4.3), (4.4) and (4.5) is reduced equivalently to

$$
\begin{align*}
\left(\frac{2 H}{W}\right) f_{x} & =-\lambda_{1} x \tag{4.6}\\
\left(\frac{2 H}{W}\right) f_{y} & =-\lambda_{2} y \tag{4.7}\\
\frac{2 H}{W} & =0 \tag{4.8}
\end{align*}
$$

The equation (4.8) implies that the mean curvature H is identically zero. Thus, the surface \mathcal{S} is minimal; and we get also $\lambda_{1}=\lambda_{2}=0$.

Case 2. Let $\lambda_{3} \neq 0$. in this case we study the general system (4.3), (4.4) and (4.5).
2-i): If $\lambda_{1}=\lambda_{2}=0$, then $H=0$. From (4.5) we obtain $\lambda_{3}=0$, so we get a contradiction.

2-ii): If $\lambda_{1}=0$ and $\lambda_{2} \neq 0$., from (4.3) we obtain $H f_{x}=0$.
2-ii-a: If $H=0(4.4)$, (4.5) implies that $\lambda_{2}=\lambda_{3}=0$. So we get a contradiction.

2-ii-b: if $f_{x}=0$, then $f(x, y)=\varphi(y)$, where φ is smooth function of y.

The mean curvature H turns to

$$
H=\frac{1}{2 W y^{3}}\left(\frac{1}{y} \varphi^{\prime \prime}-\varphi^{\prime 3}\right)
$$

where $\varphi^{\prime}=\frac{d \varphi}{d y}$.

Using (4.4) and (4.5) we obtain

$$
\varphi^{\prime}=\frac{-\lambda_{2}}{\lambda_{3} y \varphi}
$$

which leads to,

$$
\lambda_{3} \varphi^{\prime} \varphi=\frac{-\lambda_{2}}{y} .
$$

After integrating with respect to y, we obtain

$$
\frac{\lambda_{3}}{2} \varphi^{2}(y)=-\lambda_{2} \ln y+\phi(x) ; \quad y>0
$$

where ϕ is smooth function of x,
and hence

$$
f(x, y)=\varphi(y)= \pm \sqrt{\frac{\lambda_{2}}{\lambda_{3}} \ln \frac{1}{y^{2}}+\phi(x)}
$$

Using the condition $f_{x}=0$ we get $\phi(x)=a, a \in \mathbb{R}$.

Thus,

$$
f(x, y)=\varphi(y)= \pm \sqrt{\frac{\lambda_{2}}{\lambda_{3}} \ln \frac{1}{y^{2}}+c} ; \quad c=\frac{2}{\lambda_{3}} a
$$

in this subcase, the surfaces \mathcal{S} are given by

$$
r(x, y)=\left(x, y, \pm \sqrt{\frac{\lambda_{2}}{\lambda_{3}} \ln \frac{1}{y^{2}}+c}\right) ; \quad \lambda_{2} \neq 0, \quad \lambda_{3} \neq 0, \quad c \in \mathbb{R}
$$

2-iii): If $\lambda_{1} \neq 0$ and $\lambda_{2}=0$., from (4.4) we obtain $H f_{y}=0$.
2-iii-a: If $H=0,(4.3)$ and (4.5) implies that $\lambda_{2}=\lambda_{3}=0$. So we get a contradiction.

2-iii-b: If $f_{y}=0$, then $f(x, y)=\psi(x)$, where ψ is smooth function of x.

The mean curvature H turns to

$$
H=\frac{1}{2 W y^{4}} \psi^{\prime \prime}
$$

where $\psi^{\prime}=\frac{d \psi}{d x}$.
Using (4.3) and (4.5) we get

$$
\psi^{\prime}=\frac{-\lambda_{1} x}{\lambda_{3} y^{2} \psi}
$$

so we can write

$$
\begin{equation*}
\lambda_{3} y^{2}+\lambda_{1} \frac{x}{\psi \psi^{\prime}}=0 \tag{4.11}
\end{equation*}
$$

A differentiation with respect to y gives

$$
\lambda_{3} y=0
$$

this implies that $\lambda_{3}=0$ and from (4.8) we get the mean curvature H is identically zero. From (4.6) and (4.7) we obtain $\lambda_{1}=\lambda_{2}=0$, which leads to a contradiction.

2-iv): If $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$ From (4.3), we have

$$
\begin{equation*}
\frac{2 H}{W}=-\frac{\lambda_{1} x}{\psi^{\prime}} . \tag{4.12}
\end{equation*}
$$

Substituting (4.12) into (4.5), we get

$$
-\frac{\lambda_{1} x}{\psi^{\prime}}=\lambda_{3} y^{2} \psi
$$

A differentiation with respect to x gives

$$
-\lambda_{1}\left(\frac{\psi-x \psi^{\prime \prime}}{\psi^{\prime 2}}\right)=\lambda_{3} y^{2} \psi^{\prime}
$$

this equation gives

$$
\begin{equation*}
\lambda_{1}\left(\frac{\psi^{\prime}-x \psi^{\prime \prime}}{\psi^{\prime 3}}\right)+\lambda_{3} y^{2}=0 \tag{4.13}
\end{equation*}
$$

A differentiation with respect to y gives

$$
\lambda_{3} y=0
$$

this implies that $\lambda_{3}=0$ and from (4.8) we get the mean curvature H is identically zero. From (4.6) and (4.7) we obtain $\lambda_{1}=\lambda_{2}=0$, which leads to a contradiction.

Therefore, we have the following theorem,

Theorem 4.1. Let \mathcal{S} be a surface as graph of function parametrized by $r(x, y)=(x, y, f(x, y))$ in $\mathbb{H}^{2} \times \mathbb{R}$ Then, \mathcal{S} satisfies the equation $\Delta r_{i}=\lambda_{i} r_{i}, \lambda_{i} \in \mathbb{R}$ if and only if \mathcal{S} is minimal surfaces or parametrized as

$$
S: r(x, y)=\left(x, y, \pm \sqrt{\frac{\lambda_{2}}{\lambda_{3}} \ln \frac{1}{y^{2}}+c}\right) ; \quad \lambda_{2} \neq 0, \lambda_{3} \neq 0, c \in \mathbb{R}
$$

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] M. Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying $\Delta^{I I I} r_{i}=\mu_{i} r_{i}$, J. Geom. 103 (2012), 367-374.
[2] M. Bekkar, H, Zoubir, Surfaces of revolution in the 3-dimensional Lorentz Minkowski space satisfying $\Delta^{j} r_{i}=\mu_{i} r_{i}$, Int. J. Contemp. Math. Sci. 3 (2008), 1173-1185.
[3] B-Y. Chen, Total mean curvature and submanifolds of finite type, (2nd edition), World Scientific Publisher, Singapore, 1984.
[4] F. Dillen, L. Verstraelen, G. Zafindratafa, A generalization of the translation surfaces of Scherk. Differential Geometry in Honor of Radu Rosca: Meeting on Pure and Applied Differential Geometry, Leuven, Belgium, 1989, KU Leuven, Departement Wiskunde (1991), pp. 107-109.
[5] D. Hoffman, H. Matisse, The computer-aided discovery of new embedded minimal surfaces, Math. Intell. 9 (1987) 8-21.
[6] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
[7] B. Senoussi, M. Bekkar, Translation surfaces of finite type in H_{3} and $S o l_{3}$, Anal. Univ. Orad. Fasc. Math. Tom, XXVI (1) (2019), 17-29.
[8] D.W. Yoon, On Translation surfaces with zero Gaussian curvature in $\mathbb{H}^{2} \times \mathbb{R}$, Int. J. Pure Appl. Math. 99 (3) 2015, 289 -297.
[9] D.W. Yoon, Coordinate finite type invariante surfaces in Sol spaces, Bull. Iran. Math. Soc. 43 (2017), 649-658.

