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ABSTRACT. In this paper, we study the compact derivations on W* algebras. Let M  be W*-algebra, let ( )LS  M  be 

algebra of all measurable operators with M , it is show that the results in the maximum set of orthogonal 

predictions. We have found that W* algebra A  contains the Center of a W* algebra ß and is either a commutative 

operation or properly infinite. We have considered derivations from W* algebra two-sided ideals.  

 

1. INTRODUCTION 

     Let M  be a W*-algebra and let ( )Z M  be the center of M . Fix a M and consider the inner 

derivation a  on M  generated by the component a , which is  :( ) ,a a =  . 

      The norm closing two sided ideal ( )f B  generated by the finite projections of a W* algebra 

B  behaves somewhat similar to the idealized compact operators of ( )B H  (see [11],[8],[9]). 

Therefore, it is natural to ask about any sub-algebras d  of B that is any derivation from   into 

( )f B  implemented from an element of ( )y B . 
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       We perform two main difficulties: the presence of the center of B  and the fact that the main 

characteristic in [8] proof (that is, if nQ , is a sequence of mutually orthogonal projections and 

( )T B H  hence 0n nQ TQ    for all n implies that T  is not compact) failure  to generalize 

to the case in which g  is of Type II .  

 Finally, we have considered derivations from d at the two-sided 

( ) ( )( )1

1 , ,  1 1C B B L B

   +

+ =   +    to obtain faithful finite normal trace   on B . 

 

2. NOTATIONS PRELIMINARY 

Lemma (1). Let B  be a semi-finite algebra, let ( )0Q p B  and 0 0x Q  be such that
0x , is a 

faithful trace on 
0QB . Assume there are ( )nQ p B , ( )nF p and nU B  for 1, n ,...i in n += , 

such that the projections nQ  are mutually orthogonal and * *,  n n n o n n nQ U U Q F U U= =  for all n  

(i.e., 0n nQ Q F ). Let 0n n nx U F x= . Then n JRWx O→ . 

Proof. Assume that 
i

n in n
Q n



=
= . Let   be a faithful semi-finite normal ( )fsn   trace on B+  to 

be agreed on 
0QB  with 

0x . Then for all 
nQB B+  we have 

( ) ( )

( )

( )

( )
( )

0

* *

* *

*

*

.
n

n n n n

n n n n

o n n n n o

x n n n n

x

B U U BU U

U U U BU

Q F U BU F Q

F U BU F

B

 









=

=

=

=

=

 

Let ( )P p B  be any semi-finite projection. Then by [11] there is a central decomposition of the 

identity ( )1, , 0E E p E E    
=  =  for    such that ( )PE   for all   . Then 

( ) ( )

( )

1

1
n

n n

n

x n n

n

PE Q PE Q

Q PE Q

 



 





=



=

=

=





 

2

1

n

n

PE x



=
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whence 0nPE x   for all   . Let 0   and let   be a finite index set such that 

2

0E x



 . Then for all n , 

2 2

0

2

0

2

0

n n n

n n

PE x PE U F x

PU F E x

E x

 
 









 





=

=

 

 





 

Hence from 
22

n nPx PE x



 +   where 0nPx → , to completes the proof. 

Lemma (2). Let ( )T f P , then there is an 0   and ( )0 E p   such that for every 

( )0 F p   with F E  we have ( )TF  . 

Proof. Let ( )1
2

0T =   and let G  be the sum of a maximal family of mutually orthogonal 

central projections G
 such that ( )TG  . Then  

( ) ( )supTG TG   =  , hence 1G  . Let E Z G= −  and let ( )0 F P   with F E . 

Since 0FG = , by the maximally of the family we have ( )TF  .  

 

3. RELATIVELY COMPACT DERIVATION 

Let M  be a W


-algebra and let ( )Z M  be the center of M . Fix a M and consider the inner 

derivation a  on M generated by the element a , that is  :( ) ,a a  =  . Obviously, a  there is a 

linear bounded operator on ( ),   
M

M  , where   
M

 is a C
 -norm on M . It is known that 

there exists ( )c Z M  such that the following estimate holds: a M
a c  − . In view of this 

result, it is natural to ask whether there exists is an element y M  with  1y   and ( )c Z M

such that  ,  a y a c − . 

Definition (3).  A linear subspace I  in the W* algebra M equipped with a norm   
I

  is said to 

be a symmetric operator ideal if 
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(i)     ,
I

S S for all S I    

(ii)     ,
II

S S for all S I =    

(iii)      ,  ,
I I

ASB A S B for all S I A B M   . 

   Observe, that every symmetric operator ideal I  is a two-sided ideal in M , and therefore by 

[13], it follows from 0 S T   and T I  that S I  and 
I I

S T . 

Corollary (4). Let M be a W 
-algebra and let I  be an ideal in M . Let : M I → be a 

derivation. Then there exists an element a I , such that  ,a a = =  . 

Proof. Since   is a derivation on a W


-algebra, it is necessarily inner [8]. Thus, there exists an 

element d M , such that ( ) ( )  · ,d d  = =  . It follows from the hypothesis that  ,d M I  . 

   Using [22] (or [20]), we obtain  , ,d M d M I I
   = −  =   and  , , 1, 2kd M I k = , where 

1 2 ,  kd d id dk d M= + =  , for 1,2k = . It follows now, that there exist ( )1 2,  c c Z M  and 

( )1 2,u u U M , such that  , 1/ 2k k k kd u d c −  for 1,2k = . Again applying [20], we obtain 

k kd c I−  , for 1,2k = . Setting ( ) ( )1 1 2 2:a d c i d c= − + − , we deduce that a I  and  ,a =  . 

Corollary (5). Let  be a semi-finite W* -algebra and let  be a symmetric operator space. Fix 

 and consider inner derivation  on the algebra  given by 

. If , then there exists  satisfying the inequality 

and such that . 

Proof. The existence of  such that . Now, if , then 

 . Hence, if , then 

, where  and  for , and so 

, that is . 

 

 

 

M E

( )a a S M=  a = ( )LS M

( )   ( ), ,  x a x x LS M =  ( )M E  d E

E M E
d 

→
 ( )  ,x d x =

d E ( )  ,x d x = ( )u U M

( ) 2
E E E EE

u du ud du ud d = −  + =  1 : 1x M x M x =  

4

1 i ii
x u

=
= ( )iu U M 1i  1,2,3,4i =

( ) ( )
4

1
8i i EiE E

x u d  
=

  8
M E E

d
→
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4. A COMMUTATIVE OPERATION ON W* SUB-ALGEBRAS 

 When A  a commutative operation is is crucial because it provides the following explicit way to 

find an operator T B  implementing the derivation. 

For the rest of this section let   be any a commutative operation sub-algebras of B  and 

: B →  be any derivation. Let u  be the unitary group of   and M  be a given invariant 

mean on u , i.e., a linear functional on the algebra of bounded complex-valued functions on u  

such that 

(i) For all real ( )  ( ) ,  f inf f U U u Mf sup f U U u     

(ii) For all ( ) ( ),  ,    U UU u Mf MS where f V f UV for V u = =  . 

Thus M  is bounded and ( )  f  U uMf sup U   for all f (see [8] for the existence and 

properties of M ). 

    For each B   the map 

( )( )M U U  →  

is linear and bounded and hence defines an element ( )T B


 . Explicitly, 

( ) ( )( )  T M U U for all B   

→   

The same easy computation as in [8] shows that a T =  . Notice that for all A B  the map 

( ) ( )( )M U BU E B  → =  

defines an element ( )E B  which clearly belongs to B . Moreover it is easy to see that E  is 

a conditional expectation (i.e., a projection of norm one) from B  onto B  (see [6]).  

 

Theorem (6). Let   be a commutative operation W* sub-algebras of B containing the center  

of B . For every derivation ( ): f B →  there is a ( )T f B such that  a T =  . 

    We have seen that given an invariant mean M  on u  there is a unique T B  such that 

 a T =   and ( ) 0E T = . We are going to show that ( )T B . Reasoning by contradiction 

assume that ( )T B . We proof requires several reductions to the restricted derivation 
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( ):E E f B  →  for some ( )0 E p  . To simplify notations we shall assume each time that 

1E = . 

    Let us start by noticing that if ( )iQ p   for 1, 1,  , 0n ni n n Q Q += + =  and 1n nP Q Q += + , then 

( ) ( )
1

1 1

n

i i n n n n

i n

PTP QTQ Q Q Q Q 
+

+ +

=

= + +  

hence 

( ) ( ) ( )
1

max
n

i i i i
i

i n

PTP QTQ QTQ  
+

=

= +  

 

Definition (7). For every ( )Q p   define    ,  Q Q =  to be the central projection. Set 

( )   1P P p P=   = . 

Thus P p  iff ( ) ( )PTPG TG =  for all ( )G p . We collect several properties of  Q . 

Corollary (8). Let B  be a semi-finite W* algebra with a trace  , let   be a properly infinite W* 

sub-algebras of B  and let 1 1  +   . Then for every derivation ( )1: ,C B +→  there is 

( )1 ,a T C B +  such that a T =  . 

In the notations introduced there, it is easy to see that ( )( ) ( )1 1, ,C B C B   + += ), where 

0  =   and 0  is the usual trace on ( )0B H . We can actually simplify the proof by choosing 

n I  =  since the condition   is no longer required. 

Corollary (9). Let 1n nP Q Q += + . Then there is a largest central projection  1,n nQ Q +  such that 

for every ( )G p  with  1,n nG Q Q + , we have ( ) ( )1 1QTQ G PTPG = . 

Proof. Let ( ) ( ) ( ) i i iG G p QTQ G PTPG =  =  and ( )G p = +    if 

( )G p  and 0   then nG G . Since ( ) ( )maxi i iPTPG QTQG =  for all ( )G p , we 

see that ( )1n nG G p+ = . Notice that   is hereditary (i.e., G −   and ( ) , FF p G   +  

imply F ). 
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    Let  1, supn nQ Q + =  . We have only to show that  1,n nQ Q +  . Let ( )G G


 + = +  be 

the sum of a maximal collection of mutually orthogonal projections ( )G


+  . Then for 

every F  we have   ( )( )1, 0n nQ Q G F+ − + =  because of the maximal of the collection of  . 

Then  1,n nQ Q G + = + . Consider now any ( ) , 0G p   , then ( )G G G


= +  and since 

( ) ( )G G G
 

 +  +  , we have ( )( ) ( )( )n nQ TQ G G PTPG G
 

   + = +  for all  . 

Since ( ) ( )( ).  n nQ TQ G resp PTPG    is the direct sum of then 

( )( ) ( )( )( ).  n nQ TQ G G resp PTPG G
 

   + + , then we have 

( ) ( )( )

( )( )

( )

sup

sup

n n n nQ TQ G Q TQ G G

PTPG G

PTPG







  

 



+=

=

= +

 

whence nG G . Since 0   is arbitrary, we have  1,n nG Q Q ++ =   which 

 completes the proof. 

Corollary (10). (i) If 1 0n nQ Q + =  with ( )iQ p   then  11 ,n nQ Q +−  1,n nQ Q + . 

(ii) If 1n nQ Q +  with ( )iQ p   then    1n nQ Q + . 

(iii) If 0   with ( ) ,QQ p p  +   then    ,  Q Q =  and    1 Q −   

If ( ) 0TG   for all ( )0 E p   then the following hold: 

(iv) If ( )E p  then  E E= . 

(v) If ( )Q p   then   ( )Q Qc , where ( )c Q  is the central support of Q . 

Proof. We have to show that for every ( )  1,  1 ,  n nG p G Q Q +  −  we have 1nG G + . Let 

E +  be the sum E of a maximal collection of mutually orthogonal projections of 1nG +  

that are majored by G . Then 
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( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

sup

sup

n n n n

n n n n

n n n n

Q TQ F Q TQ F

TQ Q Q Q

Q Q Q Q

F

T F







 





+ + + +

+ + + +

+ +

= + +

=

=  

whence 1nE G ++  . By the maximalist of the collection, ( )0 G E  − +  does not majority any 

nonzero projection of 1nG +  and since ( ) 1n np G G +=  , any central projection ( )G G E   − +  

must be in nG . By definition of  , this implies that ( )G E − +   whence 

( )  1,n nG E Q Q +− +  . So,  

( )  11 ,n nG E G Q Q +− +   −  and hence 1nG E G += +   which completes the proof. 

    (ii) Let ( )G p  and  nG Q . Then ( ) ( ) ( )1 1n n n nTG Q TQ G Q TQ G   + += 

( )TG  whence equality holds and    1n nQ Q +  by the maximalist of  1nQ + . 

    (iii)  ,  Q   is maximal under the condition: if ( )G p  and  ,  G Q   then 

( ) ( ) ( )( ) ( )QTQG Q T Q G TG     + + =  

which is the same condition defining    ,Q I Q Q− = . Thus    ,  Q Q = . Applying this to   

we have    ,Q =   and thus by (i) we have      1 , 1Q Q  − = − . 

    (ii) Let ( ),E E p+   then ( )( ) ( )( )ETE E TE E   + = + . This implies that if 0  , 

then  E E+   so  E E  and if    E E E E+ = −   then  

( )( ) ( )( )0 ETE E T E   = + = +  whence  E E= . 

    (v) Follows at once from (ii) and (iv). 

    The condition that ( ) 0TE   for all ( )0 E p   is of course meaningless unless B  is 

properly infinite. Hence, we may assume without loss of generality that: 

B  is properly infinite and semi-finite.  

There is an 0   such that ( )TE   for all ( )0 E p  . 
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Lemma (11). Let P p  and  ) ( 1, ,  ,n PTP n PTPR X R X +=  = − − , where ( )PTPX  denotes 

the spectral measure of the self-adjoint operator PTP . Then there is an ( )nE p , with 

nE I E= −  such that i iR E  are properly infinite and ( ) i i jc R E E=  for , n 1i n= + . 

Proof. Let  )1 ,n n PTP
R R R X += + =   and let 0F  be any central projection. If RF  were finite, 

we would have 

( ) ( )

( )( )

( )( )

1

1

TF PTPF

PTP R F

PTP R F

 







=

= −

= −



 

Thus RF  is infinite and nonzero. Hence R  is properly infinite and ( )c R n= . Now let 1E  be 

the maximal central projection majored by ( )nc R , such that n nR F  is properly infinite. Then 

( ),  n n nc R E E=  and ( )n nR n E−  is finite, hence ( ) 1 1n n n nR n E R E+ + +− =  is properly infinite and 

( )1 1 1,  n n nc R E E+ + += . 

    End of the Proof of Theorem (6). Take any ( )00 Q p B   such that 
0QB  has a faithful trace 

0x  with 0 0x Q H  and assume 
0 1x = . Let ,P p    be the not decreasing to zero. We are 

going to construct inductively a sequence ( ) ( ), , ,n n n nF p Q p B U     partial 

isometrics in B, nx H  such that 

(a) * *

0 0, ,  . .,n n n n n n n nU U Q U U Q F i e Q Q F= =  

(b) 0n n n nx U F x Q H=   

(c) 0  n mQ Q for n m=    

(d) ( )    
n mn m hence P P for n m      

(e) 
nnQ p  

(f) 
1

1

n
nnp x +

  

(g) 2,n nTx x  . 
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    The induction can be started with an arbitrary P ; assume we have the construction for 1n− . 

Let us apply Lemma(11) to 
n

P P= and obtain ( ) ( ),     = , 1i iE p R p B for i n n  +  as defined 

there. Then 

2 2 2

0 1 01 o n nx E x E x+= = +  

Let nF be (any of) the projection nE  or 1nE +  for which 
2 1

0 2iE x   and let i  be the 

corresponding index. Then i nR F  is properly infinite and has central support nF . Now 0Q  is 

finite having a finite faithful trace 
0x , hence so is 

0 0   1 1j jQ F Q Q for j n   −  and 

( )1

1

n

j nj
Q F

−

= . Let ( ) 1

1
,  1

n

n i n j nj
S inf R F Q F

−

=
= − . By the parallelogram law (see [2]) applied to 

nF  we have that 

( )
1 1

1 1

inf , 1
n n

i n n j n j n i n

j j

R F S Q F Q F R F
− −

= =

     
− − −    

     
   

whence i n nR F S−  is finite and hence nS  is properly infinite and ( )n nc S F= . Since 0 nQ F  is finite 

and ( )0 n nc Q F F  we have 0 n nQ F S  , i.e., there is a partial isometry nU B and a 

( ) ,n n nQ p B Q S   such that (a) holds. Let nx  be defined by (b) and choose 1n n + so that (d) 

and (f) hold. -Since 
nn iQ R P  we have (e), since ( )1

1
1

n

n j nj
Q Q F

−

=
 − we have (c). Finally 

nn i n nx R x P x= =  hence (g) follows from 

( ) ( )

( )

( )
2

2

0

1
2

, ,

,

,

.

n n

n n

n n n n

i n i n

i n i n

n

n

Tx x P TP x x

P TP R x R x

R x R x

x

F x

 

 









=

=



=

=



 

    Let now 
1nn n ny x P x +

= − . B is semi-finite, hence we can apply Lemma (1) to obtain that 

0n BEWx → . Since 
1

0
n nP x +

→  we thus have 0n BEWy →  and n ny P H , where 
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( )
1n nnP P P p d  +

= −  and are mutually orthogonal by (d). Clearly for n  large enough, 

( ) ( ) 1
4

,
nn n yTy y T =  . Since ( ) ( )( )

n ny yT U UM  = , by the properties of the invariant 

mean mentioned, we have that ( )( )  1
4

sup
ny U U U u     . Thus we can find for every n , a 

unitary 

nV u such that ( )( ) 1
4

,n n n nV V y y   . Let 
1 n nn

A V P


=
= , then A d and 

( ) ( )( )

( )( )

( )( )

( )( )
1
4

, ,

,

,

,

n n n n n n

n n n n

n n n n n n

n n n n

A A y y P A A P y y

P A AT A TA P y y

PV V P y y

V V y y

 







 

 





=

= −

=

=

=

 

for all n . Therefore ( ) 0nA y → . But because of (Π), we have ( ) ( )A f B  , which 

completes the proof. 

 

5. THE PROPERTY OF INFINITE W* SUB-ALGEBRA 

Lemma (12). Let   be a properly infinite projection and 

. Let projection  be finite or properly infinite,  and 

. Let . For every  we denote by  such a projection that  is 

the largest central projection, for which   holds. We have  

and for  

 

the following relations  and . Moreover, if all 

projections  are finite then  is a finite projection as well. 

Proof. Since,  we have  

( ) ( ) ( )0 ,  1;  0,a

zb Z M s b e  = 

( )( )0, 1a

zc e  = ( )q P M ( ) 1c q =

( )0,a

zq e  0n  n
nz 1 nz−

( ) ( )1 1 a

n n zz q z e−  − ( ),nb + 1n nz 

( )1 1 1 1

1

: n n n

n

d z z z b 


+ +

=

 
 −


= + 




( ) 1: , ,  0a

zhold q e d d b+   ( ) 1s d =

( ), ,  1a

z ne b n +  ( ),a

ze d +

( ) ( )1 , ,a a

z n z ne b e b + +  +
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. Hence,  for every . 

In addition,  and  is properly infinite projection. Hence, in 

the case when  is finite projection, it follows that . Let us consider the case when  is a 

properly infinite projection with  and such that . In this case, with 

 and deduce . 

   All other statements follow from the form of element . Since,  

 and  for every . Observe also that 

. 

   Finally, let all projections  be finite. Since  

 , we have  

 

 

for every . There projections standing on the right-hand sides are finite. Hence,  

is finite projection as a sum of the left-hand sides [22]. 

   We shall use a following well-known implication 

. 

We supply here a straightforward argument. Let  be such that 

. Then  and therefore  

. This means . 

    As in [6] we can use Theorem (6) to extend the result to the properly infinite case. 

Theorem (13). Let   be a properly infinite W* sub-algebra of B  containing the center of B . 

For every derivation ( ): f B →  there is a ( )T f B  such that  a T =  . 

    Before we start the proof let us recall that if   is properly infinite there is an infinite 

countable decomposition of the identity into mutually orthogonal projections of  , all 

( ) ( ) ( ) ( ) ( )1 1 1 11 1 , 1 ,a a a

z n n z n n z ne z q z e b z e b + + + +−  − +  − + 1n nz z+  n

( ) ( ), 0,a a

z n n ze b e +  + ( )0,a

ze +

q 1n nz  q

( ) 1c q = ( )0,a

zq e 

( ) ( ),  0, , ,a a

z n z np q q e q e b= = + = + ( )
1

1nn
z c q



=
 =

d
1 1 1 ,z d z b=

( ) ( )1 1 1n n n n nz z z z b+ + +− = − ( ),a

n n z nz q z e b + n

( ) ( ) ( )( )1 11
1n nn

s d s b z z z


+=
= + − =

( ), ,  1a

z ne b n + 

( )1 1 1, n ndz b d z z += − = ( )1 1n n nb z z + + −

( ) ( )1 1 1, , ,a a

z ze d z e b z+ = +

( )( ) ( )( )1 1 1, ,a a

z n n z n n ne d z z e b z z+ + ++ − = + −

n ( ),a

ze d +

( )( ) ( ) ( ), ,  0p q zp zq z P Z M z c p c q     

( )z z Z M 

( ) ( ) ( ) ( )( )0 z c pz c qz z c p c q    ( ) ( )z c p c q  

( ) ( )z zp z p z q z zq   = = zp zq
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equivalent in   to I, and thus a fortify equivalent in B  to 1  [8]. Therefore there is a spatial 

isomorphism 

( )0: B B B B H → =   

with ( )1

0

nH l +=  and 

( ) ( )0B H  =  =   

 [5]. Recall also that the elements B  of B  (or  ) are represented by bounded matrices 

, ,ijB i j     with entries in B  (or ) by the formula 

( ) ( )ij kl jk ilI E T I E T E  =   

where 
ijE  is the canonical matrix unit of ( )0B H . In particular if ,  are the maximal a 

commutative operation subalgebras of ( )0B H of Laurent (resp. diagonal) matrices, then 

( ).B B resp B B     iff 
ijB    is a Laurent matrix with entries in B , i.e.,

ij i jB B −= ,where 

kB , denotes the entry along the kth  diagonal ( ). ij ij iiresp B B=   for all ,i j . 

Proof. Let 1   −=  then 

( )( ) ( ):d f B f B → =  

is a relative compact derivation. Let us define the following W* algebras: 

( )1

1, , ,n n n nB B  −

+=   =   =   =  , and 
2n n+ =  . First, let us notice that 

( ) ( ) ( )( ) ( )

( ) ( )
 

0

0

n f B B B H f B

B f B

  =    

=  

=

 

by [22]. Therefore 

( ) ( ) ( ) ( )( )  1 1 0n n nf B A f B f B − −    =  =   =  

because   is spatial Now 

( )( ) ( )0

.n

B B H B I

I

=   

=     
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Thus we can apply Theorem(6) to the derivation   restricted to the a commutative operation 

sub-algebra 
n  of B  and we obtain a ( )nT f B  such that 

n na T = −   vanishes on 
n . 

Now 

1n nB+
      =  . 

Therefore, for all 
n nA  and 

1 1n nA + + we have 

( ) ( ) ( ) ( )1 1 1 1n n n n n n n n n n n nA A A A A A A A   + + + += = =  

i.e., ( )1n nA +
 and nA  commute and hence 

( ) ( )  1 0n n n f B +
   =  

Thus n  also vanishes on 
1n+ . Now 

n  is a commutative operation and hence so are n  and 

2n+ . Moreover, 

n B     

Implies 

( )1

n B −=      

and hence 

2n nI I B+=          

Thus we can apply again Theorem(6) to the relative compact derivation n  restricted to 
2n+ . 

Let ( )1nT f B+   be such that n  agrees with ad 1nT +  on 
2n+ . Since 

1n nI I +    =   

and n  vanishes on 
1n+ , we see that ad 1nT +  vanishes on n I  , i.e., 

( ) ( ) ( )( ) ( )1 0n n nT I f B B H fg B+
     =     

Then for all ( )1, , n nij
i j T +

   and 

( ) ( ) ( ) ( )2 1nn ni n jnij
T E I E T I E f B+ =     
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whence by Lemma(12)(a) ( ) ( )1n ij
T f B+  . But we saw that ( )  0nd f B  = , hence ( )1 0n ij

T + =

for all ,i j , so 1 0nT + = . Therefore 
n  vanishes also on 

2n+  and hence on I . Now  

and  generate ( )0B H , whence 
1n+ =   and I  generate  . Thus by the  -weak 

continuity of 
n  (see [6]) we see that  

0, . .,n n na T i e a T  − = = =  . Clearly ( )1

nad T  −=  and ( ) ( )1

nT B −  . 

     Let us assume in this part that B  is semi-finite and let   be a fsn trace on it. Beside the 

closed ideal ( )f B  we can also consider the (non closed) two-sided norm-ideals 

( )1 , 1 1C B for  +  +    defined by 

( ) ( ) 

( ) ( )
1

1

1

1

1

11

,

, .

C B B B B

B B for B C B










 

 
+

+

+

+

++

=   

= 

 

Obviously, 

( ) ( )1

1 , , ,C B B L B

  +

+ =   

where the latter is the non commutative 1L + -space of B relative to   (see [14]). 

    Recall the following facts about ( )1L M+  spaces in the case of a general W* algebra M  and 

1 1  +    ( ( )L M  is identified with M ): ( )1L M+  is a Banach space, its dual is isomorphic 

to ( )1L M

+  (with 11

1 1
 

+
+ + = ), and the duality is established by the functional tr on ( )1L M , 

where if ( ) ( )11 ,A L M B L M

 ++   we have ( ), nAB BA L M  and 

( ) ( ) ( )
1

1
,tr AB tr BA tr AB A B 




+
+

=  , 

( ) ( ) 
1
1

1

1

1

1
max , 1A tr A trAB B L M B











+
+

+

+

+
= =    

(see [14]). Of course, if M B=  we can identify ( )1L M+  with ( )1 ,L B +  and tr  with  . The 

following inequality will be used here only in the semi-finite case and in the context of 
1C + -

ideals, but since the same proof holds for 1L +  -spaces, we shall consider the general case.  
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Corollary (14).  Let M  be a W* algebra, ( )10, A L M +   and  

( )1 1 1, , 0, 1n n n n n nQ Q p M Q Q Q Q+ + + = + = . Then 

1 1

1 1 1

1 1 1n n n nA Q AQ Q AQ
  
  + +

+ + +

+ + +
 +  

Proof. Let us first note that 

1
1 1 1n n

i i i i
i n i n

Q AQ Q AQ




+
+ + +

= =

=   

And 

1
1 1

1

1
1

i i

n n

i i
i n i n

Q AQ Q AQ







+
+ +

+

+
= =+

=   

Consider first 1 n+ =  and take the polar decomposition's 

, , 1i i i i iQ AQ U Q AQ i n n= = + . 

Then 
i iU U   and 

i iU U  are majored by iQ  and hence iU  commutes with 
jQ . Therefore 

( )
*

1n nB U U += +  commutes with iQ  and 1B = . Then 

1

1

1

1

.

n

i i

i n

n

i i

i n

n

i i

i n n

A trAB

tr Q BAQ

tr Q AQ

Q AQ

+

=

+

=

+

=



 
=  

 

 
=  

 

=







 

Consider now 0  . Let ( )1B L M


+  be such that 
1

1B 

+

  and 

1 1

1

.
n n

i i i i

i n i n

Q AQ tr Q AQ B


+ +

= =+

  
=   

  
   

Take the polar decomposition's A U A=  and B V B= , then VU  are in M  and ,A B  are in 

( ) ( )1 1,L M L M


 + + , respectively. Let 
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( )
( ) ( )

1
1 1

1 .
n

z z

i i

i n

f z tr Q U A Q V B





+  
+ − 

+ 

=

 
=  

 
  

Then by standard arguments, it is easy to see that f  is analytic on 0  Re z n   and continuous 

and bounded on 0  Re z n  . Then by the three-line theorem (see [4]) we have 

( ) ( ) ( )
1

1 11
1

 1  
t t

if Ma t itx f Max f


 



+ +

+
 

+  

Now 
1

1

1

1

n

i ii n
Q AQf



+

=
+

 
= 

+ 
  and by Holder’s inequality 

( )
( )

( )

1
1

1 1

1
1

1 1

1

n
i t i t

j j

j n

n
i t i t

j j

j n

f it tr Q U A Q V B B

Q U A Q V B B

 


 

 


 

+  
+ −  

+ + 

=

+  
+ −  

+ + 

=

 
=  

 







 

( )( )1
11

1

max

.

i t i t

j j
j

Q U A Q V B B

n









 
+ −   ++ 

+





 

Again by Holder’s inequality applied twice and by the result already obtained in the 0 =  case, 

( )
( )

( )

( )

( )

1
1 1

1

1
1 1

1

1

1 1

1

1 1

1

1

1

1
n

i t i t

j j

j n

n
i t i t

j j

j n

i t

i t

f it tr Q U A A Q V B

Q U A A Q V B

U A A

U A A

A


 




 



 

 





+  
+ + −  

+ 

=

+  
+ + −  

+ 

=

+ +

+ +

+

+

 
+ =  

 













 

Thus ( )1
1 1

f A
 + +
  whence by the second equality in this proof, 

1
1 1

1 1

1 1

1

n n

i i i i

i n i n

A Q AQ Q AQ


 

 


+
+ +

+ +

+ +
= =+

 =   
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