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Abstract. The aim of the present article is to investigate a family of univalent analytic functions on the

unit disc D defined for M ≥ 1 by

<
( zf ′(z)
f(z)

)
> 0,

∣∣∣∣( zf ′(z)f(z)

)2

−M
∣∣∣∣ < M, z ∈ D.

Some proprieties, radius of convexity and coefficient bounds are obtained for classes in this family.

1. Introduction

Let A be the set of analytic function on the unit disc D with the normalization f(0) = f ′(0) − 1 = 0.

f ∈ A if f is of the form

(1.1) f(z) = z +

+∞∑
n=2

anz
n, z ∈ D.

S denotes the subclass of A of univalent functions. A function f ∈ S is said to be strongly starlike of order

α, 0 < α ≤ 1, if it satisfies the condition

∣∣Arg zf ′(z)
f(z)

∣∣ < απ

2
, ∀ z ∈ D.
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This class is denoted by SS∗(α) and was first introduced by D. A. Brannan and W. E. Kirwan [1] and

independently by J. Stankiewicz [9].

SS∗(1) is the well known class S∗ of starlike functions. Recall that a function f ∈ S belongs to S∗ if the

image of D under f is a starlike set with respect to the origin or, equivalently, if

<
(zf ′(z)
f(z)

)
> 0, z ∈ D.

A function f ∈ S belongs to SS∗(α) if the image of D under zf ′(z)
f(z) lies in the angular sector

Ωα =

{
z ∈ C,

∣∣Argz∣∣ < απ

2

}
.

Let B denotes the set of Schwarz functions, i.e. ω ∈ B if and only ω is analytic in D, ω(0) = 0 and∣∣ω(z)
∣∣ < 1 for z ∈ D. Given two functions f and g analytic in D, we say that f is subordinate to g and we

write f ≺ g if there exists ω ∈ B such that f = g ◦ ω in D.

If g is univalent on D, f ≺ g is equivalent to f(0) = g(0) and f(D) ⊂ g(D).

We obtain from the Schwarz lemma that if f ≺ g then
∣∣f ′(0)

∣∣ ≤ ∣∣g′(0)
∣∣. As a consequence of this statement,

we have

(1.2) f, g ∈ A ,
f(z)

z
≺ g(z)

z
=⇒

∣∣a2∣∣ ≤ ∣∣b2∣∣,
where a2 and b2 are respectively the second coefficients of f and g.

W. Janowski [2] investigated the subclass

S∗(M) =

{
f ∈ S, zf

′(z)

f(z)
∈ DM ,∀z ∈ D

}
,

where

DM =

{
w ∈ C,

∣∣w −M ∣∣ < M

}
, M ≥ 1

J. Sókol and J. Stankiewicz [8] introduced a subclass of SS∗( 1
2 ), namely, the class S∗L defined by

S∗L =

{
f ∈ S, zf

′(z)

f(z)
∈ L1,∀z ∈ D

}
,

where

L1 =

{
w ∈ C,<w > 0,

∣∣w2 − 1
∣∣ < 1

}
.

L1 is the interior of the right half of the Bernoulli’s lemniscate
∣∣w2 − 1

∣∣ = 1.

In the present paper we are interested to the family of subclass of S

(1.3) S∗L(M) =

{
f ∈ S, zf

′(z)

f(z)
∈ LM ,∀z ∈ D

}
, M ≥ 1,
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where

(1.4) LM =

{
w ∈ C,<w > 0,

∣∣w2 −M
∣∣ < M

}
.

is the interior of the right half of the Cassini’s oval
∣∣w2 −M

∣∣ = M . For the particular case M = 1, S∗L(1)

stands for the class S∗L introduced by J. Sókol and J. Stankiewicz [8]. Since LM ⊂ Ω( 1
2 ), all functions in

S∗L(M) are strongly starlike of order 1
2 .

Note that all classes above correspond to particular cases of the classes of S∗(ϕ) introduced by W. Ma

and D. Minda [3],

S∗(ϕ) =

{
f ∈ A, zf ′(z)

f(z)
≺ ϕ

}
.

where ϕ is Analytic univalent function with real positive part in the unit disc D, ϕ
(
D
)

is symmetric with

respect to the real axis and starlike with respect to ϕ(0) = 1 and ϕ′(0) > 0.

Let m = 1− 1
M and ϕm be the function

ϕm(z) =

√
1 + z

1−mz
, z ∈ D

where the branch of the square root is chosen so that ϕm(0) = 1. We have

(1.5) S∗L(M) = S∗(ϕm) =

{
f ∈ A, zf ′(z)

f(z)
≺ ϕm

}
.

Observe that S∗L corresponds to m = 0 so that S∗L = S∗(
√

1 + z).

2. Some properties of the class S∗L(M)

Let P the class of analytic functions p in D with p(0) = 1 and < p(z) > 0 in D. For M ≥ 1, let

PL(M) =

{
p ∈ P,

∣∣p2(z)−M
∣∣ < M, z ∈ D

}
.

It is easy to see that PL(M1) ⊂ PL(M2) for M1 ≤M2.

Remark 2.1. A function f ∈ A belongs to S∗L(M) if and only if there exists p ∈ PL(M) such that

zf ′(z)

f(z)
= p(z), z ∈ D.

Theorem 2.1. A function f belongs to S∗L(M) if and only if there exists p ∈ PL(M) such that

(2.1) f(z) = z exp

∫ z

0

p(ξ)− 1

ξ
dξ.

Proof. (2.1) is an immediate consequence of the Remark 2.1 �
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Let fm ∈ A be the unique function such that

(2.2)
zf
′

m(z)

fm(z)
= ϕm(z), z ∈ D

with m = 1− 1
M . fm belongs to S∗L(M) and we have

(2.3) fm(z) = z exp

∫ z

0

ϕm(ξ)− 1

ξ
dξ.

Evaluating the integral in (2.3), we get

(2.4) fm(z) =
4z exp

∫ ϕm(z)

1
Hm(t)dt(

ϕm(z) + 1
)2 , z ∈ D,

where

Hm(t) =
2mt+ 2

mt2 + 1
, m = 1− 1

M

For M = 1, H0 is the constant function H(t) = 2 and we have

f0(z) =
4z exp

(
2
√

1 + z − 2
)(√

1 + z + 1
)2 for z ∈ D.

f0 is extremal function for problems in the class S∗L (see [8]).

It is easy to see that

(2.5) fm(z) = z +
m+ 1

2
z2 +

(m+ 1)(5m+ 1)

16
z3 +

(m+ 1)(21m2 + 6m+ 1)

96
z4 + . . .

We need the following result by St. Ruscheweyh [5]

Lemma 2.1. [ [5], Theorem 1] Let G be a convex conformal mapping of D, G(0) = 1, and let

F (z) = z exp

∫ z

0

G(ξ)− 1

ξ
dξ.

Let f ∈ A. Then we have

zf ′(z)

f(z)
≺ G

if and only if for all
∣∣s∣∣ ≤ 1,

∣∣t∣∣ ≤ 1

tf(sz)

sf(tz)
≺ tF (sz)

sF (tz)
.

Theorem 2.2. If f belongs to S∗L(M) then

(2.6)
f(z)

z
≺ fm(z)

z
.

Proof. From (1.5), we obtain by applying Lemma 2.1 to the convex univalent function G = ϕm,

tf(z)

f(tz)
≺ tfm(z)

fm(tz)
.

Letting t −→ 0, we obtain the desired conclusion. �
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Corollary 2.1. Let f belongs to S∗L(M) and |z| = r < 1, then

(2.7) −fm(−r) ≤ |f(z)| ≤ fm(r);

(2.8) f
′

m(−r) ≤ |f
′
(z)| ≤ f

′

m(r).

Proof. (2.7) follows from (2.6). Now If M ≥ 1 we have 0 ≤ m < 1. Thus for 0 ≤ r < 1

(2.9) min
|z|=r

|ϕm(z)| = ϕm(−r), max
|z|=r

|ϕm(z)| = ϕm(r)

From (2.6) and (2.9) we get (2.8) by applying Theorem 2 ( [3], p. 162). �

3. Radius of convexity for the class S∗L(M)

In the sequel m = 1− 1
M .

For M ≥ 1, let P(M) be the family of analytic functions P in D satisfying

(3.1) P(0) = 1, |P(z)−M| < M, for z ∈ D.

We have

(3.2) f ∈ S∗L(M) ⇐⇒ ∃P ∈ P(M) /
zf ′(z)

f(z)
=
√
P .

We need the two following lemmas by Janowski [2]:

Lemma 3.1. [ [2] , Theorem 1] For every P (z) ∈ P(M) and |z| = r, 0 < r < 1, we have

(3.3) inf
P∈P(M)

<P (z) =
1− r

1 +mr
.

The infimum is attained by

(3.4) P (z) =
1− εz

1 + εmz
, |ε| = 1.

Lemma 3.2. (Theorem 2, [2]) For every P (z) ∈ P(M) and |z| = r, 0 < r < 1, we have

(3.5) inf
P∈P(M)

<zP
′
(z)

P (z)
= −

(
1 +m

)
r(

1− r
)(

1 +mr
) .

The infimum is attained by

(3.6) P (z) =
1− εz

1 + εmz
, |ε| = 1.

Theorem 3.1. The radius of convexity of the class S∗L(M) is is the unique root in (0, 1) of the equation

(3.7) 4
(
1 +mr

)(
1− r

)3 − (1 +m
)2
r2 = 0.
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Proof. Let f ∈ S∗L(M). From (3.2), there exists P ∈ P(M) such that

(3.8)
zf
′
(z)

f(z)
=
√
P (z), z ∈ D.

(3.8) can be written

zf
′
(z) = f(z)

√
P (z)

which gives

1 +
zf
′′
(z)

f ′(z)
=
z
(
zf
′)′

(z)

zf ′(z)
=
√
P (z) +

1

2

zP
′
(z)

P (z)
.

This yields for |z| = r, 0 < r <,

(3.9) <
(
1 +

zf
′′
(z)

f ′(z)

)
≥ inf
P∈P(M)

<
√
P (z) +

1

2
inf

P∈P(M)
<zP

′
(z)

P (z)
.

Replacing (3.3) and(3.5 in (3.9), we obtain

(3.10) <
(
1 +

zf
′′
(z)

f ′(z)

)
≥
√

1− r
1 +mr

− 1

2

(
1 +m

)
r(

1− r
)(

1 +mr
)

Let h
M

be defined by

h
M

=

√
1− r

1 +mr
− 1

2

(
1 +m

)
r(

1− r
)(

1 +mr
) .

h
M

is decreasing in the interval (0, 1) , h
M

(0) = 1 and the limit of h
M

in 1− is −∞. Let r
M−1

be the unique

solution of h
M

(r) = 0 in (0, 1), then f is convex on the disc |z| < r
M−1

. On the other hand,

1 +
zf
′′

m(z)

f ′m(z)
=

√
1 + z

1−mz
+

1

2

(
1 +m

)
z(

1−mz
)(

1 + z
)

vanishes in z = −r
M−1

. Thus r
M−1

is the best value.

To finish, we observe that the equation h
M

(r) = 0 is equivalent in the interval (0, 1) to the equation

4
(
1 +mr

)(
1− r

)3 − (1 +m
)2
r2 = 0.

�

Remark 3.1. As a consequence of Theorem 3.1 applying for M = 1, we find Theorem 4 [8] which gives r0

the radius of convexity of the class S∗L. r0 = 1
12

(
11 +

3
√√

44928− 181− 3
√√

44928 + 181

)
≈ 0.5679591

Remark 3.2. As observed above, S∗L(M) increases with M . Therefore r
M−1

decreases when M increases.

Let

r∞ = lim
M→+∞

r
M−1

.

Substituting in (3.7), we obtain
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(
1 + r∞

)(
1− r∞

)3 − r2∞ = 0.

Solving this equation in (0, 1), we get

r∞ =
1

2

(
1−
√

2 +

√√
8− 1

)
≈ 0.46899.

We have

r∞ ≤ rM−1
≤ r0.

4. Coefficient bounds for S∗L(M)

Theorem 4.1. Let f(z) =
∑∞
n=0 anz

n be a function in S∗L(M) . Then

for 1 ≤M ≤ 2 we have

(4.1)

∞∑
n=2

(
(1−m)n2 − 2

)
|an|2 ≤ 1 +m

and for M > 2 we have

(4.2)
∑

n≥
√

2
1−m

(
(1−m)n2 − 2

)
|an|2 ≤ 1 +m−

∑
2≤k<

√
2

1−m

(
(1−m)k2 − 2

)
|ak|2.

with m = M−1
M .

Proof. If f ∈ S∗L(M) there exists ω ∈ B such that

(4.3)
(
1−mω(z)

)(
zf
′
(z)
)2 − f(z)2 = ω(z)f(z)2, z ∈ D.

For 0 < r < 1 we have

2π

∞∑
n=1

|an|2r2 =

∫ 2π

0

|f
(
reiθ

)
|2dθ

≥
∫ 2π

0

|ω
(
reiθ

)
||f
(
reiθ

)
|2dθ(4.4)

Replacing (4.3) in the right side of (4.5) we obtain

2π

∞∑
n=1

|an|2r2 ≥
∫ 2π

0

∣∣(1−mω(reiθ)
)(
reiθf

′
(reiθ)

)2 − f(reiθ)2∣∣dθ
≥

∫ 2π

0

∣∣(1−mω(reiθ)
)(
reiθf

′
(reiθ)

)2∣∣dθ − ∫ 2π

0

∣∣f(reiθ)2∣∣dθ
≥ (1−m)

∫ 2π

0

∣∣(reiθf ′(reiθ))2∣∣dθ − ∫ 2π

0

∣∣f(reiθ)2∣∣dθ
= 2π

∞∑
n=1

(1−m)n2|an|2r2 − 2π

∞∑
n=1

|an|2r2.
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Thus

2

∞∑
n=1

|an|2r2 ≥
∞∑
n=1

(1−m)n2|an|2r2.

If we let r → 1−, we obtain from le last inequality

2

∞∑
n=1

|an|2 ≥
∞∑
n=1

(1−m)n2|an|2

which gives,

(4.5) 1 +m ≥
∞∑
n=2

(
(1−m)n2 − 2

)
|an|2.

Since (1−m)n2 − 2 ≥ 0 for all n ≥ 2 if and only if 1 ≤M ≤ 2 then (4.5) yields (4.1) and (4.2) according to

the case 1 ≤M ≤ 2 or M > 2. �

The following corollary is an immediate consequence of (4.2).

Corollary 4.1. Let f(z) =
∑∞
n=0 anz

n be a function in S∗L(M) .Then

for 1 ≤M ≤ 2 we have

(4.6) |an| ≤

√
1 +m

(1−m)n2 − 2
, forn ≥ 2

and for M > 2 we have

(4.7) |an| ≤

√√√√1 +m−
∑

2≤k<
√

2
1−m

(
(1−m)k2 − 2

)
|ak|2(

1−m
)
n2 − 2

; for n ≥
√

2

1−m
.

with m = M−1
M .

Remark 4.1. For M = 1, (4.1) and (4.6) give respectivly Theorem 1 and Corollary 1 [6].

Theorem 4.2. Let f(z) =
∑∞
n=0 anz

n be a function in S∗L(M) .Then

(i) |a2| ≤ m+1
2 , for 0 ≤ m ≤ 1;

(ii) |a3| ≤ m+1
4 , for 0 ≤ m ≤ 3

5 ;

(iii) |a4| ≤ m+1
6 , for 0 ≤ m ≤

√
3−1
7 .

This estimations are sharp.

Proof. If f ∈ S∗L(M) there exists ω(z) =
∑∞
n=1 Cnz

n ∈ B such that

(4.8)
(
zf
′
(z)
)2 − f(z)2 = ω(z)

(
m
(
zf
′
(z)
)2

+ f(z)2
)
, z ∈ D.

Let f(z)2 =
∑∞
n=2Anz

n,
(
zf
′
(z)
)2

=
∑∞
n=2Bnz

n. (4.8) becomes

(4.9)

∞∑
n=2

(
Bn −An

)
zn =

( ∞∑
n=2

(
mBn +An

)
zn
)( ∞∑

n=1

Cnz
n

)
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Equating coefficients for n = 2, n = 3 in both sides of (4.9), we obtain

(Sm)


B3 −A3 =

(
mB2 +A2

)
C1

B4 −A4 =
(
mB2 +A2)C2 +

(
mB3 +A3

)
C1

B5 −A5 =
(
mB2 +A2)C3 +

(
mB3 +A3

)
C2 +

(
mB4 +A4

)
C1

A little calculation yields

A2 = a1 = 1, A3 = 2a2, A4 = 2a3 + a22, A5 = 2a4 + 2a2a3

and

B2 = a1 = 1, B3 = 4a2, B4 = 6a3 + 4a22, B5 = 8a4 + 12a2a3.

Replacing in (Sm), we obtain
(1) 2a2 =

(
m+ 1

)
C1

(2) 4a3 + 3a22 =
(
m+ 1)C2 +

(
4m+ 2)a2C1

(3) 6a4 + 10a2a3 =
(
m+ 1

)
C3 +

(
2m+ 1

)(
m+ 1

)
C1C2 +

(
(6m+ 2)a3 + (4m+ 1)a22

)
C1

Since |C1| ≤ 1 then (1) implies that |a2| ≤ 1+m
2 . This proves the assertion (i). On the other hand we have

from (1) and (2)

a3 =
1 +m

4
C2 +

(5m+ 1)(m+ 1)

16
C2

1 .

Thus

|a3| ≤
1 +m

4

(
|C2|+

5m+ 1

4
|C1|

)
.

It is well known that |C2| ≤ 1− |C1|2. Therefore we obtain

|a3| ≤
1 +m

4

(
1− |C1|2 +

5m+ 1

4
|C1|

)
=

1 +m

4

(
1 +

5m− 3

4
|C1|

)
.(4.10)

Since 5m− 3 ≤ 0 if and only if m ≤ 3
5 then (4.10) yields the assertion (ii).

Replacing the values of a2 and a3 in the equation (3), we obtain

a4 =

(
m+ 1

)
6

C3 +

(
m+ 1

)(
9m+ 1

)
24

C1C2 +

(
m+ 1

)(
21m2 + 6m+ 1

)
96

C3
1

=
m+ 1

6

(
C3 +

9m+ 1

4
C1C2 +

21m2 + 6m+ 1

16
C3

1

)
.(4.11)

Let µ = 9m+1
4 and ν = 21m2+6m+1

16 . Under the assumption 0 ≤ m ≤
√
3−1
7 , we have (µ, ν) ∈ D1 (see [4], p.

127). Therefore by Lemma 2 [4] we obtain∣∣∣∣C3 +
9m+ 1

4
C1C2 +

21m2 + 6m+ 1

16
C3

1

∣∣∣∣ ≤ 1
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which yields from (4.11) the assertion (iii).

The sharpness of (i) is given by the function fm. If we take in (4.8) ω(z) = z2 and ω(z) = z3 successively,

we obtain two functions in S∗L(M):

f1,m(z) = z +
m+ 1

4
z3 + . . . and f2,m(z) = z +

m+ 1

6
z4 + . . .

which give respectively the sharpness of estimations (ii) and (iii). �

Remark 4.2. The estimation (i) can be obtained directly from (2.6).

Remark 4.3. If we take m = 0 in Theorem 4.2, we obtain as particular case Theorem 2 [6].
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[8] J. Sókol, J. Stankiewicz, Radius of Convexity of some Subclass of Strongly Starlike Functions, Folia Sci. Univ. Tech.

Resovienis, Math. 19 (1996), 101-105.
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