CLASS OF (n, m)-POWER- D-HYPONORMAL OPERATORS IN HILBERT SPACE

\author{

Abstract

In this paper, we introduce a new classes of operators acting on a complex Hilbert space H, denoted by $[(n, m) D H]$, called (n, m)-power- D-hyponormal associated with a Drazin inversible operator using its Drazin inverse. Some proprieties of (n, m)-power- D-hyponormal, are investigated with some examples.

}

1. Introduction

Let \mathcal{H} be a complex Hilbert space. Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators defined in \mathcal{H}. Let T be an operator in $\mathcal{B}(\mathcal{H})$. The operator T is called normal if it satisfies the following condition $T^{*} T=T T^{*}$, i.e., T commutes with T^{*}. The class of quasi-normal operators was first introduced and studied by A. Brown in [5] in 1953. The operator T is quasi-normal if T commutes with $T^{*} T$, i.e. $T\left(T^{*} T\right)=\left(T^{*} T\right) T$ and it is denoted by $[Q N]$. A.A.S. Jibril [6, 7], in 2008 introduced the class of n power normal operators as a generalization of normal operators. The operator T is called n power normal if T^{n} commutes with T^{*}, i.e., $T^{n} T^{*}=T^{*} T^{n}$ and is denoted by $[n N]$. In the year 2011, O.A. Mahmoud Sid Ahmed introduced n power quasi normal operators [14], as a generalization of quasi normal operators. The operator T is called n power quasi normal if T^{n} commutes with $T^{*} T$, i.e., $T^{n}\left(T^{*} T\right)=\left(T^{*} T\right) T^{n}$ and it is denoted by $[n Q N]$.

Recently in [13], the authors introduced and studied the operator $[(n, m) D N]$ and $[(n, m) D Q]$.In this search,

[^0]we introduce a new class of operators T namely (n, m)-power- D-hyponormal operator for a positive integer n, m if
$$
T^{* m}\left(T^{D}\right)^{n} \geq\left(T^{D}\right)^{n} T^{* m}, m=n=1,2, \ldots
$$
denoted by $[(n, m) D H]$. And we in this work, we will try to apply the same results obtained in [8] for this new classes.

Definition 1.1. An operator $T \in \mathcal{B}(H)$ be Drazin inversible operator. We said that T is (n, m)-power- D hyponormal operator for a positive integer n, m if

$$
T^{* m}\left(T^{D}\right)^{n} \geq\left(T^{D}\right)^{n} T^{* m}, m=n=1,2, \ldots
$$

We denote the set of all (n, m)-Power-D-hyponormal operators by $[(n, m) D H]$

Remark 1.1. Clearly $n=m=1$, then (1,1)-Power-D-hyponormal operator is precisely Power-Dhyponormal operator.

Definition 1.2. An operator $T \in \mathcal{B}(\mathcal{H})^{D}$ is said to be (n,m)-power-D-hyponormal if $T^{* m}\left(T^{D}\right)^{n}-\left(T^{D}\right)^{n} T^{* m}$ is positive i.e: $T^{* m}\left(T^{D}\right)^{n}-\left(T^{D}\right)^{n} T^{* m} \geq 0$ or equivalently

$$
\left\langle\left(T^{* m}\left(T^{D}\right)^{n}-\left(T^{D}\right)^{n} T^{* m}\right) u \mid u\right\rangle \geq 0 \text { for all } u \in \mathcal{H}
$$

Example 1.1. Let $T=\left(\begin{array}{cc}3 & -2 \\ 0 & -3\end{array}\right), S=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right) \in \mathcal{B}\left(\mathbb{R}^{2}\right)$. A simple computation shows that

$$
T^{D}=\frac{1}{9}\left(\begin{array}{cc}
3 & -2 \\
0 & -3
\end{array}\right), S^{D}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right), S^{*}=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right), T^{*}=\left(\begin{array}{cc}
3 & 0 \\
-2 & -3
\end{array}\right)
$$

Then $T \in[(2,2) D H]$, but $T \notin[(3,3) D H]$ and $S \in[(3,2) D H]$, but $S \notin[(2,2) D H]$

Proposition 1.1. If $S, T \in \mathcal{B}(\mathcal{H})^{D}$ are unitarily equivalent and if T is (n, m)-Power- D-hyponormal operators then so is S

Proof. Let T be an (n, m)-Power- D-hyponormal operator and S be unitary equivalent of T. Then there exists unitary operator U such that $S=U T U^{*}$ so $S^{n}=U T^{n} U^{*}$

We have

$$
\begin{aligned}
S^{* m}\left(S^{D}\right)^{n} & =\left(U T^{m} U^{*}\right)^{*} U\left(T^{D}\right)^{n} U^{*} \\
& =U T^{* m} U^{*} U\left(T^{D}\right)^{n} U^{*} \\
& =U T^{* m}\left(T^{D}\right)^{n} U^{*} \\
& \geq U\left(T^{D}\right)^{n} T^{* m} U^{*} \\
& \geq U\left(T^{D}\right)^{n} U^{*} U T^{* m} U^{*} \\
& =\left(S^{D}\right)^{n} S^{* m}
\end{aligned}
$$

Hence, $S^{* m}\left(S^{D}\right)^{n}-\left(S^{D}\right)^{n} S^{* m} \geq 0$

Proposition 1.2. Let $T \in \mathcal{B}(\mathcal{H})^{D}$ be an (n,m)-Power-D-hyponormal operator. Then T^{*} is (n, m)-Power-D-co-hyponormal operator

Proof. Since T is (n, m)-Power- D-hyponormal operator. We have

$$
T^{* m}\left(T^{D}\right)^{n} \geq\left(T^{D}\right)^{n} T^{* m} \Rightarrow\left(T^{* m}\left(T^{D}\right)^{n}\right)^{*} \geq\left(\left(T^{D}\right)^{n} T^{* m}\right)^{*} \quad \Rightarrow \quad\left(T^{D}\right)^{* n} T^{m} \geq T^{m}\left(T^{D}\right)^{* n}
$$

Hence, T^{*} is (n, m)-Power- D-co-hyponormal operator.

Theorem 1.1. If T, T^{*} are two (n, m)-Power- D-hyponormal operator, then T is an (n, m)-Power- D-normal operator.

Proposition 1.3. If T is (2,2)-power-D-hyponormal operator and $T^{D} T^{*}=-T^{*} T^{D}$. Tthen T is (2,2)-Power-D-normal operator.

Proof. Since $\left(T^{D}\right)^{2} T^{* 2}=T^{D} T^{D} T^{*} T^{*}=-T^{D} T^{*} T^{D} T^{*}=T^{D} T^{*} T^{*} T^{D}=-T^{*} T^{D} T^{*} T^{D}=T^{* 2}\left(T^{D}\right)^{2}$
And
$T^{* 2}\left(T^{D}\right)^{2}=T^{*} T^{*} T^{D} T^{D}=-T^{*} T^{D} T^{*} T^{D}=T^{D} T^{*} T^{*} T^{D}=-T^{D} T^{*} T^{D} T^{*}=\left(T^{D}\right)^{2} T^{* 2}$
So
T is (2,2)-Power- D-hyponormal, then

$$
\begin{aligned}
\left(T^{D}\right)^{2} T^{* 2} \leq T^{* 2}\left(T^{D}\right)^{2} & \Rightarrow T^{D} T^{D} T^{*} T^{*} \leq T^{*} T^{*} T^{D} T^{D} \\
& \Rightarrow-T^{D} T^{*} T^{D} T^{*} \leq-T^{*} T^{D} T^{*} T^{D} \\
& \Rightarrow T^{D} T^{*} T^{D} T^{*} \geq T^{*} T^{D} T^{*} T^{D} \\
& \Rightarrow T^{D} T^{*} T^{*} T^{D} \geq T^{D} T^{*} T^{*} T^{D} \\
& \Rightarrow-T^{*} T^{D} T^{*} T^{D} \geq-T^{D} T^{*} T^{D} T^{*} \\
& \Rightarrow T^{*} T^{D} T^{*} T^{D} \leq T^{D} T^{*} T^{D} T^{*} \\
& \Rightarrow T^{* 2}\left(T^{D}\right)^{2} \geq\left(T^{D}\right)^{2} T^{* 2}
\end{aligned}
$$

Hence $T^{* 2}\left(T^{D}\right)^{2}=\left(T^{D}\right)^{2} T^{* 2}$.
Example 1.2. Let $T=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{3}\right)$. A simple computation, shows that ; $T^{*}=$ $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1\end{array}\right), T^{D}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

Then power-D-hyponormal operator, but $T^{*} T \neq T T^{*}$ and $\|T u\| \nsupseteq\left\|T^{*} u\right\|$.

Lemma 1.1. Let $T_{k}, S_{k} \in \mathcal{B}(\mathcal{H})^{D}, k=1,2$ such that $T_{1} \geq T_{2} \geq 0$ and $S_{1} \geq S_{2} \geq 0$, then

$$
\left(T_{1} \otimes S_{1}\right) \geq\left(T_{2} \otimes S_{2}\right) \geq 0
$$

Theorem 1.2. . Let $T, S \in \mathcal{B}(\mathcal{H})^{D}$, such that $\left(S^{D}\right)^{n} S^{*} \geq 0$ and $\left(T^{D}\right)^{n} T^{*} \geq 0$, then.
$T \otimes S$ is ($n, 1$)-Power-D-hyponormal if and only if T and S are ($n, 1$)-Power- D-hyponormal operators

Proof. Assume that T, S are $(n, 1)$-power- D-hyponormal operators. Then

$$
\begin{aligned}
\left((T \otimes S)^{D}\right)^{n}(T \otimes S)^{*} & =\left(T^{D} \otimes S^{D}\right)^{n}\left(T^{*} \otimes S^{*}\right) \\
& =\left(T^{D}\right)^{n} T^{*} \otimes\left(S^{D}\right)^{n} S^{*} \\
& \leq T^{*}\left(T^{D}\right)^{n} \otimes S^{*}\left(S^{D}\right)^{n} \\
& =(T \otimes S)^{*}\left((T \otimes S)^{D}\right)^{n}
\end{aligned}
$$

Which implies that $T \otimes S$ is $(n, 1)$-power- D-hyponormal operator.

Conversely, assume that $T \otimes S$ is ($n, 1$)-power- D-hyponormal operator. We aim to show that T, S are ($n, 1$)-power- D-hyponormal. Since $T \otimes S$ is a ($n, 1$)-power- D-hyponormal operator, we obtain

$$
\begin{aligned}
(T \otimes S) \text { is }(n, 1) \text {-power- } D \text {-hyponormal } & \Longleftrightarrow\left(\left((T \otimes S)^{D}\right)^{n}(T \otimes S)^{*} \leq(T \otimes S)^{*}\left((T \otimes S)^{D}\right)^{n}\right. \\
& \Longleftrightarrow\left(T^{D}\right)^{n} T^{*} \otimes\left(S^{D}\right)^{n} S^{*} \leq T^{*}\left(T^{D}\right)^{n} \otimes S^{*}\left(S^{D}\right)^{n}
\end{aligned}
$$

Then, there exists $d>0$ such that

$$
\left\{\begin{array}{l}
d\left(T^{D}\right)^{n} T^{*} \leq T^{*}\left(T^{D}\right)^{n} \\
\text { and } \\
d^{-1}\left(S^{D}\right)^{n} S^{*} \leq S^{*}\left(S^{D}\right)^{n}
\end{array}\right.
$$

a simple computation shows that $d=1$ and hence

$$
\left(T^{D}\right)^{n} T^{*} \leq T^{*}\left(T^{D}\right)^{n} \quad \text { and } \quad\left(S^{D}\right)^{n} S^{*} \leq S^{*}\left(S^{D}\right)^{n}
$$

Therefore, T, S are ($n, 1$)-power- D-hyponormal.

Proposition 1.4. If $T, S \in \mathcal{B}(\mathcal{H})^{D}$ are ($n, 1$)-D-power-hyponormal operators commuting, such that such that $S^{*}\left(S^{D}\right)^{n} T^{*}\left(T^{D}\right)^{n} \geq\left(S^{D}\right)^{n} S^{*}\left(T^{D}\right)^{n} T^{*} \geq 0$ and $\left(T^{D}\right)^{n} T^{*} \geq 0$, then $T S \otimes T, T S \otimes S, S T \otimes T$ and $S T \otimes S \in \mathcal{B}(\mathcal{H} \bar{\otimes} \mathcal{H})^{D}$ are $(n, 1)$-power- D-power- D-hyponormal if the following assertions hold:
(1) $S^{*}\left(T^{D}\right)^{n}=\left(T^{D}\right)^{n} S^{*}$.
(2) $T^{*}\left(S^{D}\right)^{n}=\left(S^{D}\right)^{n} T^{*}$.

Proof. Assume that the conditions (1) and (2) are hold. Since T and S are ($n, 1$)-power- D-hyponormal, we have

$$
\begin{aligned}
\left((T S \otimes T)^{D}\right)^{n}(T S \otimes T)^{*} & =\left((T S)^{D} \otimes T^{D}\right)^{n}\left((T S)^{*} \otimes T^{*}\right) \\
& =\left(\left((T S)^{D}\right)^{n}(T S)^{*} \otimes\left(T^{D}\right)^{n} T^{*}\right) \\
& =\left(\left(\left(S^{D}\right)^{n}\left(T^{D}\right)^{n}\right) S^{*} T^{*} \otimes\left(T^{D}\right)^{n} T^{*}\right) \\
& =\left(\left(S^{D}\right)^{n} S^{*}\left(T^{D}\right)^{n} T^{*} \otimes\left(T^{D}\right)^{n} T^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(S^{*}\left(S^{D}\right)^{n} T^{*}\left(T^{D}\right)^{n} \otimes T^{*}\left(T^{D}\right)^{n}\right) \\
& =\left(S^{*} T^{*}\left(S^{D}\right)^{n}\left(T^{D}\right)^{n} \otimes T^{*}\left(T^{D}\right)^{n}\right) \\
& =\left((T S)^{*}\left((T S)^{D}\right)^{n} \otimes T^{*}\left(T^{D}\right)^{n}\right) \\
& =\left((T S)^{*} \otimes T^{*}\right)\left(\left((T S)^{D}\right)^{n} \otimes\left(T^{D}\right)^{n}\right) \\
& =(T S \otimes T)^{*}\left((T S \otimes T)^{D}\right)^{n}
\end{aligned}
$$

Then $T S \otimes S$ is ($n, 1$)-power- D-hyponormal operator.
In the same way, we may deduce the ($n, 1$)-power- D-hyponormal operator of $T S \otimes S, S T \otimes T$ and $S T \otimes S$.
Theorem 1.3. If $T, S \in \mathcal{B}(\mathcal{H})^{D}$ two operators commuting. Then:
$(I \otimes S),(T \otimes I)$ are ($n, 1$)-power-D-hyponormal then $T \boxplus S$ is ($n, 1$)-power-D-hyponormal.
Proof. Firstly, observe that if $(I \otimes S),(T \otimes I)$ are ($n, 1$)-power- D-hyponormal, then we have following inequalities

$$
\left((T \otimes I)^{D}\right)^{n}(T \otimes I)^{*} \leq(T \otimes I)^{*}\left((T \otimes I)^{D}\right)^{n}
$$

and

$$
\left((S \otimes I)^{D}\right)^{n}(S \otimes I)^{*} \leq(S \otimes I)^{*}\left((S \otimes I)^{D}\right)^{n} .
$$

Then

$$
\begin{aligned}
&\left((T \boxplus S)^{D}\right)^{n}(T \boxplus S)^{*} \\
&=\left((T \otimes I+I \otimes S)^{D}\right)^{n}(T \otimes I+I \otimes S)^{*} \\
&=\left((T \otimes I)^{D}+(I \otimes S)^{D}\right)^{n}\left((T \otimes I)^{*}+(I \otimes S)^{*}\right. \\
& \leq\left((T \otimes I)^{D}\right)^{n}(T \otimes I)^{*}+\left((T \otimes I)^{D}\right)^{n}(I \otimes S)^{*} \\
&+\left((I \otimes S)^{D}\right)^{n}(T \otimes I)^{*}+\left((I \otimes S)^{D}\right)^{n}(I \otimes S)^{*} \\
& \leq(T \otimes I)^{*}\left((T \otimes I)^{D}\right)^{n}+(I \otimes S)^{*}\left((T \otimes I)^{D}\right)^{n} \\
&+(T \otimes I)^{*}\left((I \otimes S)^{D}\right)^{n}+(I \otimes S)^{*}\left((I \otimes S)^{D}\right)^{n} \\
&=(T \boxplus S)^{*}\left((T \boxplus S)^{D}\right)^{n} .
\end{aligned}
$$

Then $T \boxplus S$ is ($n, 1$)-power- D-hyponormal.

Theorem 1.4. Let $T_{1}, T_{2}, \ldots ., T_{m}$ are ($n, 1$)-power-D-hyponormal operator in $\mathcal{B}(\mathcal{H})^{D}$, such that $\left(T_{k}^{D}\right)^{n} T_{k}^{*} \geq 0, \forall k \in\{1,2 \ldots m\}$. Then $\left(T_{1} \oplus T_{2} \oplus \ldots . \oplus T_{m}\right)$ is ($n, 1$)-power-D-hyponormal operators and $\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)$ is ($n, 1$)-power-D-hyponormal operators.

Proof. Since

$$
\begin{aligned}
\left(\left(T_{1} \oplus T_{2} \oplus \ldots \oplus T_{m}\right)^{D}\right)^{n}\left(T_{1} \oplus T_{2} \oplus \ldots \oplus T_{m}\right)^{*} & =\left(\left(T_{1}^{D}\right)^{n} \oplus\left(T_{2}^{D}\right)^{n} \oplus \ldots \oplus\left(T_{m}^{D}\right)^{n}\right)\left(T_{1}^{*} \oplus T_{2}^{*} \oplus \ldots \oplus T_{m}^{*}\right) \\
& =\left(\left(T_{1}^{D}\right)^{n} T_{1}^{*} \oplus\left(T_{2}^{D}\right)^{n} T_{2}^{*} \oplus \ldots \oplus\left(T_{m}^{D}\right)^{n} T_{m}^{*}\right) \\
& \leq\left(T_{1}^{*}\left(T_{1}^{D}\right)^{n} \oplus T^{*}\left(T_{2}^{D}\right)_{2}^{n} \oplus \ldots \oplus T_{m}^{*}\left(T_{m}^{D}\right)^{n}\right) \\
& =\left(T_{1}^{*} \oplus T_{2}^{*} \oplus \ldots \oplus T_{m}^{*}\right)\left(\left(T_{1}^{D}\right)^{n} \oplus\left(T_{2}^{D}\right)^{n} \oplus \ldots \oplus\left(T_{m}^{D}\right)^{n}\right) \\
& =\left(T_{1} \oplus T_{2} \oplus \ldots \oplus T_{m}\right)^{*}\left(\left(T_{1} \oplus T_{2} \oplus \ldots \oplus T_{m}\right)^{D}\right)^{n}
\end{aligned}
$$

Then $\left(T_{1} \oplus T_{2} \oplus \ldots \oplus T_{m}\right)$ is ($n, 1$)-power- D-hyponormal operators.
Now,

$$
\begin{aligned}
\left(\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{D}\right)^{n}\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{*} & =\left(\left(T_{1}^{D}\right)^{n} \otimes\left(T_{2}^{D}\right)^{n} \otimes \ldots \otimes\left(T_{m}^{D}\right)^{n}\right)\left(T_{1}^{*} \otimes T_{2}^{*} \otimes \ldots \otimes T_{m}^{*}\right) \\
& =\left(\left(T_{1}^{D}\right)^{n} T_{1}^{*} \otimes\left(T_{2}^{D}\right)^{n} T_{2}^{*} \otimes \ldots \otimes\left(T_{m}^{D}\right)^{n} T_{m}^{*}\right) \\
& \leq\left(T_{1}^{*}\left(T_{1}^{D}\right)^{n} \otimes T^{*}\left(T_{2}^{D}\right)_{2}^{n} \otimes \ldots \otimes T_{m}^{*}\left(T_{m}^{D}\right)^{n}\right) \\
& =\left(T_{1}^{*} \otimes T_{2}^{*} \otimes \ldots \otimes T_{m}^{*}\right)\left(\left(T_{1}^{D}\right)^{n} \otimes\left(T_{2}^{D}\right)^{n} \otimes \ldots \otimes\left(T_{m}^{D}\right)^{n}\right) \\
& =\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{*}\left(\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{D}\right)^{n}
\end{aligned}
$$

Then $\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)$ is $(n, 1)$-power- D-hyponormal operators.

Proposition 1.5. If T is $(2,1)$-power-D-hyponormal and T is D-idempotent. Then T is power- D hyponormal operator

Proof. Since T is (2,1)-power- D-hyponormal operator, then
$\left(T^{D}\right)^{2} T^{*} \leq T^{*}\left(T^{D}\right)^{2}$
since T is D-idempotent $\left(T^{D}\right)^{2}=T^{D}$, wich implies
$T^{D} T^{*} \leq T^{*} T^{D}$
Thus T is is power- D-hyponormal operator

Proposition 1.6. If T is $(3,1)$-power-D-hyponormal and T is D-idempotent. Then T is power- D hyponormal operator

Proof. Since T is (3,1)-power- D-hyponormal operator, then
$\left(T^{D}\right)^{3} T^{*} \leq T^{*}\left(T^{D}\right)^{3}$
since T is D-idempotent $\left(T^{D}\right)^{2}=T^{D}$, wich implies
$\left(T^{D}\right) T^{*} \leq T^{*} T^{D}$
Then T is power- D-hyponormal operator

Proposition 1.7. If T, S are $(2,1)$-power-D-hyponormal operators commuting, such that $T^{D} S^{*}=S^{*} T^{D}$ and $T^{D} S-S T^{D}=0$, then $S+T$ is $(2,1)$-power-D-hyponormal operator.

Proof. Since $T^{D} S-S T^{D}=0$, hence $\left(T^{D}\right)^{2} S^{2}+S^{2}\left(T^{D}\right)^{2}=0$, so $\left(S^{D}+T^{D}\right)^{2}=\left(S^{D}\right)^{2}+\left(T^{D}\right)^{2}$.

$$
\begin{aligned}
\left((T+S)^{D}\right)^{2}(S+T)^{*} & =\left(\left(S^{D}\right)^{2}+\left(T^{D}\right)^{2}\right)\left(S^{*}+T^{*}\right) \\
& =\left(S^{D}\right)^{2} S^{*}+\left(S^{D}\right)^{2} T^{*}+\left(T^{D}\right)^{2} S^{*}+\left(T^{D}\right)^{2} T^{*} \\
& =\left(S^{D}\right)^{2} S^{*}+T^{*}\left(S^{D}\right)^{2}+S^{*}\left(T^{D}\right)^{2}+\left(T^{D}\right)^{2} T^{*} \\
& \leq S^{*}\left(S^{D}\right)^{2}+T^{*}\left(S^{D}\right)^{2}+S^{*}\left(T^{D}\right)^{2}+T^{*}\left(T^{D}\right)^{2} \\
& =(S+T)^{*}\left((T+S)^{D}\right)^{2}
\end{aligned}
$$

Then $S+T$ is (2,1)-power- D-hyponormal operator.

Proposition 1.8. If T, S are $(2,1)$-power-D-hyponormal operators commuting, such that $T^{D} S^{*}=S^{*} T^{D}$ and $T^{D} S-S T^{D}=0, T S=S T=S+T$ then $S T$ is $(2,1)$-power-D-hyponormal operator.

Proof. Since $T^{D} S-S T^{D}=0$, hence $\left(T^{D}\right)^{2} S^{2}+S^{2}\left(T^{D}\right)^{2}=0$, so $\left(S^{D}+T^{D}\right)^{2}=\left(S^{D}\right)^{2}+\left(T^{D}\right)^{2}$.
Since,

$$
\begin{aligned}
\left((S T)^{D}\right)^{2}(S T)^{*} & =\left((T+S)^{D}\right)^{2}(S+T)^{*} \\
& =\left(S^{D}\right)^{2} S^{*}+\left(S^{D}\right)^{2} T^{*}+\left(T^{D}\right)^{2} S^{*}+\left(T^{D}\right)^{2} T^{*} \\
& =\left(S^{D}\right)^{2} S^{*}+T^{*}\left(S^{D}\right)^{2}+S^{*}\left(T^{D}\right)^{2}+\left(T^{D}\right)^{2} T^{*} \\
& \leq S^{*}\left(S^{D}\right)^{2}+T^{*}\left(S^{D}\right)^{2}+S^{*}\left(T^{D}\right)^{2}+T^{*}\left(T^{D}\right)^{2} \\
& =(S+T)^{*}\left((T+S)^{D}\right)^{2} \\
& =(S T)^{*}\left((T S)^{D}\right)^{2}
\end{aligned}
$$

Hence
$\left((S T)^{D}\right)^{2}(S T)^{*} \geq(S T)^{*}\left((S T)^{D}\right)^{2}$.
Then $S T$ is $(2,1)$-power- D-hyponormal operator.
Example 1.3. Let $T=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), S=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{2}\right)$. A simple computation shows that

$$
T^{*}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), S^{*}=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right), T^{D}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), S^{D}=\frac{1}{2}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)
$$

Then T is $(2,1)$-power-D-hyponormal operator, but

$$
\left\langle\left.\left(\left(T^{D}\right)^{2} T^{*}-T^{*}\left(T^{D}\right)^{2}\right)\binom{u}{v} \right\rvert\,\binom{ u}{v}\right\rangle=0
$$

For all $(u, v) \in\left(\mathbb{C}^{2}\right)$
and S is $(2,1)$-power- D-hyponormal operator, but

$$
\left\langle\left.\left(\left(S^{D}\right)^{2} S^{*}-S^{*}\left(S^{D}\right)^{2}\right)\binom{u}{v} \right\rvert\,\binom{ u}{v}\right\rangle=0
$$

For all $(u, v) \in\left(\mathbb{C}^{2}\right)$
Such that $T S+S T=0$ and $T^{D} S^{*} \neq S^{*} T^{D}$
but $S+T$ and $S T$ are $(2,1)$-power- D-hyponormal operator
the following example shows that proposition (1.7) is not necessarily true if $T^{D} S^{*} \neq S^{*} T^{D}$

Proposition 1.9. Let $T, S \in \mathcal{B}(\mathcal{H})^{D}$ are commuting and are $(n, 1)$-power-D-hyponormal operators, such that $T^{D} S^{*}=S^{*} T^{D}$ and $(T+S)^{*}$ is commutes with

$$
\sum_{1 \leq p \leq n-1}\binom{n}{p}\left(\left(T^{D}\right)^{p}\left(S^{D}\right)^{n-p}\right)
$$

Then $(T+S)$ is an ($n, 1$)-power- D-hyponormal operator.

Proof. Since

$$
\begin{aligned}
\left((T+S)^{D}\right)^{n}(T+S)^{*} & =\left[\sum_{0 \leq p \leq n}\binom{n}{p}\left(\left(T^{D}\right)^{p}\left(S^{D}\right)^{n-p}\right)\right](T+S)^{*} \\
& =\left(S^{D}\right)^{n} S^{*}+\sum_{1 \leq p \leq n-1}\binom{n}{p}\left(\left(T^{D}\right)^{p}\left(S^{D}\right)^{n-p}\right)(T+S)^{*}+\left(T^{D}\right)^{n} S^{*}+\left(S^{D}\right)^{n} T^{*} \\
& +\left(T^{D}\right)^{n} T^{*} \\
& =\left(S^{D}\right)^{n} S^{*}+\sum_{1 \leq p \leq n-1}\binom{n}{p}\left(\left(T^{D}\right)^{p}\left(S^{D}\right)^{n-p}\right)(T+S)^{*}+S^{*}\left(T^{D}\right)^{n}+T^{*}\left(S^{D}\right)^{n} \\
& +\left(T^{D}\right)^{n} T^{*} \\
& \leq S^{*}\left(S^{D}\right)^{n}+(T+S)^{*} \sum_{1 \leq p \leq n-1}\binom{n}{p}\left(\left(T^{D}\right)^{p}\left(S^{D}\right)^{n-p}\right)+S^{*}\left(T^{D}\right)^{n}+T^{*}\left(S^{D}\right)^{n} \\
& +T^{*}\left(T^{D}\right)^{n} \\
& \leq(T+S)^{*}\left[\sum_{0 \leq p \leq n}\binom{n}{p}\left(\left(T^{D}\right)^{p}\left(S^{D}\right)^{n-p}\right)\right] \\
& =(T+S)^{*}\left((T+S)^{D}\right)^{n} .
\end{aligned}
$$

Then $(T+S)$ is an $(n, 1)$-power- D-hyponormal operator.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] A.Benali, On the class of n-Real Power Positive Operators On A Hilbert Space. Funct. Anal. Approx. Comput. 10(2)(2018), 23-31.
[2] A. Aluthge, Onp-hyponormal operators for $0<p<1$, Integr. Equ. Oper. Theory. 13 (1990), 307-315.
[3] A. Benali, On The Class Of (A,n)-Real Power Positive Operators In Semi-Hilbertian Space, Glob. J. Pure Appl. Sci. 25 (2019), 161-166.
[4] A. Benali, S.A. Ould Ahmed Mahmoud, (α, β)-A-Normal operators in semi-Hilbertian spaces, Afr. Mat. 30 (2019), $903-920$.
[5] A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728.
[6] A.A.S. Jibril, On n-power normal operators, Arab. J. Sci. Eng. 33 (2A) (2008), 247-251.
[7] A.A.S. Jibril, On subprojection sperators, Int. Math. J. 4 (3) (2003), 229-238.
[8] C. Cherifa, A. Benali, Class of (A, n)-power-hyponormal and quasihyponormal operators in semi-hilbertian space, Funct. Anal. Approx. Comput. 11 (2) (2019), 13-21.
[9] T. Veluchamy, K.M. Manikandan, n-power-Quasi Normal operators on the Hilbert Space, IOSR J. Math. 12 (1) (2016), 6-9.
[10] M.H. Mortad, On the Normality of the Sum of Two Normal Operators, Complex Anal. Oper. Theory. 6 (2012), $105-112$.
[11] M. Guesba, M. Nadir, On operators for wich $T^{2} \geq-T^{* 2}$. Aust. J. Math. Anal. Appl. 13 (1) (2016), Article 6.
[12] S.A. Mohammady, S.A.O. Beinane, S.A.O.A. Mahmoud, On (N,M)-a-normal And (N, M)-a-quasinormal Semi- Hilbert Space Operators, ArXiv:1912.03304 [Math]. (2019).
[13] S.A.O.A. Mahmoud, O.B.S. Ahmed, On the classes of (n, m)-power D-normal and (n, m)-power D-quasi-normal operators, Oper. Matrices. (2019), 705-732.
[14] O.A.M.S. Ahmed, On the class of n-power quasi-normal operators on Hilbert spaces, Bull. Math. Anal. Appl. 3 (2) (2011), 213-228.
[15] S.A. Ould Ahmed Mahmoud, On Some Normality-Like Properties and Bishop's Property (β) for a Class of Operators on Hilbert Spaces, Int. J. Math. Math. Sci. 2012 (2012), 975745.
[16] O.A.M.S. Ahmed, A. Benali, Hyponormal and k-Quasi-hyponormal Operators on Semi-Hilbertian Spaces, Aust. J. Math. Anal. Appl. 13 (1) (2016), Article 7.
[17] R.R. Al-Mosawi and H.A. Hassan A Note on Normal and n-Normal Operators, J. Univ. Thi-Qar 9 (1) 2014, 1-4.
[18] S.H. Jah, Class Of (A, n)-Power-Quasi-hyponormal Operators In Semi-Hilbertian Spaces, Int. J. Pure Appl. Math. 93 (1) (2014), 61-83.
[19] S. Panayappan, N. Sivamani, On n-binormal operators Gen. Math. Notes, 10 (2) (2012), 1-8.

[^0]: Received April $11^{\text {th }}, 2020$; accepted May $26^{\text {th }}$, 2020; published July $14^{\text {th }}, 2020$.
 2010 Mathematics Subject Classification. Primary 47A05, Secondary 47A10, 47B20, 47B25.
 Key words and phrases. Hilbert space; (n, m)-power- D-hyponormal operators; D-idempotent; power- D-hyponormal operators; (2,2)-power- D-normal operators; Drazin inversible operator.

