

A COMMUTATIVE AND COMPACT DERIVATIONS FOR W* ALGEBRAS

ABDELGABAR ADAM HASSAN^{1,2,*}, MOHAMMAD JAWED¹

¹Jouf University, College of Science and Arts in Tabrjal, Department of Mathematics, Kingdom of Saudi

Arabia

²University of Nyala, Department of Mathematics, Sudan *Corresponding Author: aahassan@ju.edu.sa

ABSTRACT. In this paper, we study the compact derivations on W* algebras. Let M be W*-algebra, let LS(M) be algebra of all measurable operators with M, it is show that the results in the maximum set of orthogonal predictions. We have found that W* algebra A contains the Center of a W* algebra β and is either a commutative operation or properly infinite. We have considered derivations from W* algebra two-sided ideals.

1. INTRODUCTION

Let *M* be a W*-algebra and let *Z*(*M*) be the center of *M*. Fix $a \in M$ and consider the inner derivation δ_a on *M* generated by the component *a*, which is $\delta_a(\cdot) := [a, \cdot]$.

The norm closing two sided ideal f(B) generated by the finite projections of a W* algebra B behaves somewhat similar to the idealized compact operators of B(H) (see [11],[8],[9]). Therefore, it is natural to ask about any sub-algebras d of B that is any derivation from A into f(B) implemented from an element of y(B).

©2020 Authors retain the copyrights

Received April 1st, 2020; accepted April 20th, 2020; published May 28th, 2020.

²⁰¹⁰ Mathematics Subject Classification. 47L15.

Key words and phrases. commutative; compact; operation; W*-algebras.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

We perform two main difficulties: the presence of the center of *B* and the fact that the main characteristic in [8] proof (that is, if Q_n , is a sequence of mutually orthogonal projections and $T \in B(H)$ hence $||Q_n T Q_n|| > \alpha > 0$ for all *n* implies that *T* is not compact) failure to generalize to the case in which *g* is of Type H_{∞} .

Finally, we have considered derivations from d at the two-sided $C_{1+\varepsilon}(B,\tau) = B \cap L^{1+\varepsilon}(B, \tau) (1 \le 1 + \varepsilon < \infty) \text{ to obtain faithful finite normal trace } \tau \text{ on } B.$

2. NOTATIONS PRELIMINARY

Lemma (1). Let *B* be a semi-finite algebra, let $Q_0 \in p(B)$ and $x_0 \in Q_0$ be such that ω_{x_0} , is a faithful trace on B_{Q_0} . Assume there are $Q_n \in p(B)$, $F_n \in p(\ell)$ and $U_n \in B$ for $n = n_i, n_{i+1}, ...,$ such that the projections Q_n are mutually orthogonal and $Q_n = U_n U_n^*$, $Q_o F_n = U_n^* U_n$ for all n (i.e., $Q_n \sim Q_0 F_n$). Let $x_n = U_n F_n x_0$. Then $x_n \rightarrow_{JRW} O$.

Proof. Assume that $\sum_{n=n_i}^{\infty} Q_n = n_i$. Let τ be a faithful semi-finite normal (fsn) trace on B^+ to be agreed on B_{Q_0} with ω_{x_0} . Then for all $B \in B_{Q_n}^+$ we have

$$\tau(B) = \tau \left(U_n U_n^* B U_n U_n^* \right)$$
$$= \tau \left(U_n^* U_n U_n^* B U_n \right)$$
$$= \tau \left(Q_o F_n U_n^* B U_n F_n Q_o \right)$$
$$= \omega_{x_0} \left(F_n U_n^* B U_n F_n \right)$$
$$= \omega_x (B).$$

Let $P \in p(B)$ be any semi-finite projection. Then by [11] there is a central decomposition of the identity $\sum_{\gamma \in \Gamma} E_{\gamma} = 1, E_{\gamma} \in p(\ell), E_{\gamma} E_{\gamma'} = 0$ for $\gamma \neq \gamma'$ such that $\tau(PE_{\gamma}) < \infty$ for all $\gamma \in \Gamma$. Then

$$\tau(PE_{\gamma}) = \sum_{n=1}^{\infty} \tau(Q_n PE_{\gamma}Q_n)$$
$$= \sum_{n=1}^{\infty} \omega_{x_n}(Q_n PE_{\gamma}Q_n)$$
$$\sum_{n=1}^{\infty} ||PE_{\gamma}x_n||^2 < \infty$$

whence $\|PE_{\gamma}x_n\| < 0$ for all $\gamma \in \Gamma$. Let $\varepsilon > 0$ and let $\Lambda \subset \Gamma$ be a finite index set such that $\sum_{\gamma \notin \Lambda} \|E_{\gamma}x_0\|^2 < \varepsilon$. Then for all n,

$$\begin{split} \sum_{\boldsymbol{\notin}\Lambda} \left\| PE_{\boldsymbol{\gamma}} \boldsymbol{x}_{n} \right\|^{2} &= \sum_{\boldsymbol{\gamma} \notin \Lambda} \left\| PE_{\boldsymbol{\gamma}} \boldsymbol{U}_{n} F_{n} \boldsymbol{x}_{0} \right\|^{2} \\ &= \sum_{\boldsymbol{\gamma} \notin \Lambda} \left\| P\boldsymbol{U}_{n} F_{n} E_{\boldsymbol{\gamma}} \boldsymbol{x}_{0} \right\|^{2} \\ &\leq \sum_{\boldsymbol{\gamma} \notin \Lambda} \left\| E_{\boldsymbol{\gamma}} \boldsymbol{x}_{0} \right\|^{2} < \boldsymbol{\varepsilon} \end{split}$$

Hence from $||Px_n||^2 \leq \sum_{\gamma \in \Lambda} ||PE_{\gamma}x_n||^2 + \varepsilon$ where $||Px_n|| \to 0$, to completes the proof.

Lemma (2). Let $T \notin f(P)$, then there is an $\alpha > 0$ and $0 \neq E \in p(\ell)$ such that for every $0 \neq F \in p(\ell)$ with $F \leq E$ we have $||\pi(TF)|| > \alpha$.

Proof. Let $\alpha = \frac{1}{2} \|\pi(T)\| \neq 0$ and let *G* be the sum of a maximal family of mutually orthogonal central projections G_{γ} such that $\|\pi(TG_{\gamma})\| \leq \alpha$. Then

 $\|\pi(TG)\| = \sup_{\gamma} \|\pi(TG_{\gamma})\| \le \alpha$, hence $G \ne 1$. Let E = Z - G and let $0 \ne F \in P(\ell)$ with $F \le E$. Since FG = 0, by the maximally of the family we have $\|\pi(TF)\| > \alpha$.

3. RELATIVELY COMPACT DERIVATION

Let *M* be a *W*^{*}-algebra and let *Z*(*M*) be the center of *M*. Fix $a \in M$ and consider the inner derivation δ_a on *M* generated by the element *a*, that is $\delta_a(\cdot) \coloneqq [a, \cdot]$. Obviously, δ_a there is a linear bounded operator on $(M, \|\cdot\|_M)$, where $\|\cdot\|_M$ is a *C*^{*} -norm on *M*. It is known that there exists $c \in Z(M)$ such that the following estimate holds: $\|\delta_a\| \ge \|a - c\|_M$. In view of this result, it is natural to ask whether there exists is an element $y \in M$ with $\|y\| \le 1$ and $c \in Z(M)$ such that $\|[a, y]\| \ge |a - c|$.

Definition (3). A linear subspace *I* in the W* algebra *M* equipped with a norm $\|\cdot\|_{I}$ is said to be a symmetric operator ideal if

- (i) $\| S \|_{I} \geq \| S \|$ for all $S \in I$,
- (ii) $\|S^*\|_{I} = \|S\|_{I}$ for all $S \in I$,
- (iii) $\|ASB\|_{I} \leq \|A\| \|S\|_{I} \|B\|$ for all $S \in I$, $A, B \in M$.

Observe, that every symmetric operator ideal I is a two-sided ideal in M, and therefore by [13], it follows from $0 \le S \le T$ and $T \in I$ that $S \in I$ and $||S||_I \le ||T||_I$.

Corollary (4). Let *M* be a *W*^{*}-algebra and let *I* be an ideal in *M*. Let $\delta: M \to I$ be a derivation. Then there exists an element $a \in I$, such that $\delta = \delta_a = [a, \cdot]$.

Proof. Since δ is a derivation on a W^* -algebra, it is necessarily inner [8]. Thus, there exists an element $d \in M$, such that $\delta(\cdot) = \delta d(\cdot) = [d, \cdot]$. It follows from the hypothesis that $[d, M] \subseteq I$.

Using [22] (or [20]), we obtain $\begin{bmatrix} d^*, M \end{bmatrix} = -\begin{bmatrix} d, M \end{bmatrix}^* \subseteq I^* = I$ and $\begin{bmatrix} d_k, M \end{bmatrix} \subseteq I, k = 1, 2$, where $d = d_1 + id_2$, $dk = d_k^* \in M$, for k = 1, 2. It follows now, that there exist $c_1, c_2 \in Z(M)$ and $u_1, u_2 \in U(M)$, such that $\| [d_k, u_k] \| \ge 1/2 |d_k - c_k|$ for k = 1, 2. Again applying [20], we obtain $d_k - c_k \in I$, for k = 1, 2. Setting $a \coloneqq (d_1 - c_1) + i(d_2 - c_2)$, we deduce that $a \in I$ and $\delta = [a, \cdot]$.

Corollary (5). Let *M* be a semi-finite W* -algebra and let *E* be a symmetric operator space. Fix $a = a^* \in S(M)$ and consider inner derivation $\delta = \delta_a$ on the algebra LS(M) given by $\delta(x) = [a, x], x \in LS(M)$. If $\delta(M) \subseteq E$, then there exists $d \in E$ satisfying the inequality $\|d\|_E \leq \|\delta\|_{M \to E}$ and such that $\delta(x) = [d, x]$.

Proof. The existence of $d \in E$ such that $\delta(x) = [d, x]$. Now, if $u \in U(M)$, then $\|\delta(u)\|_E = \|du - ud\|_E \le \|du\|_E + \|ud\|_E = 2\|d\|_E$. Hence, if $x \in M_1 = \{x \in M : \|x\| \le 1\}$, then $x = \sum_{i=1}^4 \alpha_i u_i$, where $u_i \in U(M)$ and $|\alpha_i| \le 1$ for i = 1, 2, 3, 4, and so $\|\delta(x)\|_E \le \sum_{i=1}^4 \|\delta(\alpha_i u_i)\|_E \le 8\|d\|_E$, that is $\|\delta\|_{M \to E} \le 8\|d\|_E < \infty$.

4. A COMMUTATIVE OPERATION ON W* SUB-ALGEBRAS

When *A* a commutative operation is is crucial because it provides the following explicit way to find an operator $T \in B$ implementing the derivation.

For the rest of this section let A be any a commutative operation sub-algebras of *B* and δ : A \rightarrow B be any derivation. Let *u* be the unitary group of A and *M* be a given invariant mean on *u*, i.e., a linear functional on the algebra of bounded complex-valued functions on *u* such that

- (i) For all real f, $inf \left\{ f(U) | U \in u \right\} \le Mf \le sup \left\{ f(U) | U \in u \right\}$
- (ii) For all $U \in u$, $Mf_U = MS$, where $f_U(V) = f(UV)$ for $V \in u$.

Thus *M* is bounded and $|Mf| \le sup\{ |f(U)| | U \in u \}$ for all f (see [8] for the existence and properties of *M*).

For each $\phi \in B_*$ the map

$$\phi \to M \phi \big(U^* \delta (U) \big)$$

is linear and bounded and hence defines an element $T \in (B_*)^*$. Explicitly,

$$\phi(T) \to M\phi(U^*\delta(U))$$
 for all $\phi \in B_*$

The same easy computation as in [8] shows that $\delta = aAT$. Notice that for all $A \in B$ the map

$$\phi \to M\phi(U^*BU) = \phi(E(B))$$

defines an element E(B) which clearly belongs to $A \cap B$. Moreover it is easy to see that E is a conditional expectation (i.e., a projection of norm one) from B onto $A \cap B$ (see [6]).

Theorem (6). Let A be a commutative operation W* sub-algebras of *B* containing the center ℓ of *B*. For every derivation $\delta : A \rightarrow f(B)$ there is a $T \in f(B)$ such that $\delta = aA T$.

We have seen that given an invariant mean M on u there is a unique $T \in B$ such that $\delta = aA T$ and E(T) = 0. We are going to show that $T \in A(B)$. Reasoning by contradiction assume that $T \notin A(B)$. We proof requires several reductions to the restricted derivation

 $\delta_E : A_E \to f(B)$ for some $0 \neq E \in p(\ell)$. To simplify notations we shall assume each time that E = 1.

Let us start by noticing that if $Q_i \in p(A)$ for $i = n, n+1, Q_n, Q_{n+1} = 0$ and $P = Q_n + Q_{n+1}$, then

$$PTP = \sum_{i=n}^{n+1} Q_i T Q_i + \delta(Q_{n+1}) Q_n + \delta(Q_n) Q_{n+1}$$

hence

$$\left\|\pi\left(PTP\right)\right\| = \left\|\sum_{i=n}^{n+1}\pi\left(Q_{i}TQ_{i}\right)\right\| + \max_{i} \pi\left(Q_{i}TQ_{i}\right)$$

Definition (7). For every $Q \in p(A)$ define $[Q] = [Q, \varepsilon]$ to be the central projection. Set

$$P = \left\{ P \in p(\mathbf{A}) \mid [P] = 1 \right\}.$$

Thus $P \in p$ iff $\|\pi(PTPG)\| = \|\pi(TG)\|$ for all $G \in p(\ell)$. We collect several properties of [Q].

Corollary (8). Let *B* be a semi-finite W* algebra with a trace τ , let A be a properly infinite W* sub-algebras of *B* and let $1 \le 1 + \varepsilon < \infty$. Then for every derivation $\delta : A \to C_{1+\varepsilon}(B,\tau)$ there is $a T \in C_{1+\varepsilon}(B,\tau)$ such that $\delta = aAT$.

In the notations introduced there, it is easy to see that $\phi(C_{1+\varepsilon}(B,\tau)) = C_{1+\varepsilon}(\tilde{B},\tilde{\tau})$, where $\tau = \tau \oplus \tau_0$ and τ_0 is the usual trace on $B(H_0)$. We can actually simplify the proof by choosing $\tilde{A}_n = I \otimes \ell$ since the condition $\ell \subset A$ is no longer required.

Corollary (9). Let $P = Q_n + Q_{n+1}$. Then there is a largest central projection $[Q_n, Q_{n+1}]$ such that for every $G \in p(\ell)$ with $G \leq [Q_n, Q_{n+1}]$, we have $\|\pi(Q_1TQ_1G)\| = \|\pi(PTPG)\|$.

Proof. Let $G_i = \{G \in p(\ell) | || \pi(Q_i T Q_i G)|| = || \pi(PTPG)||\}$ and $\Xi = \{G + \varepsilon \in p(\ell)| \text{ if }$

 $G \in p(\ell)$ and $\varepsilon \ge 0$ then $G \in G_n$. Since $\|\pi(PTPG)\| = \max_i \|\pi(Q_iTQ_iG)\|$ for all $G \in p(\ell)$, we see that $G_n \cup G_{n+1} = p(\ell)$. Notice that Ξ is hereditary (i.e., $G - \varepsilon \in \Xi$ and $F \in p(\ell)$, $F \le G + \varepsilon$ imply $F \in \Xi$).

Let $[Q_n, Q_{n+1}] = \sup \Xi$. We have only to show that $[Q_n, Q_{n+1}] \in \Xi$. Let $G + \varepsilon = \sum_{\gamma} (G + \varepsilon)_{\gamma}$ be the sum of a maximal collection of mutually orthogonal projections $(G + \varepsilon)_{\gamma} \in \Xi$. Then for every $F \in \Xi$ we have $([Q_n, Q_{n+1}] - (G + \varepsilon))F = 0$ because of the maximal of the collection of Ξ . Then $[Q_n, Q_{n+1}] = G + \varepsilon$. Consider now any $G \in p(\ell), \varepsilon \ge 0$, then $G = \sum_{\gamma} G(G + \varepsilon)_{\gamma}$ and since $G(G + \varepsilon)_{\gamma} \le (G + \varepsilon)_{\gamma} \in \Xi$, we have $\|\pi(Q_nTQ_nG(G + \varepsilon)_{\gamma})\| = \|\pi(PTPG(G + \varepsilon)_{\gamma})\|$ for all γ . Since $\pi(Q_nTQ_nG)(resp. \pi(PTPG))$ is the direct sum of then $\pi(Q_nTQ_nG(G + \varepsilon)_{\gamma})(resp. \pi(PTPG(G + \varepsilon)_{\gamma}))$, then we have $\|\pi(Q_nTQ_nG)\| = \sup_{\gamma} \|\pi(Q_nTQ_nG(G + \varepsilon)_{\gamma})\|$

 $= \|\pi(PTPG)\|$

whence $G \in G_n$. Since $\varepsilon \ge 0$ is arbitrary, we have $G + \varepsilon = [Q_n, Q_{n+1}] \in \Xi$ which completes the proof.

- **Corollary (10)**. (i) If $Q_n Q_{n+1} = 0$ with $Q_i \in p(A)$ then $1 [Q_n, Q_{n+1}] \leq [Q_n, Q_{n+1}]$. (ii) If $Q_n \leq Q_{n+1}$ with $Q_i \in p(A)$ then $[Q_n] \leq [Q_{n+1}]$.
- (iii) If $\varepsilon \ge 0$ with $Q \in p(A), Q + \varepsilon \in p$ then $[Q] = [Q, \varepsilon]$ and $1 [Q] \le [\varepsilon]$
- If $\pi(TG) \neq 0$ for all $0 \neq E \in p(\ell)$ then the following hold:
- (iv) If $E \in p(\ell)$ then E = [E].

(v) If $Q \in p(A)$ then $[Q] \leq c(Q)$, where c(Q) is the central support of Q.

Proof. We have to show that for every $G \in p(\ell)$, $G \leq 1-[Q_n, Q_{n+1}]$ we have $G \in G_{n+1}$. Let $E + \varepsilon$ be the sum $\sum_{\gamma} E_{\gamma}$ of a maximal collection of mutually orthogonal projections of G_{n+1} that are majored by G. Then

$$\begin{aligned} \|\pi (Q_n T Q_n F)\| &= \sup_{\gamma} \|\pi (Q_n T Q_n F_{\gamma})\| \\ &= \sup_{\gamma} \|\pi (Q_{n+1} + Q_{n+1}) T (Q_{n+1} + Q_{n+1}) F_{\gamma}\| \\ &= \|\pi (Q_{n+1} + Q_{n+1}) T (Q_{n+1} + Q_{n+1}) F\| \end{aligned}$$

whence $E + \varepsilon \in G_{n+1}$. By the maximalist of the collection, $0 \leq G - (E + \varepsilon)$ does not majority any nonzero projection of G_{n+1} and since $p(\ell) = G_n \cup G_{n+1}$, any central projection $G' \leq G - (E + \varepsilon)$ must be in G_n . By definition of Ξ , this implies that $G - (E + \varepsilon) \in \Xi$ whence $G - (E + \varepsilon) \leq [Q_n, Q_{n+1}]$. So, $G - (E + \varepsilon) \leq G \leq 1 - [Q_n, Q_{n+1}]$ and hence $G = E + \varepsilon \in G_{n+1}$ which completes the proof. (ii) Let $G \in p(\ell)$ and $G \leq [Q_n]$. Then $\|\pi(TG)\| = \|\pi(Q_nTQ_nG)\| \leq \|\pi(Q_{n+1}TQ_{n+1}G)\|$ $\leq \|\pi(TG)\|$ whence equality holds and $[Q_n] \leq [Q_{n+1}]$ by the maximalist of $[Q_{n+1}]$. (iii) $[Q, \varepsilon]$ is maximal under the condition: if $G \in p(\ell)$ and $G \leq [Q, \varepsilon]$ then

 $\left\|\pi\left(QTQG\right)\right\| \leq \left\|\pi\left(\left(Q+\varepsilon\right)T\left(Q+\varepsilon\right)G\right)\right\| = \left\|\pi\left(TG\right)\right\|$

which is the same condition defining [Q, I - Q] = [Q]. Thus $[Q] = [Q, \varepsilon]$. Applying this to ε we have $[\varepsilon] = [\varepsilon, Q]$ and thus by (i) we have $[\varepsilon] \ge 1 - [Q, \varepsilon] = 1 - [Q]$.

(ii) Let
$$E + \varepsilon, E \in p(\ell)$$
 then $\|\pi(ETE(E + \varepsilon))\| = \|\pi(TE(E + \varepsilon))\|$. This implies that if $\varepsilon \ge 0$,
then $E + \varepsilon \le [E]$ so $E \le [E]$ and if $E + \varepsilon = [E] - E \le [E]$ then

$$0 = \left\| \pi \left(ETE \left(E + \varepsilon \right) \right) \right\| = \left\| \pi \left(T \left(E + \varepsilon \right) \right) \right\| \text{ whence } E = [E].$$

(v) Follows at once from (ii) and (iv).

The condition that $\|\pi(TE)\| \neq 0$ for all $0 \neq E \in p(\ell)$ is of course meaningless unless *B* is properly infinite. Hence, we may assume without loss of generality that:

B is properly infinite and semi-finite.

There is an $\alpha > 0$ such that $\|\pi(TE)\| > \alpha$ for all $0 \neq E \in p(\ell)$.

Lemma (11). Let $P \in p$ and $R_n = X_{PTP}[\alpha, \infty)$, $R_{n+1} = X_{PTP}(-\infty, -\alpha]$, where $X_{PTP}()$ denotes the spectral measure of the self-adjoint operator *PTP*. Then there is an $E_n \in p(\ell)$, with $E_n = I - E$ such that $R_i E_i$ are properly infinite and $c(R_i E_i) = E_j$ for i = n, n+1.

Proof. Let $R = R_n + R_{n+1} = X_{|PTP|} [\infty, \alpha)$ and let $F \neq 0$ be any central projection. If *RF* were finite, we would have

$$\begin{aligned} \left\| \pi \left(TF \right) \right\| &= \left\| \pi \left(PTPF \right) \right\| \\ &= \left\| \pi \left(PTP(1-R)F \right) \right\| \\ &= \left\| \pi \left(|PTP|(1-R)F \right) \right\| \\ &\leq \alpha \end{aligned}$$

Thus *RF* is infinite and nonzero. Hence *R* is properly infinite and c(R) = n. Now let E_1 be the maximal central projection majored by $c(R_n)$, such that R_nF_n is properly infinite. Then $c(R_n, E_n) = E_n$ and $R_n(n - E_n)$ is finite, hence $R_{n+}(n - E_n) = R_{n+1}E_{n+1}$ is properly infinite and $c(R_{n+1}, E_{n+1}) = E_{n+1}$.

End of the Proof of Theorem (6). Take any $0 \neq Q_0 \in p(B)$ such that B_{Q_0} has a faithful trace ω_{x_0} with $x_0 \in Q_0 H$ and assume $||x_0|| = 1$. Let $P_{\gamma} \in p, \gamma \in \Gamma$ be the not decreasing to zero. We are going to construct inductively a sequence $\gamma_n \in \Gamma, F_n \in p(\ell), Q_n \in p(B), U_n$ partial isometrics in B, $x_n \in H$ such that

(a) $U_n U_n^* = Q_n, U_n^* U_n = Q_0 F_n, i.e., Q_n \sim Q_0 F_n$ (b) $x_n = U_n F_n x_0 \in Q_n H$ (c) $Q_n Q_m = 0$ for $n \neq m$ (d) $\gamma_n > \gamma_m$ (hence $P_{\gamma_n} < P_{\gamma_m}$) for n > m(e) $Q_n \leq p_{\gamma_n}$ (f) $|| p_{\gamma_{n+1}} x_n || < \frac{1}{n}$ (g) $|Tx_n, x_n| \ge \frac{\alpha}{2}$. The induction can be started with an arbitrary P_{γ} ; assume we have the construction for n-1. Let us apply Lemma(11) to $P = P_{\gamma_n}$ and obtain $E_i \in p(\ell)$, $R_i \in p(B)$ for i = n, n+1 as defined there. Then

$$1 = ||x_o||^2 = ||E_n x_0||^2 + ||E_{n+1} x_0||^2$$

Let F_n be (any of) the projection E_n or E_{n+1} for which $||E_i x_0||^2 \ge \frac{1}{2}$ and let *i* be the corresponding index. Then $R_i F_n$ is properly infinite and has central support F_n . Now Q_0 is finite having a finite faithful trace ω_{x_0} , hence so is $Q_j \sim F_j Q_0 \le Q_0$ for $1 \le j \le n-1$ and $\left(\sum_{j=1}^{n-1} Q_j\right) F_n$. Let $S_n = inf\left\{R_i F_n, \left(1 - \sum_{j=1}^{n-1} Q_j\right) F_n\right\}$. By the parallelogram law (see [2]) applied to

 F_n we have that

$$R_i F_n - S_n \sim \left(\sum_{j=1}^{n-1} Q_j\right) F_n - \inf\left\{ \left(\sum_{j=1}^{n-1} Q_j\right) F_n, (1 - R_i) F_n \right\}$$

whence $R_i F_n - S_n$ is finite and hence S_n is properly infinite and $c(S_n) = F_n$. Since $Q_0 F_n$ is finite and $c(Q_0 F_n) \leq F_n$ we have $Q_0 F_n \prec S_n$, i.e., there is a partial isometry $U_n \in B$ and a $Q_n \in p(B), Q_n \leq S_n$ such that (a) holds. Let x_n be defined by (b) and choose $\gamma_{n+1} \succ \gamma_n$ so that (d) and (f) hold. -Since $Q_n \leq R_i \leq P_{\gamma_n}$ we have (e), since $Q_n \leq (1 - \sum_{j=1}^{n-1} Q_j) F_n$ we have (c). Finally $x_n = R_i x_n = P_{\gamma_n} x_n$ hence (g) follows from

$$\begin{split} \left| (Tx_n, x_n) \right| &= \left| \left(P_{\gamma_n} T P_{\gamma_n} x_n, x_n \right) \right| \\ &= \left| \left(P_{\gamma_n} T P_{\gamma_n} R_i x_n, R_i x_n \right) \right| \\ &\geq \alpha \left| (R_i x_n, R_i x_n) \right| \\ &= \alpha \left\| x_n \right\|^2 \\ &= \alpha \left\| F_n x_0 \right\|^2 \\ &\geq \frac{1}{2} \alpha. \end{split}$$

Let now $y_n = x_n - P_{\gamma_{n+1}} x_n$. *B* is semi-finite, hence we can apply Lemma (1) to obtain that $x_n \to_{BEW} 0$. Since $\|P_{\gamma_{n+1}} x_n\| \to 0$ we thus have $y_n \to_{BEW} 0$ and $y_n \in P_n H$, where

 $P_n = P_{\gamma_n} - P_{\gamma_{n+1}} \in p(d)$ and are mutually orthogonal by (d). Clearly for n large enough, $|(Ty_n, y_n)| = |\omega_{y_n}(T)| > \frac{1}{4}\alpha$. Since $\omega_{y_n}(T) = M\omega_{y_n}(U^*\delta(U))$, by the properties of the invariant mean mentioned, we have that $\sup \{ |\omega_{y_n}(U^*\delta(U))| | U \in u \} > \frac{1}{4}\alpha$. Thus we can find for every n, a unitary

$$V_{n} \in u \text{ such that } \left| \left(V_{n}^{*} \delta\left(V_{n} \right) y_{n}, y_{n} \right) \right| > \frac{1}{4} \alpha \text{ . Let } A = \sum_{n=1}^{\infty} V_{n} P_{n} \text{ , then } A \in d \text{ and}$$

$$A^{*} \delta\left(A \right) y_{n}, y_{n} = \left| \left(P_{n} A^{*} \delta\left(A \right) P_{n} y_{n}, y_{n} \right) \right|$$

$$= \left| \left(P_{n} \left(A^{*} A T - A^{*} T A \right) P_{n} y_{n}, y_{n} \right) \right|$$

$$= \left| \left(P_{n} V_{n}^{*} \delta\left(V_{n} \right) P_{n} y_{n}, y_{n} \right) \right|$$

$$= \left| \left(V_{n}^{*} \delta\left(V_{n} \right) y_{n}, y_{n} \right) \right|$$

 $=\frac{1}{4}\alpha$

for all *n*. Therefore $\|\delta(A)y_n\| \to 0$. But because of (Π), we have $\delta(A) \notin f(B)$, which completes the proof.

5. THE PROPERTY OF INFINITE W* SUB-ALGEBRA

Lemma (12). Let $0 < b \in Z(M)$, s(b) = 1; $e_z^a(0,\infty)$ be a properly infinite projection and $c(e_z^a(0,\infty))=1$. Let projection $q \in P(M)$ be finite or properly infinite, c(q)=1 and $q \prec e_z^a(0,\infty)$. Let $\mathbb{R} \ni \mu_n \downarrow 0$. For every $n \in \mathbb{N}$ we denote by z_n such a projection that $1-z_n$ is the largest central projection, for which $(1-z_n)q \ge (1-z_n)e_z^a(\mu_n b, +\infty)$ holds. We have $z_n \uparrow_n 1$ and for

$$d := \left[\mu_1 z_1 + \sum_{n=1}^{\infty} \mu_{n+1} \left(z_{n+1} - z_n \right) \right] b$$

the following relations $hold: q \prec q^a(d, +\infty), \ 0 < d \le \mu_1 b$ and s(d) = 1. Moreover, if all projections $e_z^a(\mu_n b, +\infty), \ n \ge 1$ are finite then $e_z^a(d, +\infty)$ is a finite projection as well. **Proof.** Since, $e_z^a(\mu_{n+1}b, +\infty) \ge e_z^a(\mu_n b, +\infty)$ we have $e_z^a (1-z_{n+1})q \ge (1-z_{n+1})e_z^a (\mu_{n+1}b, +\infty) \ge (1-z_{n+1})e_z^a (\mu_n b, +\infty)$. Hence, $z_{n+1} \ge z_n$ for every $n \in \mathbb{N}$. In addition, $e_z^a (\mu_n b, +\infty) \uparrow_n e_z^a (0, +\infty)$ and $e_z^a (0, +\infty)$ is properly infinite projection. Hence, in the case when q is finite projection, it follows that $z_n \uparrow_n 1$. Let us consider the case when q is a properly infinite projection with c(q)=1 and such that $q \prec e_z^a (0,\infty)$. In this case, with $p = q, q = e_z^a (0, +\infty), q_n = e_z^a (\mu_n b, +\infty)$ and $deduce \bigvee_{n=1}^{\infty} z_n \ge c(q) = 1$.

All other statements follow from the form of element d. Since, $z_1d = \mu_1 z_1 b$, $(z_{n+1} - z_n) = \mu_{n+1} (z_{n+1} - z_n) b$ and $z_n q \prec z_n e_z^a (\mu_n b, +\infty)$ for every $n \in \mathbb{N}$. Observe also that $s(d) = s(b) (z_1 + \sum_{n=1}^{\infty} (z_{n+1} - z_n)) = 1$.

Finally, let all projections $e_z^a(\mu_n b, +\infty)$, $n \ge 1$ be finite. Since

$$dz_{1} = \mu_{1}b, d(z_{n+1} - z_{n}) = \mu_{n+1}b(z_{n+1} - z_{n}), \text{ we have}$$
$$e_{z}^{a}(d, +\infty)z_{1} = e_{z}^{a}(\mu_{1}b, +\infty)z_{1},$$
$$e_{z}^{a}(d, +\infty)(z_{n+1} - z_{n}) = e_{z}^{a}(\mu_{n+1}b, +\infty)(z_{n+1} - z_{n})$$

for every $n \in \mathbb{N}$. There projections standing on the right-hand sides are finite. Hence, $e_z^a(d, +\infty)$ is finite projection as a sum of the left-hand sides [22].

We shall use a following well-known implication

$$p \prec q \implies zp \prec zq, \quad \forall z \in P(Z(M)), \ 0 < z \le c(p) \lor c(q)$$

We supply here a straightforward argument. Let $z' \in z \in Z(M)$ be such that $0 < z' \le c(pz) \lor c(qz) z(c(p) \lor c(q))$. Then $z' \le c(p) \lor c(q)$ and therefore $z'(zp) = z'p \prec z'q = z'(zq)$. This means $zp \prec \prec zq$.

As in [6] we can use Theorem (6) to extend the result to the properly infinite case.

Theorem (13). Let A be a properly infinite W* sub-algebra of *B* containing the center ℓ of *B*. For every derivation $\delta : A \rightarrow f(B)$ there is a $T \in f(B)$ such that $\delta = aAT$.

Before we start the proof let us recall that if A is properly infinite there is an infinite countable decomposition of the identity into mutually orthogonal projections of A, all

equivalent in A to I, and thus a fortify equivalent in B to 1 [8]. Therefore there is a spatial isomorphism

$$\phi: B \to \tilde{B} = B \otimes B(H_0)$$

with $H_0 = l^{n+1}(\mathbb{Z})$ and

$$\phi(\mathbf{A}) = \tilde{\mathbf{A}} = \mathbf{A} \otimes B(H_0)$$

[5]. Recall also that the elements B of \tilde{B} (or \tilde{A}) are represented by bounded matrices $[B_{ij}], i, j \in \mathbb{Z}$ with entries in B (or A) by the formula

$$(I \otimes E_{ij})T(I \otimes E_{kl}) = T_{jk} \otimes E_{il}$$

where E_{ij} is the canonical matrix unit of $B(H_0)$. In particular if ℓ , \wp are the maximal a commutative operation subalgebras of $B(H_0)$ of Laurent (resp. diagonal) matrices, then $B \in B \otimes \ell$ (*resp.* $B \in B \otimes \wp$) iff $[B_{ij}]$ is a Laurent matrix with entries in B, i.e., $B_{ij} = B_{i-j}$, where B_k , denotes the entry along the *kth* diagonal(*resp.* $B_{ij} = \delta_{ij}B_{ii}$) for all $i, j \in \mathbb{Z}$.

Proof. Let $\tilde{\delta} = \phi \circ \delta \circ \phi^{-1}$ then

$$\tilde{\delta}: \tilde{d} \to \phi(f(B)) = f(\tilde{B})$$

is a relative compact derivation. Let us define the following W* algebras: $\tilde{\ell} = \tilde{B} \cap \tilde{B}, \ \tilde{A}_n = \ell \otimes \ell, \ A_n = \phi^{-1}(\tilde{A}_n), \ \tilde{A}_{n+1} = A \otimes \ell$, and $\tilde{A}_{n+2} = A_n \otimes \wp$. First, let us notice that $\tilde{A}_n \cap f(\tilde{B}) = (\ell' \otimes \ell) \cap (B \otimes B(H_0)) \cap f(\tilde{B})$ $= (B \otimes \ell) \cap f(\tilde{B})$

 $= \{0\}$

by [22]. Therefore

$$\mathbf{A}_{n}^{\prime} \cap f\left(B\right) = \phi^{-1}\left(\tilde{A}_{n}^{\prime}\right) \cap f\left(B\right) = \phi^{-1}\left(\tilde{\mathbf{A}}_{n}^{\prime} \cap f\left(\tilde{B}\right)\right) = \{0\}$$

because ϕ is spatial Now

$$\begin{split} \widetilde{\ell} = & \left(B \otimes B \left(H_0
ight)
ight) \cap \left(B' \otimes I
ight) \ = & \ell \otimes I \subset \widetilde{\mathrm{A}}_n \subset \widetilde{\mathrm{A}}. \end{split}$$

Thus we can apply Theorem(6) to the derivation $\tilde{\delta}$ restricted to the a commutative operation sub-algebra \tilde{A}_n of \tilde{B} and we obtain a $T_n \in f(\tilde{B})$ such that $\tilde{\delta}_n = \tilde{\delta} - aAT_n$ vanishes on \tilde{A}_n . Now

$$\tilde{\mathbf{A}}_{n+1} \subset B \otimes \ell \subset \ell' \otimes \ell = \tilde{\mathbf{A}}'_n \,.$$

Therefore, for all $A_n \in \tilde{A}_n$ and $A_{n+1} \in \tilde{A}_{n+1}$ we have

$$\tilde{\delta}_n(A_nA_{n+1}) = A_n \ \tilde{\delta}_n(A_{n+1}) = \tilde{\delta}_n(A_{n+1}A_n) = \tilde{\delta}_n(A_{n+1}A_n)$$

i.e., $\tilde{\delta}_n(A_{n+1})$ and A_n commute and hence

$$\tilde{\delta}_{n}\left(\tilde{\mathbf{A}}_{n+1}\right) \subset \tilde{\mathbf{A}}_{n}' \cap f\left(\tilde{B}\right) = \{0\}$$

Thus $\tilde{\delta}_n$ also vanishes on \tilde{A}_{n+1} . Now \tilde{A}_n is a commutative operation and hence so are A_n and \tilde{A}_{n+2} . Moreover,

$$\tilde{\ell} \subset \tilde{A}_n \subset \tilde{A} \subset \tilde{B}$$

Implies

$$\ell = \phi^{-1}(\tilde{\ell}) \subset \mathbf{A}_n \subset \mathbf{A} \subset B$$

and hence

$$\tilde{\ell} = \ell \otimes I \subset \mathcal{A}_n \otimes I \subset \tilde{\mathcal{A}}_{n+2} \subset \tilde{\mathcal{A}} \subset \tilde{B}$$

Thus we can apply again Theorem(6) to the relative compact derivation $\tilde{\delta}_n$ restricted to \tilde{A}_{n+2} .

Let $T_{n+1} \in f(\tilde{B})$ be such that $\tilde{\delta}_n$ agrees with ad T_{n+1} on \tilde{A}_{n+2} . Since

$$\mathbf{A}_n \otimes I \subset \mathbf{A} \otimes I \subset \mathbf{A} \otimes \ell = \mathbf{A}_{n+1}$$

and $\tilde{\delta}_n$ vanishes on \tilde{A}_{n+1} , we see that ad T_{n+1} vanishes on $A_n \otimes I$, i.e.,

$$T_{n+1} \in \left(\mathbf{A}_n \otimes I\right)' \cap f\left(\tilde{B}\right) = \left(\mathbf{A}_n' \otimes B\left(H_0\right)\right) \cap fg\left(\tilde{B}\right)$$

Then for all $i, j \in \mathbb{Z}, (T_{n+1})_{ij} \in A'_n$ and

$$(T_2)_{ij} \otimes E_{nn} = (I \otimes E_{ni})T_{n+1}(I \otimes E_{jn}) \in f(\tilde{B})$$

whence by Lemma(12)(a) $(T_{n+1})_{ij} \in f(B)$. But we saw that $d'_n \cap f(B) = \{0\}$, hence $(T_{n+1})_{ij} = 0$ for all $i, j \in \mathbb{Z}$, so $T_{n+1} = 0$. Therefore $\tilde{\delta}_n$ vanishes also on \tilde{A}_{n+2} and hence on $I \otimes \wp$. Now ℓ and \wp generate $B(H_0)$, whence $\tilde{A}_{n+1} = A \otimes \ell$ and $I \otimes \wp$ generate \tilde{A} . Thus by the σ -weak continuity of $\tilde{\delta}_n$ (see [6]) we see that

$$\tilde{\delta}_n = \tilde{\delta} - aAT_n = 0, i.e., \tilde{\delta} = aAT_n.$$
 Clearly $\delta = ad\phi^{-1}(T_n)$ and $\phi^{-1}(T_n) \in A(B)$

Let us assume in this part that *B* is semi-finite and let τ be a fsn trace on it. Beside the closed ideal f(B) we can also consider the (non closed) two-sided norm-ideals $C_{1+\varepsilon}(B,\tau)$ for $1 \le 1 + \varepsilon < \infty$ defined by

$$C_{1+\varepsilon}(B,\tau) = \left\{ B \in B | \tau(|B|^{1+\varepsilon}) < \infty \right\}$$
$$\|B\|_{1+\varepsilon} = \tau(|B|^{1+\varepsilon})^{\frac{1}{1+\varepsilon}} \quad \text{for } B \in C_{1+\varepsilon}(B,\tau).$$

Obviously,

$$C_{1+\varepsilon}(B,\tau)=B\cap L^{1+\varepsilon}(B,\tau),$$

where the latter is the non commutative $L^{1+\varepsilon}$ -space of *B* relative to τ (see [14]).

Recall the following facts about $L^{1+\varepsilon}(M)$ spaces in the case of a general W* algebra M and $1 \le 1+\varepsilon < \infty$ ($L^{\infty}(M)$) is identified with M): $L^{1+\varepsilon}(M)$ is a Banach space, its dual is isomorphic to $L^{\frac{\varepsilon}{1+\varepsilon}}(M)$ (with $\frac{1}{1+\varepsilon} + \frac{1+\varepsilon}{\varepsilon} = 1$), and the duality is established by the functional tr on $L^{1}(M)$, where if $A \in L^{1+\varepsilon}(M)$, $B \in L^{\frac{\varepsilon}{1+\varepsilon}}(M)$ we have AB, $BA \in L^{n}(M)$ and tr(AB) = tr(BA), $|tr(AB)| \le ||A||_{1+\varepsilon} ||B||_{\frac{\varepsilon}{1+\varepsilon}}$,

$$\left\|A\right\|_{1+\varepsilon} = \left(tr\left|A\right|^{1+\varepsilon}\right)^{\frac{1}{2}+\varepsilon} = \max\left\{\left|trAB\right| \left|B \in L^{\frac{\varepsilon}{1+\varepsilon}}\left(M\right), \left\|B\right\|_{\frac{\varepsilon}{1+\varepsilon}} \le 1\right\}\right\}$$

(see [14]). Of course, if M = B we can identify $L^{1+\varepsilon}(M)$ with $L^{1+\varepsilon}(B, \tau)$ and tr with τ . The following inequality will be used here only in the semi-finite case and in the context of $C_{1+\varepsilon}$ -ideals, but since the same proof holds for $L^{1+\varepsilon}$ -spaces, we shall consider the general case.

Corollary (14). Let *M* be a W* algebra, $\varepsilon \ge 0, A \in L^{1+\varepsilon}(M)$ and

$$Q_n, Q_{n+1} \in p(M), Q_n Q_{n+1} = 0, Q_n + Q_{n+1} = 1.$$
 Then

$$\|A\|_{1+\varepsilon}^{1+\varepsilon} \ge \|Q_n A Q_n\|_{1+\varepsilon}^{1+\varepsilon} + \|Q_{n+1} A Q_{n+1}\|_{1+\varepsilon}^{1+\varepsilon}$$

Proof. Let us first note that

$$\left|\sum_{i=n}^{n+1} Q_i A Q_i\right|^{1+\varepsilon} = \sum_{i=n}^{n+1} \left| Q_i A Q_i \right|^{1+\varepsilon}$$

And

$$\left\|\sum_{i=n}^{n+1} Q_i A Q_i\right\|_{1+\varepsilon}^{1+\varepsilon} = \sum_{i=n}^{n+1} \left\|Q_i A Q_i\right\|_{1+\varepsilon}^{1+\varepsilon}$$

Consider first $1 + \varepsilon = n$ and take the polar decomposition's

$$Q_i A Q_i = U_i |Q_i A Q_i|, \ i = n, n+1.$$

Then $U_i U_i^*$ and $U_i^* U_i$ are majored by Q_i and hence U_i commutes with Q_j . Therefore $B = (U_n + U_{n+1})^*$ commutes with Q_i and ||B|| = 1. Then

$$\begin{split} \|A\|_{I} &\geq |trAB| \\ &= \left| tr \left(\sum_{i=n}^{n+1} Q_{i} B A Q_{i} \right) \right| \\ &= tr \left(\sum_{i=n}^{n+1} Q_{i} A Q_{i} \right) \\ &= \sum_{i=n}^{n+1} \|Q_{i} A Q_{i}\|_{n}. \end{split}$$

Consider now $\varepsilon > 0$. Let $B \in L^{\frac{\varepsilon}{1+\varepsilon}}(M)$ be such that $||B||_{\frac{\varepsilon}{1+\varepsilon}} \le 1$ and

$$\left\|\sum_{i=n}^{n+1} Q_i A Q_i\right\|_{1+\varepsilon} = tr\left(\left(\sum_{i=n}^{n+1} Q_i A Q_i\right) B\right).$$

Take the polar decomposition's A = U|A| and B = V|B|, then VU are in M and |A|, |B| are in

 $L^{1+\varepsilon}(M), L^{\frac{\varepsilon}{1+\varepsilon}}(M)$, respectively. Let

$$f(z) = tr\left(\sum_{i=n}^{n+1} Q_i U |A|^{(1+\varepsilon)z} Q_i V |B|^{\left(\frac{\varepsilon}{1+\varepsilon}\right)(1-z)}\right).$$

Then by standard arguments, it is easy to see that f is analytic on $0 < Re \ z < n$ and continuous and bounded on $0 \le Re \ z \le n$. Then by the three-line theorem (see [4]) we have

$$f\left(\frac{1}{1+\varepsilon}\right) \leq \max_{t\in\mathbb{R}} f\left(it\right)^{\varepsilon_{1+\varepsilon}} \max_{t\in\mathbb{R}} f\left(1+it\right)^{\gamma_{1+\varepsilon}}$$

Now $f\left(\frac{1}{1+\varepsilon}\right) = \left\|\sum_{i=n}^{n+1} Q_i A Q_i\right\|_{1+\varepsilon}$ and by Holder's inequality

$$\begin{aligned} \left| f\left(it\right) \right| &= tr \left\| \left(\sum_{j=n}^{n+1} \mathcal{Q}_{j} U \left| A \right|^{i(1+\varepsilon)t} \mathcal{Q}_{j} V \left| B \right|^{-i\left(\frac{\varepsilon}{1+\varepsilon}\right)t} \left| B \right|^{\frac{\varepsilon}{1+\varepsilon}} \right) \right\| \\ &\leq \left\| \sum_{j=n}^{n+1} \mathcal{Q}_{j} U \left| A \right|^{i(1+\varepsilon)t} \mathcal{Q}_{j} V \left| B \right|^{-i\left(\frac{\varepsilon}{1+\varepsilon}\right)t} \left\| \left\| B \right\|^{\frac{\varepsilon}{1+\varepsilon}} \right\|_{1} \\ &\leq \left(\max_{j} \left\| \mathcal{Q}_{j} U \left| A \right|^{i(1+\varepsilon)t} \mathcal{Q}_{j} \right\| \right) \left\| V \left| B \right|^{-i\left(\frac{\varepsilon}{1+\varepsilon}\right)t} \left\| \left\| B \right\|^{\frac{\varepsilon}{1+\varepsilon}} \\ &\leq n. \end{aligned}$$

Again by Holder's inequality applied twice and by the result already obtained in the $\varepsilon = 0$ case,

$$\begin{split} \left| f\left(1+it\right) \right| &= tr \left| \left(\sum_{j=n}^{n+1} Q_j U \left| A \right|^{i(1+\varepsilon)t} \left| A \right|^{1+\varepsilon} Q_j V \left| B \right|^{-i\left(\frac{\varepsilon}{1+\varepsilon}\right)t} \right) \right| \\ &\leq \left\| \sum_{j=n}^{n+1} Q_j U \left| A \right|^{i(1+\varepsilon)t} \left| A \right|^{1+\varepsilon} Q_j \right\|_{1} \left\| V \left| B \right|^{-i\left(\frac{\varepsilon}{1+\varepsilon}\right)t} \right\| \\ &\leq \left\| U \left| A \right|^{i(1+\varepsilon)t} \left| A \right|^{1+\varepsilon} \right\|_{1} \\ &\leq \left\| U \left| A \right|^{i(1+\varepsilon)t} \left\| H \right\|^{1+\varepsilon} \right\|_{1} \\ &\leq \left\| A \right\|_{1+\varepsilon}^{1+\varepsilon} \end{split}$$

Thus $f\left(\frac{1}{1+\varepsilon}\right) \leq \left\|A\right\|_{1+\varepsilon}$ whence by the second equality in this proof,

$$\left\|A\right\|_{1+\varepsilon}^{1+\varepsilon} \geq \left\|\sum_{i=n}^{n+1} Q_i A Q_i\right\|_{1+\varepsilon}^{1+\varepsilon} = \sum_{i=n}^{n+1} \left\|Q_i A Q_i\right\|_{1+\varepsilon}^{1+\varepsilon}$$

Data Availability

No data were used to support this study.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- I. Chifan, S. Popa, J.O. Sizemore, Some OE- and W*-rigidity results for actions by wreath product groups, J. Funct. Anal. 263 (2012), 3422–3448
- [2] M. Breijer, Fredholm theories in von algebras I, Math. Ann. 178 (1968), 243-254.
- [3] E. Christensenex, Extension of derivations, J. Funct. Anal. 27 (1978), 234-247.
- [4] J. Conway, Functions of One Complex Variable, 2nd ed., Springer- Verlag, New York, 1978.
- [5] J. Dixmier, Les Algebres d'operateurs dans 1'Espace Hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
- [6] F. Gilfeather and D. Larsinn, Nest-subalgebras of von Neumann algebras: commutants modulo compacts and distance estimates, J. Oper. Theory, 7 (1982), 279-302.
- [7] A. Connes, E. Blanchard, Institut Henri Poincaré, Institut des hautes études scientifiques (Paris, France), Institut de mathématiques de Jussieu, eds., Quanta of maths: conference in honor of Alain Connes, non commutative geometry, Institut Henri Poincaré, Institut des hautes études scientifiques, Institut de mathématiques de Jussieu, Paris, France, March 29-April 6, 2007, American Mathematical Society; Clay Mathematics Institute, Providence, R.I.: Cambridge, MA, 2010.
- [8] S. Albeverio, Sh. Ayupov, K. Kudaybergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal. 256 (9) (2009), 2917–2943.
- [9] V. Kaftal, Relative weak convergence in semifinite von Neumann algebras, Proc. Amer. Math. Soc. 84 (1982), 89-94.
- [10]S. Sakal, C*-Algebras and W*-Algebras (Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 60), Springer-Verlag, Berlin, New York, 1971.
- [11] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
- [12] N. Higson, E. Guentner, Group C*-algebras and K-theory, in Noncommutative Geometry (Martina Franca, 2000), pp. 137-251. Lecture Notes in Math., 1831.
- [13] D. Voiculescu, Free non-commutative random variables, random matrices and the II₁-factors of free groups, Quantum Probability and Related Topics VI, L. Accardi, ed., World Scientific, Singapore, 1991, pp. 473–487.
- [14] A.F. Ber, F.A. Sukochev, Commutator estimates in W*-factors, Trans. Amer.Math. Soc. 364(2012), 5571-5587.
- [15] F. Murray, J. von Neumann: Rings of operators, IV, Ann. Math. 44(1943), 716-808.

- [16] J. Peterson, L2-rigidity in von Neumann algebras, Invent. Math. 175 (2009), 417-433.
- [17] B.E. Johnson, S.K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972), 39–61.
- [18] R. Kadison, A note on derivations of operator algebras, Bull. Lond. Math. Soc. 7 (1975), 41-44.
- [19] K. Dykema, Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J. 69 (1993), 97-119.
- [20] C. Consani, M. Marcolli, Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry, Selecta Math. 10 (2004), 167.
- [21] A.F. Ber, F.A. Sukochev, Commutator estimates in W*-algebras, J. Funct. Anal. 262 (2012), 537–568.
- [22] D. Pask, A. Rennie, The noncommutative geometry of graph C*-algebras I: The index theorem, J. Funct. Anal. 233 (2006), 92–134.
- [23]S. Popa, F. Radulescu, Derivations of von Neumann algebras into the compact ideal space of a semifinite algebra, Duke Math. J. 57(2)(1988), 485–518.
- [24] I.E. Segal, A non-commutative extension of abstract integration, Ann. Math. 57 (1953), 401–457.