ON SOME SUBCLASSES OF STRONGLY STARLIKE ANALYTIC FUNCTIONS

EL MOCTAR OULD BEIBA*

El Moctar Ould Beiba, Department of Mathematics and Computer Sciences, Faculty of Sciences and Techniques, University of Nouakchott Al Aasriya, P.O. Box 5026, Nouakchott, Mauritania
*Corresponding author: elbeiba@yahoo.fr

Abstract. The aim of the present article is to investigate a family of univalent analytic functions on the unit disc \mathbb{D} defined for $M \geq 1$ by

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0,\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-M\right|<M, z \in \mathbb{D} .
$$

Some proprieties, radius of convexity and coefficient bounds are obtained for classes in this family.

1. Introduction

Let \mathcal{A} be the set of analytic function on the unit disc \mathbb{D} with the normalization $f(0)=f^{\prime}(0)-1=0$. $f \in \mathcal{A}$ if f is of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{+\infty} a_{n} z^{n}, \quad z \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

\mathcal{S} denotes the subclass of \mathcal{A} of univalent functions. A function $f \in \mathcal{S}$ is said to be strongly starlike of order $\alpha, 0<\alpha \leq 1$, if it satisfies the condition

$$
\left|\operatorname{Arg} \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\alpha \pi}{2}, \quad \forall z \in \mathbb{D}
$$

Received April 12 ${ }^{\text {th }}$, 2020; accepted May $8^{\text {th }}, 2020$; published July $28^{\text {th }}, 2020$.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. strongly Starlike Functions; Subordination; Radius of Convexity; Coefficient Bounds.

This class is denoted by $\mathcal{S S}^{*}(\alpha)$ and was first introduced by D. A. Brannan and W. E. Kirwan [1] and independently by J. Stankiewicz [9].
$\mathcal{S} \mathcal{S}^{*}(1)$ is the well known class \mathcal{S}^{*} of starlike functions. Recall that a function $f \in \mathcal{S}$ belongs to \mathcal{S}^{*} if the image of \mathbb{D} under f is a starlike set with respect to the origin or, equivalently, if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{D}
$$

A function $f \in \mathcal{S}$ belongs to $\mathcal{S S}^{*}(\alpha)$ if the image of \mathbb{D} under $\frac{z f^{\prime}(z)}{f(z)}$ lies in the angular sector

$$
\Omega_{\alpha}=\left\{z \in \mathbb{C},|\operatorname{Arg} z|<\frac{\alpha \pi}{2}\right\}
$$

Let \mathcal{B} denotes the set of Schwarz functions, i.e. $\omega \in \mathcal{B}$ if and only ω is analytic in $\mathbb{D}, \omega(0)=0$ and $|\omega(z)|<1$ for $z \in \mathbb{D}$. Given two functions f and g analytic in \mathbb{D}, we say that f is subordinate to g and we write $f \prec g$ if there exists $\omega \in \mathcal{B}$ such that $f=g \circ \omega$ in \mathbb{D}.

If g is univalent on $\mathbb{D}, f \prec g$ is equivalent to $f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$.
We obtain from the Schwarz lemma that if $f \prec g$ then $\left|f^{\prime}(0)\right| \leq\left|g^{\prime}(0)\right|$. As a consequence of this statement, we have

$$
\begin{equation*}
f, g \in \mathcal{A}, \frac{f(z)}{z} \prec \frac{g(z)}{z} \Longrightarrow\left|a_{2}\right| \leq\left|b_{2}\right| \tag{1.2}
\end{equation*}
$$

where a_{2} and b_{2} are respectively the second coefficients of f and g.
W. Janowski [2] investigated the subclass

$$
S^{*}(M)=\left\{f \in \mathcal{S}, \frac{z f^{\prime}(z)}{f(z)} \in \mathcal{D}_{M}, \forall z \in \mathbb{D}\right\}
$$

where

$$
\mathcal{D}_{M}=\{w \in \mathbb{C},|w-M|<M\}, \quad M \geq 1
$$

J. Sókol and J. Stankiewicz [8] introduced a subclass of $\mathcal{S} \mathcal{S}^{*}\left(\frac{1}{2}\right)$, namely, the class \mathcal{S}_{L}^{*} defined by

$$
\mathcal{S}_{L}^{*}=\left\{f \in \mathcal{S}, \frac{z f^{\prime}(z)}{f(z)} \in \mathcal{L}_{1}, \forall z \in \mathbb{D}\right\}
$$

where

$$
\mathcal{L}_{1}=\left\{w \in \mathbb{C}, \Re w>0,\left|w^{2}-1\right|<1\right\}
$$

\mathcal{L}_{1} is the interior of the right half of the Bernoulli's lemniscate $\left|w^{2}-1\right|=1$.

In the present paper we are interested to the family of subclass of \mathcal{S}

$$
\begin{equation*}
\mathcal{S}_{L}^{*}(M)=\left\{f \in \mathcal{S}, \frac{z f^{\prime}(z)}{f(z)} \in \mathcal{L}_{M}, \forall z \in \mathbb{D}\right\}, \quad M \geq 1 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{M}=\left\{w \in \mathbb{C}, \Re w>0,\left|w^{2}-M\right|<M\right\} \tag{1.4}
\end{equation*}
$$

is the interior of the right half of the Cassini's oval $\left|w^{2}-M\right|=M$. For the particular case $M=1, \mathcal{S}_{L}^{*}(1)$ stands for the class \mathcal{S}_{L}^{*} introduced by J. Sókol and J. Stankiewicz [8]. Since $\mathcal{L}_{M} \subset \Omega\left(\frac{1}{2}\right)$, all functions in $\mathcal{S}_{L}^{*}(M)$ are strongly starlike of order $\frac{1}{2}$.

Note that all classes above correspond to particular cases of the classes of $\mathcal{S}^{*}(\varphi)$ introduced by W. Ma and D. Minda [3],

$$
\mathcal{S}^{*}(\varphi)=\left\{f \in \mathcal{A}, \quad \frac{z f^{\prime}(z)}{f(z)} \prec \varphi\right\} .
$$

where φ is Analytic univalent function with real positive part in the unit disc $\mathbb{D}, \varphi(\mathbb{D})$ is symmetric with respect to the real axis and starlike with respect to $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$.

Let $m=1-\frac{1}{M}$ and φ_{m} be the function

$$
\varphi_{m}(z)=\sqrt{\frac{1+z}{1-m z}}, \quad z \in \mathbb{D}
$$

where the branch of the square root is chosen so that $\varphi_{m}(0)=1$. We have

$$
\begin{equation*}
\mathcal{S}_{L}^{*}(M)=\mathcal{S}^{*}\left(\varphi_{m}\right)=\left\{f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \prec \varphi_{m}\right\} . \tag{1.5}
\end{equation*}
$$

Observe that \mathcal{S}_{L}^{*} corresponds to $m=0$ so that $\mathcal{S}_{L}^{*}=\mathcal{S}^{*}(\sqrt{1+z})$.

2. Some properties of the class $\mathcal{S}_{L}^{*}(M)$

Let P the class of analytic functions p in \mathbb{D} with $p(0)=1$ and $\Re p(z)>0$ in \mathbb{D}. For $M \geq 1$, let

$$
P_{\mathcal{L}}(M)=\left\{p \in P,\left|p^{2}(z)-M\right|<M, z \in \mathbb{D}\right\}
$$

It is easy to see that $P_{\mathcal{L}}\left(M_{1}\right) \subset P_{\mathcal{L}}\left(M_{2}\right)$ for $M_{1} \leq M_{2}$.

Remark 2.1. A function $f \in \mathcal{A}$ belongs to $\mathcal{S}_{L}^{*}(M)$ if and only if there exists $p \in P_{\mathcal{L}}(M)$ such that

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z), \quad z \in \mathbb{D}
$$

Theorem 2.1. A function f belongs to $\mathcal{S}_{L}^{*}(M)$ if and only if there exists $p \in P_{\mathcal{L}}(M)$ such that

$$
\begin{equation*}
f(z)=z \exp \int_{0}^{z} \frac{p(\xi)-1}{\xi} d \xi \tag{2.1}
\end{equation*}
$$

Proof. (2.1) is an immediate consequence of the Remark 2.1

Let $f_{m} \in \mathcal{A}$ be the unique function such that

$$
\begin{equation*}
\frac{z f_{m}^{\prime}(z)}{f_{m}(z)}=\varphi_{m}(z), \quad z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

with $m=1-\frac{1}{M} \cdot f_{m}$ belongs to $\mathcal{S}_{L}^{*}(M)$ and we have

$$
\begin{equation*}
f_{m}(z)=z \exp \int_{0}^{z} \frac{\varphi_{m}(\xi)-1}{\xi} d \xi \tag{2.3}
\end{equation*}
$$

Evaluating the integral in (2.3), we get

$$
\begin{equation*}
f_{m}(z)=\frac{4 z \exp \int_{1}^{\varphi_{m}(z)} H_{m}(t) d t}{\left(\varphi_{m}(z)+1\right)^{2}}, \quad z \in \mathbb{D} \tag{2.4}
\end{equation*}
$$

where

$$
H_{m}(t)=\frac{2 m t+2}{m t^{2}+1}, \quad m=1-\frac{1}{M}
$$

For $M=1, H_{0}$ is the constant function $\mathrm{H}(\mathrm{t})=2$ and we have

$$
f_{0}(z)=\frac{4 z \exp (2 \sqrt{1+z}-2)}{(\sqrt{1+z}+1)^{2}} \text { for } z \in \mathbb{D}
$$

f_{0} is extremal function for problems in the class $\mathcal{S}_{\mathcal{L}}^{*}$ (see [8]).
It is easy to see that

$$
\begin{equation*}
f_{m}(z)=z+\frac{m+1}{2} z^{2}+\frac{(m+1)(5 m+1)}{16} z^{3}+\frac{(m+1)\left(21 m^{2}+6 m+1\right)}{96} z^{4}+\ldots \tag{2.5}
\end{equation*}
$$

We need the following result by St. Ruscheweyh [5]

Lemma 2.1. [[5], Theorem 1] Let G be a convex conformal mapping of $\mathbb{D}, G(0)=1$, and let

$$
F(z)=z \exp \int_{0}^{z} \frac{G(\xi)-1}{\xi} d \xi .
$$

Let $f \in \mathcal{A}$. Then we have

$$
\frac{z f^{\prime}(z)}{f(z)} \prec G
$$

if and only if for all $|s| \leq 1,|t| \leq 1$

$$
\frac{t f(s z)}{s f(t z)} \prec \frac{t F(s z)}{s F(t z)}
$$

Theorem 2.2. If f belongs to $\mathcal{S}_{L}^{*}(M)$ then

$$
\begin{equation*}
\frac{f(z)}{z} \prec \frac{f_{m}(z)}{z} . \tag{2.6}
\end{equation*}
$$

Proof. From (1.5), we obtain by applying Lemma 2.1 to the convex univalent function $G=\varphi_{m}$,

$$
\frac{t f(z)}{f(t z)} \prec \frac{t f_{m}(z)}{f_{m}(t z)} .
$$

Letting $t \longrightarrow 0$, we obtain the desired conclusion.

Corollary 2.1. Let f belongs to $\mathcal{S}_{L}^{*}(M)$ and $|z|=r<1$, then

$$
\begin{gather*}
-f_{m}(-r) \leq|f(z)| \leq f_{m}(r) \tag{2.7}\\
f_{m}^{\prime}(-r) \leq\left|f^{\prime}(z)\right| \leq f_{m}^{\prime}(r) \tag{2.8}
\end{gather*}
$$

Proof. (2.7) follows from (2.6). Now If $M \geq 1$ we have $0 \leq m<1$. Thus for $0 \leq r<1$

$$
\begin{equation*}
\min _{|z|=r}\left|\varphi_{m}(z)\right|=\varphi_{m}(-r), \max _{|z|=r}\left|\varphi_{m}(z)\right|=\varphi_{m}(r) \tag{2.9}
\end{equation*}
$$

From (2.6) and (2.9) we get (2.8) by applying Theorem 2 ([3], p. 162).

3. Radius of convexity for the class $\mathcal{S}_{L}^{*}(M)$

In the sequel $m=1-\frac{1}{M}$.

For $M \geq 1$, let $\mathcal{P}(M)$ be the family of analytic functions P in \mathbb{D} satisfying

$$
\begin{equation*}
\mathrm{P}(0)=1, \quad|\mathrm{P}(\mathrm{z})-\mathrm{M}|<\mathrm{M}, \text { for } \mathrm{z} \in \mathbb{D} \tag{3.1}
\end{equation*}
$$

We have

$$
\begin{equation*}
f \in \mathcal{S}_{L}^{*}(M) \Longleftrightarrow \exists P \in \mathcal{P}(M) / \frac{z f^{\prime}(z)}{f(z)}=\sqrt{P} \tag{3.2}
\end{equation*}
$$

We need the two following lemmas by Janowski [2]:

Lemma 3.1. [[2], Theorem 1] For every $P(z) \in \mathcal{P}(M)$ and $|z|=r, 0<r<1$, we have

$$
\begin{equation*}
\inf _{P \in \mathcal{P}(M)} \Re P(z)=\frac{1-r}{1+m r} \tag{3.3}
\end{equation*}
$$

The infimum is attained by

$$
\begin{equation*}
P(z)=\frac{1-\epsilon z}{1+\epsilon m z}, \quad|\epsilon|=1 \tag{3.4}
\end{equation*}
$$

Lemma 3.2. (Theorem 2, [2]) For every $P(z) \in \mathcal{P}(M)$ and $|z|=r, 0<r<1$, we have

$$
\begin{equation*}
\inf _{P \in \mathcal{P}(M)} \Re \frac{z P^{\prime}(z)}{P(z)}=-\frac{(1+m) r}{(1-r)(1+m r)} \tag{3.5}
\end{equation*}
$$

The infimum is attained by

$$
\begin{equation*}
P(z)=\frac{1-\epsilon z}{1+\epsilon m z}, \quad|\epsilon|=1 \tag{3.6}
\end{equation*}
$$

Theorem 3.1. The radius of convexity of the class $\mathcal{S}_{L}^{*}(M)$ is is the unique root in $(0,1)$ of the equation

$$
\begin{equation*}
4(1+m r)(1-r)^{3}-(1+m)^{2} r^{2}=0 \tag{3.7}
\end{equation*}
$$

Proof. Let $f \in \mathcal{S}_{L}^{*}(M)$. From (3.2), there exists $P \in \mathcal{P}(M)$ such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\sqrt{P(z)}, \quad z \in \mathbb{D} \tag{3.8}
\end{equation*}
$$

(3.8) can be written

$$
z f^{\prime}(z)=f(z) \sqrt{P(z)}
$$

which gives

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z\left(z f^{\prime}\right)^{\prime}(z)}{z f^{\prime}(z)}=\sqrt{P(z)}+\frac{1}{2} \frac{z P^{\prime}(z)}{P(z)}
$$

This yields for $|z|=r, \quad 0<r<$,

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq \inf _{P \in \mathcal{P}(M)} \Re \sqrt{P(z)}+\frac{1}{2} \inf _{P \in \mathcal{P}(M)} \Re \frac{z P^{\prime}(z)}{P(z)} \tag{3.9}
\end{equation*}
$$

Replacing (3.3) and(3.5 in (3.9), we obtain

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq \sqrt{\frac{1-r}{1+m r}}-\frac{1}{2} \frac{(1+m) r}{(1-r)(1+m r)} \tag{3.10}
\end{equation*}
$$

Let h_{M} be defined by

$$
h_{M}=\sqrt{\frac{1-r}{1+m r}}-\frac{1}{2} \frac{(1+m) r}{(1-r)(1+m r)}
$$

h_{M} is decreasing in the interval $(0,1), h_{M}(0)=1$ and the limit of h_{M} in 1^{-}is $-\infty$. Let r_{M-1} be the unique solution of $h_{M}(r)=0$ in $(0,1)$, then f is convex on the disc $|z|<r_{M-1}$. On the other hand,

$$
1+\frac{z f_{m}^{\prime \prime}(z)}{f_{m}^{\prime}(z)}=\sqrt{\frac{1+z}{1-m z}}+\frac{1}{2} \frac{(1+m) z}{(1-m z)(1+z)}
$$

vanishes in $z=-r_{M-1}$. Thus r_{M-1} is the best value.
To finish, we observe that the equation $h_{M}(r)=0$ is equivalent in the interval $(0,1)$ to the equation

$$
4(1+m r)(1-r)^{3}-(1+m)^{2} r^{2}=0
$$

Remark 3.1. As a consequence of Theorem 3.1 applying for $M=1$, we find Theorem 4 [8] which gives r_{0} the radius of convexity of the class $S_{L}^{*} . r_{0}=\frac{1}{12}(11+\sqrt[3]{\sqrt{44928}-181}-\sqrt[3]{\sqrt{44928}+181}) \approx 0.5679591$

Remark 3.2. As observed above, $\mathcal{S}_{L}^{*}(M)$ increases with M. Therefore r_{M-1} decreases when M increases. Let

$$
r_{\infty}=\lim _{M \rightarrow+\infty} r_{M-1}
$$

Substituting in (3.7), we obtain

$$
\left(1+r_{\infty}\right)\left(1-r_{\infty}\right)^{3}-r_{\infty}^{2}=0
$$

Solving this equation in $(0,1)$, we get

$$
r_{\infty}=\frac{1}{2}(1-\sqrt{2}+\sqrt{\sqrt{8}-1}) \approx 0.46899
$$

We have

$$
r_{\infty} \leq r_{M-1} \leq r_{0}
$$

4. Coefficient bounds for $\mathcal{S}_{L}^{*}(M)$

Theorem 4.1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a function in $\mathcal{S}_{L}^{*}(M)$. Then for $1 \leq M \leq 2$ we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left((1-m) n^{2}-2\right)\left|a_{n}\right|^{2} \leq 1+m \tag{4.1}
\end{equation*}
$$

and for $M>2$ we have

$$
\begin{equation*}
\sum_{n \geq \sqrt{\frac{2}{1-m}}}\left((1-m) n^{2}-2\right)\left|a_{n}\right|^{2} \leq 1+m-\sum_{2 \leq k<\sqrt{\frac{2}{1-m}}}\left((1-m) k^{2}-2\right)\left|a_{k}\right|^{2} \tag{4.2}
\end{equation*}
$$

with $m=\frac{M-1}{M}$.
Proof. If $f \in \mathcal{S}_{L}^{*}(M)$ there exists $\omega \in \mathcal{B}$ such that

$$
\begin{equation*}
(1-m \omega(z))\left(z f^{\prime}(z)\right)^{2}-f(z)^{2}=\omega(z) f(z)^{2}, \quad z \in \mathbb{D} \tag{4.3}
\end{equation*}
$$

For $0<r<1$ we have

$$
\begin{align*}
2 \pi \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} r^{2} & =\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& \geq \int_{0}^{2 \pi}\left|\omega\left(r e^{i \theta}\right)\right|\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \tag{4.4}
\end{align*}
$$

Replacing (4.3) in the right side of (4.5) we obtain

$$
\begin{aligned}
2 \pi \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} r^{2} & \geq \int_{0}^{2 \pi}\left|\left(1-m \omega\left(r e^{i \theta}\right)\right)\left(r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right)^{2}-f\left(r e^{i \theta}\right)^{2}\right| d \theta \\
& \geq \int_{0}^{2 \pi}\left|\left(1-m \omega\left(r e^{i \theta}\right)\right)\left(r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right)^{2}\right| d \theta-\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)^{2}\right| d \theta \\
& \geq(1-m) \int_{0}^{2 \pi}\left|\left(r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right)^{2}\right| d \theta-\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)^{2}\right| d \theta \\
& =2 \pi \sum_{n=1}^{\infty}(1-m) n^{2}\left|a_{n}\right|^{2} r^{2}-2 \pi \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} r^{2}
\end{aligned}
$$

Thus

$$
2 \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} r^{2} \geq \sum_{n=1}^{\infty}(1-m) n^{2}\left|a_{n}\right|^{2} r^{2}
$$

If we let $r \rightarrow 1^{-}$, we obtain from le last inequality

$$
2 \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \geq \sum_{n=1}^{\infty}(1-m) n^{2}\left|a_{n}\right|^{2}
$$

which gives,

$$
\begin{equation*}
1+m \geq \sum_{n=2}^{\infty}\left((1-m) n^{2}-2\right)\left|a_{n}\right|^{2} \tag{4.5}
\end{equation*}
$$

Since $(1-m) n^{2}-2 \geq 0$ for all $n \geq 2$ if and only if $1 \leq M \leq 2$ then (4.5) yields (4.1) and (4.2) according to the case $1 \leq M \leq 2$ or $M>2$.

The following corollary is an immediate consequence of (4.2).
Corollary 4.1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a function in $\mathcal{S}_{L}^{*}(M)$.Then
for $1 \leq M \leq 2$ we have

$$
\begin{equation*}
\left|a_{n}\right| \leq \sqrt{\frac{1+m}{(1-m) n^{2}-2}}, \text { for } n \geq 2 \tag{4.6}
\end{equation*}
$$

and for $M>2$ we have

$$
\begin{equation*}
\left|a_{n}\right| \leq \sqrt{\frac{1+m-\sum_{2 \leq k<\sqrt{\frac{2}{1-m}}}\left((1-m) k^{2}-2\right)\left|a_{k}\right|^{2}}{(1-m) n^{2}-2}} ; \text { for } n \geq \sqrt{\frac{2}{1-m}} \tag{4.7}
\end{equation*}
$$

with $m=\frac{M-1}{M}$.

Remark 4.1. For $M=1$, (4.1) and (4.6) give respectivly Theorem 1 and Corollary 1 [6].

Theorem 4.2. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a function in $\mathcal{S}_{L}^{*}(M)$.Then
(i) $\left|a_{2}\right| \leq \frac{m+1}{2}$, for $0 \leq m \leq 1$;
(ii) $\left|a_{3}\right| \leq \frac{m+1}{4}$, for $0 \leq m \leq \frac{3}{5}$;
(iii) $\left|a_{4}\right| \leq \frac{m+1}{6}$, for $0 \leq m \leq \frac{\sqrt{3}-1}{7}$.

This estimations are sharp.
Proof. If $f \in \mathcal{S}_{L}^{*}(M)$ there exists $\omega(z)=\sum_{n=1}^{\infty} C_{n} z^{n} \in \mathcal{B}$ such that

$$
\begin{equation*}
\left(z f^{\prime}(z)\right)^{2}-f(z)^{2}=\omega(z)\left(m\left(z f^{\prime}(z)\right)^{2}+f(z)^{2}\right), \quad z \in \mathbb{D} \tag{4.8}
\end{equation*}
$$

Let $f(z)^{2}=\sum_{n=2}^{\infty} A_{n} z^{n},\left(z f^{\prime}(z)\right)^{2}=\sum_{n=2}^{\infty} B_{n} z^{n}$. (4.8) becomes

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(B_{n}-A_{n}\right) z^{n}=\left(\sum_{n=2}^{\infty}\left(m B_{n}+A_{n}\right) z^{n}\right)\left(\sum_{n=1}^{\infty} C_{n} z^{n}\right) \tag{4.9}
\end{equation*}
$$

Equating coefficients for $n=2, n=3$ in both sides of (4.9), we obtain

$$
\left(S_{m}\right)\left\{\begin{array}{l}
B_{3}-A_{3}=\left(m B_{2}+A_{2}\right) C_{1} \\
B_{4}-A_{4}=\left(m B_{2}+A_{2}\right) C_{2}+\left(m B_{3}+A_{3}\right) C_{1} \\
B_{5}-A_{5}=\left(m B_{2}+A 2\right) C_{3}+\left(m B_{3}+A_{3}\right) C_{2}+\left(m B_{4}+A_{4}\right) C_{1}
\end{array}\right.
$$

A little calculation yields

$$
A_{2}=a_{1}=1, \quad A_{3}=2 a_{2}, \quad A_{4}=2 a_{3}+a_{2}^{2}, \quad A_{5}=2 a_{4}+2 a_{2} a_{3}
$$

and

$$
B_{2}=a_{1}=1, \quad B_{3}=4 a_{2}, \quad B_{4}=6 a_{3}+4 a_{2}^{2}, \quad B_{5}=8 a_{4}+12 a_{2} a_{3}
$$

Replacing in $\left(S_{m}\right)$, we obtain

$$
\left\{\begin{array}{l}
\text { (1) } 2 a_{2}=(m+1) C_{1} \\
(2) 4 a_{3}+3 a_{2}^{2}=(m+1) C_{2}+(4 m+2) a_{2} C_{1} \\
(3) 6 a_{4}+10 a_{2} a_{3}=(m+1) C_{3}+(2 m+1)(m+1) C_{1} C_{2}+\left((6 m+2) a_{3}+(4 m+1) a_{2}^{2}\right) C_{1}
\end{array}\right.
$$

Since $\left|C_{1}\right| \leq 1$ then (1) implies that $\left|a_{2}\right| \leq \frac{1+m}{2}$. This proves the assertion (i). On the other hand we have from (1) and (2)

$$
a_{3}=\frac{1+m}{4} C_{2}+\frac{(5 m+1)(m+1)}{16} C_{1}^{2}
$$

Thus

$$
\left|a_{3}\right| \leq \frac{1+m}{4}\left(\left|C_{2}\right|+\frac{5 m+1}{4}\left|C_{1}\right|\right)
$$

It is well known that $\left|C_{2}\right| \leq 1-\left|C_{1}\right|^{2}$. Therefore we obtain

$$
\begin{align*}
\left|a_{3}\right| & \leq \frac{1+m}{4}\left(1-\left|C_{1}\right|^{2}+\frac{5 m+1}{4}\left|C_{1}\right|\right) \\
& =\frac{1+m}{4}\left(1+\frac{5 m-3}{4}\left|C_{1}\right|\right) \tag{4.10}
\end{align*}
$$

Since $5 m-3 \leq 0$ if and only if $m \leq \frac{3}{5}$ then (4.10) yields the assertion (ii).
Replacing the values of a_{2} and a_{3} in the equation (3), we obtain

$$
\begin{align*}
a_{4} & =\frac{(m+1)}{6} C_{3}+\frac{(m+1)(9 m+1)}{24} C_{1} C_{2}+\frac{(m+1)\left(21 m^{2}+6 m+1\right)}{96} C_{1}^{3} \\
& =\frac{m+1}{6}\left(C_{3}+\frac{9 m+1}{4} C_{1} C_{2}+\frac{21 m^{2}+6 m+1}{16} C_{1}^{3}\right) \tag{4.11}
\end{align*}
$$

Let $\mu=\frac{9 m+1}{4}$ and $\nu=\frac{21 m^{2}+6 m+1}{16}$. Under the assumption $0 \leq m \leq \frac{\sqrt{3}-1}{7}$, we have $(\mu, \nu) \in D_{1}$ (see [4], p. 127). Therefore by Lemma 2 [4] we obtain

$$
\left|C_{3}+\frac{9 m+1}{4} C_{1} C_{2}+\frac{21 m^{2}+6 m+1}{16} C_{1}^{3}\right| \leq 1
$$

which yields from (4.11) the assertion (iii).
The sharpness of (i) is given by the function f_{m}. If we take in (4.8) $\omega(z)=z^{2}$ and $\omega(z)=z^{3}$ successively, we obtain two functions in $\mathcal{S}_{L}^{*}(M)$:

$$
f_{1, m}(z)=z+\frac{m+1}{4} z^{3}+\ldots \text { and } f_{2, m}(z)=z+\frac{m+1}{6} z^{4}+\ldots
$$

which give respectively the sharpness of estimations (ii) and (iii).

Remark 4.2. The estimation (i) can be obtained directly from (2.6).

Remark 4.3. If we take $m=0$ in Theorem 4.2, we obtain as particular case Theorem 2 [6].

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] D.A. Brannan, W.E. Kirwan, On Some Classes of Bounded Univalent Functions, Journal of the London Mathematical Society. s2-1 (1969), 431-443.
[2] W. Janowski, Extremal Problems for a Family of Functions with Positive Real Part and for Some related Families, Ann. Polon. Math. 23 (1970), 159-177.
[3] Wancang Ma, David Minda, A Unified Treatment of some Classes of Univalent Functions, Proceeding of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, 1992, 157-169.
[4] Dimitri V. Prokhorov, Jan Szynal, Inverse Coefficients for (α, β)-convex Functions, Ann. Univ. Mariae Curie-Sklodowska, XXXV (15) (1981), 125-143.
[5] S. Ruscheweyh, A Subordination Theorem for Φ-Like Functions, J. Lond. Math. Soc. s2-13 (1976), 275-280.
[6] Janusz Sókol, Coefficient Estimates in a Class of Strongly Starlike Functions, Kyungpook Math. J. 49 (2009), 349-353.
[7] Janusz Sókol, On Some Subclass of Strongly Starlike Functions, Demonstr. Math. XXXI (1) (1988), 81-86.
[8] J. Sókol, J. Stankiewicz, Radius of Convexity of some Subclass of Strongly Starlike Functions, Folia Sci. Univ. Tech. Resovienis, Math. 19 (1996), 101-105.
[9] J. Stankiewicz, Quelques problèmes extrémaux dans les Classes des Fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 20 (1966), 59-75.

