

ON SOME SUBCLASSES OF STRONGLY STARLIKE ANALYTIC FUNCTIONS

EL MOCTAR OULD BEIBA*

El Moctar Ould Beiba, Department of Mathematics and Computer Sciences, Faculty of Sciences and Techniques, University of Nouakchott Al Aasriya, P.O. Box 5026, Nouakchott, Mauritania

* Corresponding author: elbeiba@yahoo.fr

ABSTRACT. The aim of the present article is to investigate a family of univalent analytic functions on the unit disc \mathbb{D} defined for $M \ge 1$ by

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \ \left|\left(\frac{zf'(z)}{f(z)}\right)^2 - M\right| < M, \ z \in \mathbb{D}.$$

Some proprieties, radius of convexity and coefficient bounds are obtained for classes in this family.

1. INTRODUCTION

Let \mathcal{A} be the set of analytic function on the unit disc \mathbb{D} with the normalization f(0) = f'(0) - 1 = 0. $f \in \mathcal{A}$ if f is of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{+\infty} a_n z^n, \quad z \in \mathbb{D}$$

S denotes the subclass of A of univalent functions. A function $f \in S$ is said to be strongly starlike of order $\alpha, 0 < \alpha \leq 1$, if it satisfies the condition

$$\left|Arg\frac{zf'(z)}{f(z)}\right| < \frac{\alpha\pi}{2}, \ \forall z \in \mathbb{D}.$$

Received April 12th, 2020; accepted May 8th, 2020; published July 28th, 2020.

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. strongly Starlike Functions; Subordination; Radius of Convexity; Coefficient Bounds.

^{©2020} Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

This class is denoted by $SS^*(\alpha)$ and was first introduced by D. A. Brannan and W. E. Kirwan [1] and independently by J. Stankiewicz [9].

 $SS^*(1)$ is the well known class S^* of starlike functions. Recall that a function $f \in S$ belongs to S^* if the image of \mathbb{D} under f is a starlike set with respect to the origin or, equivalently, if

$$\Re\big(\frac{zf'(z)}{f(z)}\big) > 0, \ z \in \mathbb{D}$$

A function $f \in S$ belongs to $SS^*(\alpha)$ if the image of \mathbb{D} under $\frac{zf'(z)}{f(z)}$ lies in the angular sector

$$\Omega_{\alpha} = \left\{ z \in \mathbb{C}, \left| Argz \right| < \frac{\alpha \pi}{2} \right\}.$$

Let \mathcal{B} denotes the set of Schwarz functions, i.e. $\omega \in \mathcal{B}$ if and only ω is analytic in \mathbb{D} , $\omega(0) = 0$ and $|\omega(z)| < 1$ for $z \in \mathbb{D}$. Given two functions f and g analytic in \mathbb{D} , we say that f is subordinate to g and we write $f \prec g$ if there exists $\omega \in \mathcal{B}$ such that $f = g \circ \omega$ in \mathbb{D} .

If g is univalent on \mathbb{D} , $f \prec g$ is equivalent to f(0) = g(0) and $f(\mathbb{D}) \subset g(\mathbb{D})$.

We obtain from the Schwarz lemma that if $f \prec g$ then $|f'(0)| \leq |g'(0)|$. As a consequence of this statement, we have

(1.2)
$$f, g \in \mathcal{A}, \ \frac{f(z)}{z} \prec \frac{g(z)}{z} \Longrightarrow |a_2| \le |b_2|,$$

where a_2 and b_2 are respectively the second coefficients of f and g.

W. Janowski [2] investigated the subclass

$$S^{*}(M) = \left\{ f \in \mathcal{S}, \frac{zf'(z)}{f(z)} \in \mathcal{D}_{M}, \forall z \in \mathbb{D} \right\},\$$

where

$$\mathcal{D}_M = \left\{ w \in \mathbb{C}, \left| w - M \right| < M \right\}, \ M \ge 1$$

J. Sókol and J. Stankiewicz [8] introduced a subclass of $\mathcal{SS}^*(\frac{1}{2})$, namely, the class \mathcal{S}^*_L defined by

$$\mathcal{S}_{L}^{*} = \bigg\{ f \in \mathcal{S}, \frac{zf'(z)}{f(z)} \in \mathcal{L}_{1}, \forall z \in \mathbb{D} \bigg\},\$$

where

$$\mathcal{L}_1 = \left\{ w \in \mathbb{C}, \Re w > 0, |w^2 - 1| < 1 \right\}.$$

 \mathcal{L}_1 is the interior of the right half of the Bernoulli's lemniscate $|w^2 - 1| = 1$.

In the present paper we are interested to the family of subclass of \mathcal{S}

(1.3)
$$\mathcal{S}_{L}^{*}(M) = \left\{ f \in \mathcal{S}, \frac{zf'(z)}{f(z)} \in \mathcal{L}_{M}, \forall z \in \mathbb{D} \right\}, \quad M \ge 1,$$

where

(1.4)
$$\mathcal{L}_M = \left\{ w \in \mathbb{C}, \Re w > 0, \left| w^2 - M \right| < M \right\}.$$

is the interior of the right half of the Cassini's oval $|w^2 - M| = M$. For the particular case M = 1, $\mathcal{S}_L^*(1)$ stands for the class \mathcal{S}_L^* introduced by J. Sókol and J. Stankiewicz [8]. Since $\mathcal{L}_M \subset \Omega(\frac{1}{2})$, all functions in $\mathcal{S}_L^*(M)$ are strongly starlike of order $\frac{1}{2}$.

Note that all classes above correspond to particular cases of the classes of $\mathcal{S}^*(\varphi)$ introduced by W. Ma and D. Minda [3],

$$\mathcal{S}^*(\varphi) = \bigg\{ f \in \mathcal{A}, \ \frac{zf'(z)}{f(z)} \prec \varphi \bigg\}.$$

where φ is Analytic univalent function with real positive part in the unit disc \mathbb{D} , $\varphi(\mathbb{D})$ is symmetric with respect to the real axis and starlike with respect to $\varphi(0) = 1$ and $\varphi'(0) > 0$.

Let $m = 1 - \frac{1}{M}$ and φ_m be the function

$$\varphi_m(z) = \sqrt{\frac{1+z}{1-mz}}, \ z \in \mathbb{D}$$

where the branch of the square root is chosen so that $\varphi_m(0) = 1$. We have

(1.5)
$$\mathcal{S}_{L}^{*}(M) = \mathcal{S}^{*}(\varphi_{m}) = \left\{ f \in \mathcal{A}, \ \frac{zf'(z)}{f(z)} \prec \varphi_{m} \right\}.$$

Observe that \mathcal{S}_L^* corresponds to m = 0 so that $\mathcal{S}_L^* = \mathcal{S}^*(\sqrt{1+z})$.

2. Some properties of the class $\mathcal{S}_L^*(M)$

Let P the class of analytic functions p in \mathbb{D} with p(0) = 1 and $\Re p(z) > 0$ in \mathbb{D} . For $M \ge 1$, let

$$P_{\mathcal{L}}(M) = \bigg\{ p \in P, \ \left| p^2(z) - M \right| < M, \ z \in \mathbb{D} \bigg\}.$$

It is easy to see that $P_{\mathcal{L}}(M_1) \subset P_{\mathcal{L}}(M_2)$ for $M_1 \leq M_2$.

Remark 2.1. A function $f \in \mathcal{A}$ belongs to $\mathcal{S}_L^*(M)$ if and only if there exists $p \in P_{\mathcal{L}}(M)$ such that

$$\frac{zf'(z)}{f(z)} = p(z), \ z \in \mathbb{D}.$$

Theorem 2.1. A function f belongs to $\mathcal{S}_L^*(M)$ if and only if there exists $p \in P_{\mathcal{L}}(M)$ such that

(2.1)
$$f(z) = z \exp \int_0^z \frac{p(\xi) - 1}{\xi} d\xi.$$

Proof. (2.1) is an immediate consequence of the Remark 2.1

Let $f_m \in \mathcal{A}$ be the unique function such that

(2.2)
$$\frac{zf'_m(z)}{f_m(z)} = \varphi_m(z), \ z \in \mathbb{D}$$

with $m = 1 - \frac{1}{M}$. f_m belongs to $\mathcal{S}_L^*(M)$ and we have

(2.3)
$$f_m(z) = z \exp \int_0^z \frac{\varphi_m(\xi) - 1}{\xi} d\xi$$

Evaluating the integral in (2.3), we get

(2.4)
$$f_m(z) = \frac{4z \exp \int_1^{\varphi_m(z)} H_m(t) dt}{\left(\varphi_m(z) + 1\right)^2}, \ z \in \mathbb{D},$$

where

$$H_m(t) = \frac{2mt+2}{mt^2+1}, \ m = 1 - \frac{1}{M}$$

For M = 1, H_0 is the constant function H(t) = 2 and we have

$$f_0(z) = \frac{4z \exp\left(2\sqrt{1+z}-2\right)}{\left(\sqrt{1+z}+1\right)^2} \text{ for } z \in \mathbb{D}.$$

 f_0 is extremal function for problems in the class $\mathcal{S}^*_{\mathcal{L}}$ (see [8]).

It is easy to see that

(2.5)
$$f_m(z) = z + \frac{m+1}{2}z^2 + \frac{(m+1)(5m+1)}{16}z^3 + \frac{(m+1)(21m^2 + 6m+1)}{96}z^4 + \dots$$

We need the following result by St. Ruscheweyh [5]

Lemma 2.1. [5], Theorem 1] Let G be a convex conformal mapping of \mathbb{D} , G(0) = 1, and let

$$F(z) = z \exp \int_0^z \frac{G(\xi) - 1}{\xi} d\xi$$

Let $f \in \mathcal{A}$. Then we have

$$\frac{zf'(z)}{f(z)} \prec G$$

if and only if for all $\left|s\right|\leq 1, \, \left|t\right|\leq 1$

$$\frac{tf(sz)}{sf(tz)} \prec \frac{tF(sz)}{sF(tz)}.$$

Theorem 2.2. If f belongs to $\mathcal{S}_L^*(M)$ then

(2.6)
$$\frac{f(z)}{z} \prec \frac{f_m(z)}{z}$$

Proof. From (1.5), we obtain by applying Lemma 2.1 to the convex univalent function $G = \varphi_m$,

$$\frac{tf(z)}{f(tz)} \prec \frac{tf_m(z)}{f_m(tz)}.$$

Letting $t \longrightarrow 0$, we obtain the desired conclusion.

Corollary 2.1. Let f belongs to $\mathcal{S}_L^*(M)$ and |z| = r < 1, then

(2.7)
$$-f_m(-r) \le |f(z)| \le f_m(r);$$

(2.8)
$$f'_{m}(-r) \le |f'(z)| \le f'_{m}(r).$$

Proof. (2.7) follows from (2.6). Now If $M \ge 1$ we have $0 \le m < 1$. Thus for $0 \le r < 1$

(2.9)
$$\min_{|z|=r} |\varphi_m(z)| = \varphi_m(-r), \quad \max_{|z|=r} |\varphi_m(z)| = \varphi_m(r)$$

From (2.6) and (2.9) we get (2.8) by applying Theorem 2 ([3], p. 162).

```
3. Radius of convexity for the class \mathcal{S}^*_L(M)
```

In the sequel $m = 1 - \frac{1}{M}$.

For $M \geq 1$, let $\mathcal{P}(M)$ be the family of analytic functions P in \mathbb{D} satisfying

(3.1)
$$P(0) = 1, |P(z) - M| < M, \text{ for } z \in \mathbb{D}.$$

We have

(3.2)
$$f \in \mathcal{S}_L^*(M) \iff \exists P \in \mathcal{P}(M) \mid \frac{zf'(z)}{f(z)} = \sqrt{P}.$$

We need the two following lemmas by Janowski [2]:

Lemma 3.1. [[2] , Theorem 1] For every $P(z) \in \mathcal{P}(M)$ and |z| = r, 0 < r < 1, we have

(3.3)
$$\inf_{P \in \mathcal{P}(M)} \Re P(z) = \frac{1-r}{1+mr}$$

The infimum is attained by

(3.4)
$$P(z) = \frac{1 - \epsilon z}{1 + \epsilon m z}, \quad |\epsilon| = 1.$$

Lemma 3.2. (Theorem 2, [2]) For every $P(z) \in \mathcal{P}(M)$ and |z| = r, 0 < r < 1, we have

(3.5)
$$\inf_{P \in \mathcal{P}(M)} \Re \frac{zP'(z)}{P(z)} = -\frac{(1+m)r}{(1-r)(1+mr)}$$

The infimum is attained by

(3.6)
$$P(z) = \frac{1 - \epsilon z}{1 + \epsilon m z}, \quad |\epsilon| = 1.$$

Theorem 3.1. The radius of convexity of the class $\mathcal{S}_L^*(M)$ is is the unique root in (0,1) of the equation

(3.7)
$$4(1+mr)(1-r)^3 - (1+m)^2r^2 = 0.$$

Proof. Let $f \in \mathcal{S}_L^*(M)$. From (3.2), there exists $P \in \mathcal{P}(M)$ such that

(3.8)
$$\frac{zf'(z)}{f(z)} = \sqrt{P(z)}, \ z \in \mathbb{D}$$

(3.8) can be written

$$zf'(z) = f(z)\sqrt{P(z)}$$

which gives

$$1 + \frac{zf''(z)}{f'(z)} = \frac{z(zf')'(z)}{zf'(z)} = \sqrt{P(z)} + \frac{1}{2} \frac{zP'(z)}{P(z)}.$$

This yields for |z| = r, 0 < r <,

(3.9)
$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) \ge \inf_{P \in \mathcal{P}(M)} \Re\sqrt{P(z)} + \frac{1}{2} \inf_{P \in \mathcal{P}(M)} \Re\frac{zP'(z)}{P(z)}.$$

Replacing (3.3) and (3.5 in (3.9), we obtain

(3.10)
$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) \ge \sqrt{\frac{1-r}{1+mr}} - \frac{1}{2} \frac{(1+m)r}{(1-r)(1+mr)}$$

Let $h_{\scriptscriptstyle M}$ be defined by

$$h_{M} = \sqrt{\frac{1-r}{1+mr}} - \frac{1}{2} \frac{(1+m)r}{(1-r)(1+mr)}$$

 $h_{\scriptscriptstyle M}$ is decreasing in the interval (0,1), $h_{\scriptscriptstyle M}(0) = 1$ and the limit of $h_{\scriptscriptstyle M}$ in 1⁻ is $-\infty$. Let $r_{\scriptscriptstyle M-1}$ be the unique solution of $h_{\scriptscriptstyle M}(r) = 0$ in (0,1), then f is convex on the disc $|z| < r_{\scriptscriptstyle M-1}$. On the other hand,

$$1 + \frac{zf_m''(z)}{f_m'(z)} = \sqrt{\frac{1+z}{1-mz}} + \frac{1}{2} \frac{(1+m)z}{(1-mz)(1+z)}$$

vanishes in $z = -r_{\scriptscriptstyle M-1}$. Thus $r_{\scriptscriptstyle M-1}$ is the best value.

To finish, we observe that the equation $h_M(r) = 0$ is equivalent in the interval (0, 1) to the equation

$$4(1+mr)(1-r)^{3} - (1+m)^{2}r^{2} = 0.$$

Remark 3.1. As a consequence of Theorem 3.1 applying for M = 1, we find Theorem 4 [8] which gives r_0 the radius of convexity of the class S_L^* . $r_0 = \frac{1}{12} \left(11 + \sqrt[3]{\sqrt{44928} - 181} - \sqrt[3]{\sqrt{44928} + 181} \right) \approx 0.5679591$

Remark 3.2. As observed above, $S_L^*(M)$ increases with M. Therefore r_{M-1} decreases when M increases. Let

$$r_{\infty} = \lim_{M \to +\infty} r_{M-1}.$$

Substituting in (3.7), we obtain

$$(1+r_{\infty})(1-r_{\infty})^3 - r_{\infty}^2 = 0$$

Solving this equation in (0, 1), we get

$$r_{\infty} = \frac{1}{2} \left(1 - \sqrt{2} + \sqrt{\sqrt{8} - 1} \right) \approx 0.46899$$

We have

$$r_{\infty} \le r_{M-1} \le r_0.$$

4. Coefficient bounds for $\mathcal{S}^*_L(M)$

Theorem 4.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a function in $\mathcal{S}_L^*(M)$. Then

for $1 \leq M \leq 2$ we have

(4.1)
$$\sum_{n=2}^{\infty} \left((1-m)n^2 - 2 \right) |a_n|^2 \le 1 + m$$

and for M > 2 we have

(4.2)
$$\sum_{n \ge \sqrt{\frac{2}{1-m}}} \left((1-m)n^2 - 2 \right) |a_n|^2 \le 1 + m - \sum_{2 \le k < \sqrt{\frac{2}{1-m}}} \left((1-m)k^2 - 2 \right) |a_k|^2.$$

with $m = \frac{M-1}{M}$.

Proof. If $f \in \mathcal{S}_L^*(M)$ there exists $\omega \in \mathcal{B}$ such that

(4.3)
$$(1 - m\omega(z))(zf'(z))^2 - f(z)^2 = \omega(z)f(z)^2, \ z \in \mathbb{D}.$$

For 0 < r < 1 we have

(4.4)
$$2\pi \sum_{n=1}^{\infty} |a_n|^2 r^2 = \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$
$$\geq \int_0^{2\pi} |\omega(re^{i\theta})| |f(re^{i\theta})|^2 d\theta$$

Replacing (4.3) in the right side of (4.5) we obtain

$$2\pi \sum_{n=1}^{\infty} |a_n|^2 r^2 \geq \int_0^{2\pi} |(1 - m\omega(re^{i\theta}))(re^{i\theta}f'(re^{i\theta}))^2 - f(re^{i\theta})^2|d\theta$$

$$\geq \int_0^{2\pi} |(1 - m\omega(re^{i\theta}))(re^{i\theta}f'(re^{i\theta}))^2|d\theta - \int_0^{2\pi} |f(re^{i\theta})^2|d\theta$$

$$\geq (1 - m) \int_0^{2\pi} |(re^{i\theta}f'(re^{i\theta}))^2|d\theta - \int_0^{2\pi} |f(re^{i\theta})^2|d\theta$$

$$= 2\pi \sum_{n=1}^{\infty} (1 - m)n^2 |a_n|^2 r^2 - 2\pi \sum_{n=1}^{\infty} |a_n|^2 r^2.$$

Thus

$$2\sum_{n=1}^{\infty} |a_n|^2 r^2 \ge \sum_{n=1}^{\infty} (1-m)n^2 |a_n|^2 r^2.$$

If we let $r \to 1^-$, we obtain from le last inequality

$$2\sum_{n=1}^{\infty} |a_n|^2 \ge \sum_{n=1}^{\infty} (1-m)n^2 |a_n|^2$$

which gives,

(4.5)
$$1+m \ge \sum_{n=2}^{\infty} \left((1-m)n^2 - 2 \right) |a_n|^2.$$

Since $(1-m)n^2 - 2 \ge 0$ for all $n \ge 2$ if and only if $1 \le M \le 2$ then (4.5) yields (4.1) and (4.2) according to the case $1 \le M \le 2$ or M > 2.

The following corollary is an immediate consequence of (4.2).

Corollary 4.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a function in $\mathcal{S}^*_L(M)$. Then

for $1 \leq M \leq 2$ we have

(4.6)
$$|a_n| \le \sqrt{\frac{1+m}{(1-m)n^2-2}}, \text{ for } n \ge 2$$

and for M > 2 we have

(4.7)
$$|a_n| \le \sqrt{\frac{1+m-\sum_{2\le k<\sqrt{\frac{2}{1-m}}}\left((1-m)k^2-2\right)|a_k|^2}{(1-m)n^2-2}}; \text{ for } n \ge \sqrt{\frac{2}{1-m}}.$$

with $m = \frac{M-1}{M}$.

Remark 4.1. For M = 1, (4.1) and (4.6) give respectively Theorem 1 and Corollary 1 [6].

Theorem 4.2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a function in $\mathcal{S}^*_L(M)$. Then

- (i) $|a_2| \le \frac{m+1}{2}$, for $0 \le m \le 1$; (ii) $|a_3| \le \frac{m+1}{4}$, for $0 \le m \le \frac{3}{5}$;
- (iii) $|a_4| \le \frac{m+1}{6}$, for $0 \le m \le \frac{\sqrt{3}-1}{7}$.

This estimations are sharp.

Proof. If $f \in \mathcal{S}_L^*(M)$ there exists $\omega(z) = \sum_{n=1}^{\infty} C_n z^n \in \mathcal{B}$ such that

(4.8)
$$(zf'(z))^2 - f(z)^2 = \omega(z) (m(zf'(z))^2 + f(z)^2), \ z \in \mathbb{D}.$$

Let $f(z)^2 = \sum_{n=2}^{\infty} A_n z^n$, $(zf'(z))^2 = \sum_{n=2}^{\infty} B_n z^n$. (4.8) becomes

(4.9)
$$\sum_{n=2}^{\infty} \left(B_n - A_n \right) z^n = \left(\sum_{n=2}^{\infty} \left(m B_n + A_n \right) z^n \right) \left(\sum_{n=1}^{\infty} C_n z^n \right)$$

Equating coefficients for n = 2, n = 3 in both sides of (4.9), we obtain

$$(S_m) \begin{cases} B_3 - A_3 = (mB_2 + A_2)C_1 \\ B_4 - A_4 = (mB_2 + A_2)C_2 + (mB_3 + A_3)C_1 \\ B_5 - A_5 = (mB_2 + A_2)C_3 + (mB_3 + A_3)C_2 + (mB_4 + A_4)C_1 \end{cases}$$

A little calculation yields

$$A_2 = a_1 = 1, \ A_3 = 2a_2, \ A_4 = 2a_3 + a_2^2, \ A_5 = 2a_4 + 2a_2a_3$$

and

$$B_2 = a_1 = 1, \ B_3 = 4a_2, \ B_4 = 6a_3 + 4a_2^2, \ B_5 = 8a_4 + 12a_2a_3$$

Replacing in (S_m) , we obtain

$$\begin{cases} (1) \ 2a_2 = (m+1)C_1 \\ (2) \ 4a_3 + 3a_2^2 = (m+1)C_2 + (4m+2)a_2C_1 \\ (3) \ 6a_4 + 10a_2a_3 = (m+1)C_3 + (2m+1)(m+1)C_1C_2 + ((6m+2)a_3 + (4m+1)a_2^2)C_1 \end{cases}$$

Since $|C_1| \leq 1$ then (1) implies that $|a_2| \leq \frac{1+m}{2}$. This proves the assertion (i). On the other hand we have from (1) and (2)

$$a_3 = \frac{1+m}{4}C_2 + \frac{(5m+1)(m+1)}{16}C_1^2.$$

Thus

$$|a_3| \le \frac{1+m}{4} \left(|C_2| + \frac{5m+1}{4} |C_1| \right).$$

It is well known that $|C_2| \leq 1 - |C_1|^2$. Therefore we obtain

(4.10)
$$|a_3| \leq \frac{1+m}{4} \left(1 - |C_1|^2 + \frac{5m+1}{4}|C_1|\right) \\ = \frac{1+m}{4} \left(1 + \frac{5m-3}{4}|C_1|\right).$$

Since $5m - 3 \le 0$ if and only if $m \le \frac{3}{5}$ then (4.10) yields the assertion (ii).

Replacing the values of a_2 and a_3 in the equation (3), we obtain

(4.11)
$$a_{4} = \frac{(m+1)}{6}C_{3} + \frac{(m+1)(9m+1)}{24}C_{1}C_{2} + \frac{(m+1)(21m^{2}+6m+1)}{96}C_{1}^{3}$$
$$= \frac{m+1}{6}\left(C_{3} + \frac{9m+1}{4}C_{1}C_{2} + \frac{21m^{2}+6m+1}{16}C_{1}^{3}\right).$$

Let $\mu = \frac{9m+1}{4}$ and $\nu = \frac{21m^2+6m+1}{16}$. Under the assumption $0 \le m \le \frac{\sqrt{3}-1}{7}$, we have $(\mu, \nu) \in D_1$ (see [4], p. 127). Therefore by Lemma 2 [4] we obtain

$$\left|C_3 + \frac{9m+1}{4}C_1C_2 + \frac{21m^2 + 6m + 1}{16}C_1^3\right| \le 1$$

which yields from (4.11) the assertion (iii).

The sharpness of (i) is given by the function f_m . If we take in (4.8) $\omega(z) = z^2$ and $\omega(z) = z^3$ successively, we obtain two functions in $\mathcal{S}_L^*(M)$:

$$f_{1,m}(z) = z + \frac{m+1}{4}z^3 + \dots$$
 and $f_{2,m}(z) = z + \frac{m+1}{6}z^4 + \dots$

which give respectively the sharpness of estimations (ii) and (iii).

Remark 4.2. The estimation (i) can be obtained directly from (2.6).

Remark 4.3. If we take m = 0 in Theorem 4.2, we obtain as particular case Theorem 2 [6].

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- D.A. Brannan, W.E. Kirwan, On Some Classes of Bounded Univalent Functions, Journal of the London Mathematical Society. s2-1 (1969), 431–443.
- W. Janowski, Extremal Problems for a Family of Functions with Positive Real Part and for Some related Families, Ann. Polon. Math. 23 (1970), 159-177.
- [3] Wancang Ma, David Minda, A Unified Treatment of some Classes of Univalent Functions, Proceeding of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, 1992, 157-169.
- [4] Dimitri V. Prokhorov, Jan Szynal, Inverse Coefficients for (α, β)-convex Functions, Ann. Univ. Mariae Curie-Sklodowska, XXXV (15) (1981), 125-143.
- [5] S. Ruscheweyh, A Subordination Theorem for Φ-Like Functions, J. Lond. Math. Soc. s2-13 (1976), 275–280.
- [6] Janusz Sókol, Coefficient Estimates in a Class of Strongly Starlike Functions, Kyungpook Math. J. 49 (2009), 349-353.
- [7] Janusz Sókol, On Some Subclass of Strongly Starlike Functions, Demonstr. Math. XXXI (1) (1988), 81-86.
- [8] J. Sókol, J. Stankiewicz, Radius of Convexity of some Subclass of Strongly Starlike Functions, Folia Sci. Univ. Tech. Resovienis, Math. 19 (1996), 101-105.
- [9] J. Stankiewicz, Quelques problèmes extrémaux dans les Classes des Fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 20 (1966), 59-75.