INVARIANT SUMMABILITY AND UNCONDITIONALLY CAUCHY SERIES

NIMET PANCAROGLU AKIN*

Afyon Kocatepe University Department of Mathematics and Science Education

* Corresponding author: npancaroglu@aku.edu.tr

ABSTRACT. In this study, we will give new characterizations of weakly unconditionally Cauchy series and unconditionally convergent series through summability obtained by the invariant convergence.

1. INTRODUCTION

Let σ be a mapping of the positive integers into itself. A continuous linear functional φ on m, the space of real bounded sequences, is said to be an invariant mean or a σ mean, if and only if,

- (1) $\phi(x) \ge 0$, when the sequence $x = (x_j)$ is such that $x_j \ge 0$ for all j,
- (2) $\phi(e) = 1$, where e = (1, 1, 1....),
- (3) $\phi(x_{\sigma(j)}) = \phi(x)$ for all $x \in m$.

The mappings ϕ are assumed to be one-to-one and such that $\sigma^i(j) \neq j$ for all positive integers j and i, where $\sigma^i(j)$ denotes the *i*th iterate of the mapping σ at j. Thus ϕ extends the limit functional on c, the space of convergent sequences, in the sense that $\phi(x) = \lim x$ for all $x \in c$. In case σ is translation mappings $\sigma(j) = j + 1$, the σ mean is often called a Banach limit and V_{σ} , the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences.

Key words and phrases. unconditionally Cauchy series; invariant convergence; invariant convergent series.

 $\odot 2020$ Authors retain the copyrights

Received March 27th, 2020; accepted May 14th, 2020; published June 1st, 2020.

²⁰¹⁰ Mathematics Subject Classification. 40A05.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

It can be shown that

$$V_{\sigma} = \{x = (x_j) : \lim_{i} t_{ij}(x) = \ell \text{ uniformly in } j, \ell = \sigma - \lim x\}$$

where,

$$t_{ij}(x) = \frac{x_{\sigma(j)} + x_{\sigma^2(j)} + \dots + x_{\sigma^i(j)}}{i+1}$$

Several authors including Raimi [19], Schaefer [20], Mursaleen and Edely [10], Mursaleen [12], Savaş [22,23], Nuray and Savaş [14], Pancaroğlu and Nuray [16, 17] and some authors have studied invariant convergent sequences. The concept of strongly σ -convergence was defined by Mursaleen [11]. Savaş and Nuray [24] introduced the concepts of σ -statistical convergence and lacunary σ -statistical convergence and gave some inclusion relations.

Now, we recall the basic concepts and some definitions and notations (See [1, 3-5, 7-9, 13, 15, 21]).

Let X be a normed space. For any given series $\sum_i x_i$ in X, let us consider the sets

$$S(\sum_{i} x_i) = \{(a_i) \in \ell_{\infty} : \sum_{i} a_i x_i \text{ convergent}\}$$

$$S_w(\sum_i x_i) = \{(a_i) \in \ell_\infty : \sum_i a_i x_i \text{ convergent for the weak topology}\}.$$

The above sets endowed with the sup norm and they will be called the space of convergence and the space of weak convergence associated to the series $\sum_{i} x_{i}$.

Definition 1.1. A series $\sum_i x_i$ in a normed space X is said to be a weakly unconditionally Cauchy(wuc) if for each $\varepsilon > 0$ and $f \in X^*$, an $n_0 \in \mathbb{N}$ can be found such that for each finite subset $F \subset \mathbb{N}$ with $F \cap \{1, \ldots, n_0\} \neq \emptyset$ is $\sum_{i \in F} |f(x_i)| < \varepsilon$.

As a consequence, $\sum_i x_i$ is a *wuc* series in X if and only if each functional $f \in X^*$ satisfies that $\sum_{i=1}^{\infty} |f(x_i)| < \infty$.

In [18] it is proved that a normed space X is complete if and only if for every weakly unconditionally Cauchy (*wuc*) series $\sum_{i} x_i$, the space $S(\sum_{i} x_i)$ is also complete.

Diestel [6] proved the following characterization that will be used throughout the paper.

Theorem 1.1. Let $\sum_i x_i$ be a series in a normed space X. Then, the series $\sum_i x_i$ is wuc if and only if there exists H > 0 such that

$$H = \sup\{\|\sum_{i=1}^{n} a_i x_i\| : n \in \mathbb{N}, |a_i| \le 1, i \in \{1, \dots, n\}\}$$
$$= \sup\{\|\sum_{i=1}^{n} \varepsilon_i x_i\| : n \in \mathbb{N}, \varepsilon_i \in \{-1, 1\}, i \in \{1, \dots, n\}\}$$
$$= \sup\{\sum_{i=1}^{n} |f(x_i)| : f \in B_{X^*}\}$$

where B_{X^*} is denotes the closed unit ball in X^*

2. Main Results

Proposition 2.1. Let X be a normed space and (x_n) an invariant convergent sequence in X. Then $(x_n) \in \ell_{\infty}(X)$.

Proof. Let (x_n) be a sequence in X such that $\sigma - \lim_n x_n = x_0$ for some $x_0 \in X$. We can fix $\varepsilon > 0$ and $i_0 \in \mathbb{N}$ satisfying that

$$\left\|\frac{1}{i+1}\sum_{k=0}^{i} x_{\sigma^{k}(j)}\right\| \le \|x_0\| + \varepsilon$$

for every $i \ge i_0$ and $j \in \mathbb{N}$. Then we have that for every $j \in \mathbb{N}$ is

$$\|x_j\| = \|x_{\sigma^0(j)}\| = \left\|\frac{i_0 + 2}{i_0 + 1}\sum_{k=0}^{i_0 + 1} \frac{x_{\sigma^k(j)}}{i_0 + 2} - \sum_{k=1}^{i_0 + 1} \frac{x_{\sigma^k(j)}}{i_0 + 1}\right\| \le \left(\frac{i_0 + 2}{i_0 + 1} + 1\right)(\|x_0\| + \varepsilon)$$

where the last term is a fixed constant, what concludes the proof.

Definition 2.1. A series $\sum_i x_i$ in X is said to be invariant convergent to $x_0 \in X$ if $\sigma - \lim_n s_n = x_0$, where $s_n = \sum_{i=1}^n x_i$ is sequence of partial sums, and we will denote it by $V_{\sigma} - \sum_i x_i = x_0$. Therefore, $V_{\sigma} - \sum_i x_i = x_0$ if and only if

$$\lim_{k \to \infty} \left(\sum_{k=1}^{j} x_k + \frac{1}{i+1} \sum_{k=1}^{i} \left[(i-k+1) x_{\sigma^k(j)} \right] \right) = x_0$$

uniformly in $j \in \mathbb{N}$.

Definition 2.2. x_0 is said to be weak invariant limit of a sequence (x_n) if each function $f \in X^*$ verifies that $\sigma - \lim f(x_n) = f(x_0)$ and we will write $w\sigma - \lim x_n = x_0$.

Let X be a normed space and $\sum_i x_i$ a series in X. We define following sets:

$$S_{\sigma}(\sum_{i} x_{i}) = \{(a_{i}) \in \ell_{\infty} : V_{\sigma} - \sum_{i} a_{i}x_{i} \quad exists\}$$
$$S_{w\sigma}(\sum_{i} x_{i}) = \{(a_{i}) \in \ell_{\infty} : wV_{\sigma} - \sum_{i} a_{i}x_{i} \quad exists\}$$

These spaces are the vector subspaces of ℓ_{∞} and we consider them endowed with the sup norm.

Theorem 2.1. Let X be a Banach space and $\sum_i x_i$ a series in X. Then $\sum_i x_i$ is wuc(weakly unconditionally Cauchy) if and only if $S_{\sigma}(\sum_i x_i)$ is complete.

Proof. Let $\sum_i x_i$ be a wuc series. We will prove that $S_{\sigma}(\sum_i x_i)$ is closed in ℓ_{∞} . Let (a^n) be a sequence in $S_{\sigma}(\sum_i x_i)$, $a^n = (a_i^n)$ for each $n \in \mathbb{N}$ and let also be $a_0 \in \ell_{\infty}$ such that $\lim_n ||a^n - a^0|| = 0$. We will show that $a^0 \in S_{\sigma}(\sum_i x_i)$. Let H > 0 be such that

$$H \ge \sup\{\|\sum_{i=1}^{n} a_i x_i\| : n \in \mathbb{N}, |a_i| \le 1, i \in \{1, \dots, n\}\}.$$

For each natural n there exists $y_n \in X$ such that $y_n = V_{\sigma} - \sum_i a_i^n x_i$. We will see that (y_n) is a Cauchy sequence.

If $\varepsilon > 0$ is given, there exists an n_0 such that if $p, q \ge n_0$, then $||a^p - a^q|| < \frac{\varepsilon}{3H}$. If $p, q \ge n_0$ are fixed, there exists $i \in \mathbb{N}$ verifying

$$\left\| y_p - \left(\sum_{k=1}^j a_k^p x_k + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1) a_{\sigma^k(j)}^p x_{\sigma^k(j)} \right] \right) \right\| < \frac{\varepsilon}{3}$$
(2.1)

$$\left\| y_q - \left(\sum_{k=1}^j a_k^q x_k + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1) a_{\sigma^k(j)}^q x_{\sigma^k(j)} \right] \right) \right\| < \frac{\varepsilon}{3}$$
(2.2)

for each $j \in \mathbb{N}$. Then, if $p, q \ge n_0$ we have that

$$\|y_p - y_q\| \le (2.1) + (2.2) + \left\| \sum_{k=1}^{j} (a_k^p - a_k^q) x_k + \sum_{k=1}^{i} \left[\frac{i-k+1}{i+1} (a_{\sigma^k(j)}^p - a_{\sigma^k(j)}^q) x_{\sigma^k(j)} \right] \right\|,$$
(2.3)

where $(2.3) \leq \frac{\varepsilon}{3}$. Therefore, since X is Banach space, there exists $y_0 \in X$ such that $\lim_n ||y_n - y_0|| = 0$. We will check that $\sigma \sum_i a_i^0 x_i = y_0$, that is,

$$\lim_{k \to \infty} \left(\sum_{k=1}^{j} a_k^0 x_k + \frac{1}{i+1} \sum_{k=1}^{i} \left[(i-k+1) a_{\sigma^k(j)}^0 x_{\sigma^k(j)} \right] \right) = y_0,$$

uniformly in $j \in \mathbb{N}$.

If $\varepsilon > 0$ is given, we can fix a natural n such that $||a^n - a^0|| < \frac{\varepsilon}{3H}$ and $||y_n - y_0|| < \frac{\varepsilon}{3}$. Now, we can also fix i_0 such that for every $i \ge i_0$ is

$$\left\| y_n - \left(\sum_{k=1}^j a_k^n x_k + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1) a_{\sigma^k(j)}^n x_{\sigma^k(j)} \right] \right) \right\| < \frac{\varepsilon}{3}$$

for every $j \in \mathbb{N}$. Then, if $i \ge i_0$ it is satisfied that

$$\begin{split} \left\| y_0 - \left(\sum_{k=1}^j a_k^0 x_k + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1) a_{\sigma^k(j)}^0 x_{\sigma^k(j)} \right] \right) \right\| &\leq \|y_0 - y_n\| \\ &+ \left\| y_n - \left(\sum_{k=1}^j a_k^n x_k + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1) a_{\sigma^k(j)}^n x_{\sigma^k(j)} \right] \right) \right\| \\ &+ \left\| \sum_{k=1}^j (a^n - a^0) x_k + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1) (a_{\sigma^k(j)}^n - a_{\sigma^k(j)}^0) x_{\sigma^k(j)} \right] \right\| \leq \frac{2\varepsilon}{3} \\ &+ \|a^n - a^0\| \left(\sum_{k=1}^{\sigma(j)} \frac{(a_k^n - a_k^0)}{\|a^n - a^0\|} x_k + \sum_{k=1}^i \left[\frac{(i-k+1)}{i+1} \frac{(a_{\sigma^k(j)}^n - a_{\sigma^k(j)}^0)}{\|a^n - a^0\|} x_{\sigma^k(j)} \right] \right) \\ &\leq \frac{2\varepsilon}{3} + \frac{\varepsilon}{3H} H \leq \varepsilon \end{split}$$

for every $j \in \mathbb{N}$. Thus $(a_n^0) \in S_{\sigma}(\sum_i x_i)$.

Conversely, if $S_{\sigma}(\sum_{i} x_{i})$ is closed, since $c_{00} \subset S_{\sigma}(\sum_{i} x_{i})$, we deduce that $c_{0} \subset S_{\sigma}(\sum_{i} x_{i})$. Suppose that $\sum_{i} x_{i}$ is not *wuc* series. Then there exists $f \in X^{*}$ verifying $\sum_{i=1}^{\infty} |f(x_{i})| = +\infty$.

We can choose a natural n_1 such that $\sum_{i=1}^{n_1} |f(x_i)| > 2.2$ and for $i \in \{1, \ldots, n_1\}$ we define $a_i = \frac{1}{2}$ if $f(x_i) \ge 0$ or $a_i = \frac{-1}{2}$ if $f(x_i) < 0$.

There exists $n_2 > n_1$ such that $\sum_{i=n_1+1}^{n_2} |f(x_i)| > 3.3$ and for $i \in \{n_1 + 1, \dots, n_2\}$ we define $a_i = \frac{1}{3}$ if $f(x_i) \ge 0$ or $a_i = \frac{-1}{3}$ if $f(x_i) < 0$.

In this manner we obtain an increasing sequence $(n_k)_k$ in \mathbb{N} and a sequence $a = (a_i)_i$ in c_0 such that $\sum_{i=1}^{\infty} a_i f(x_i) = +\infty$. Since $(a_i)_i \in S_{\sigma}(\sum_i x_i)$, it follows that $\sigma \sum_i a_i x_i$ exists and therefore $\left(\sum_{i=1}^n a_i f(x_i)\right)_n$ is bounded sequence, which is a contradiction.

Then we have the following result.

Corollary 2.1. Let X be a Banach space and $\sum_i x_i$ a series in X. Then $\sum_i x_i$ is a wuc(weakly unconditionally Cauchy) series if and only if for each sequence $(a_i)_i \in c_0$ it is satisfied that $V_{\sigma} - \sum_i a_i x_i$ exists.

Proof. Let $\sum_i x_i$ be a wuc series in X. Then, we have that $S_{\sigma}(\sum_i x_i)$ is complete. Since $c_{00} \subset S_{\sigma}(\sum_i x_i)$, we deduce that $c_0 \subset S_{\sigma}(\sum_i x_i)$, that is, $V_{\sigma} - \sum_i a_i x_i$ exists for every sequence $(a_i) \in c_0$. The converse is proved similar to the end of the previous demonstration.

Remark 2.1. Let X be a normed space and $\sum_i x_i$ a series in X. We consider the linear map $T : S_{\sigma}(\sum_i x_i) \to X$ defined by $T(a) = V_{\sigma} - \sum_i a_i x_i$.

Suppose that $\sum_{i} x_{i}$ is a wuc series and consider $H = \sup\{\|\sum_{i=1}^{n} a_{i}x_{i}\| : n \in \mathbb{N}, |a_{i}| \leq 1, i \in \{1, ..., n\}\}$. Then, it is easy to check that if $a \in S_{\sigma}(\sum_{i} x_{i})$ then $\|T(a)\| = \|V_{\sigma} - \sum_{i} a_{i}x_{i}\| \leq H\|a\|$ and therefore T is continuous.

Conversely if T is continuous and $\{a_1, \ldots, a_j\} \subset [-1, 1]$, it is satisfied that $\|\sum_{i=1}^j a_i x_i\| = \|V_{\sigma} - \sum_{i=1}^{\infty} a_i x_i\| \le \|T\|$ (considering $a_i = 0$ if i > j), which implies that $\sum_i x_i$ is a wuc series.

In the next theorem we study the completeness of space $S_{w\sigma}(\sum_i x_i)$.

Theorem 2.2. Let X be a Banach space and $\sum_i x_i$ a series in X. Then $\sum_i x_i$ is a wuc series if and only if $S_{w\sigma}(\sum_i x_i)$ is complete.

Proof. Consider $\sum_i x_i$ to be a wuc series. It will be enough to prove that $S_{w\sigma}(\sum_i x_i)$ is closed in ℓ_{∞} . Let (a^n) be sequence in $S_{w\sigma}(\sum_i x_i)$, $a^n = (a_i^n)_i$ for each $n \in \mathbb{N}$ and let also be $a^0 \in \ell_{\infty}$ such that $\lim_n ||a^n - a^0|| = 0$. We will show that $a^0 \in S_{w\sigma}(\sum_i x_i)$. Let H > 0 be such that

$$H \ge \sup\{\|\sum_{i=1}^{n} a_i x_i\| : n \in \mathbb{N}, |a_i| \le 1, i \in \{1, \dots, n\}\}$$

For each natural n there exists $y_n \in X$ such that $y_n = wV_\sigma - \sum_i a_i^n x_i$. We will check that $(y_n)_n$ is Cauchy sequence.

If $\varepsilon > 0$ is given, there exists an n_0 such that if $p, q \ge n_0$, then $||a^p - a^q|| < \frac{\varepsilon}{3H}$. We fix $p, q \ge n_0$ and we have that there exists $f \in S_{X^*}$ (unit sphere in X^*)verifying $||y_p - y_q|| = |f(y_p - y_q)|$. Since $V_{\sigma} - \sum_i a_i^p f(x_i) = f(y_p)$ and $V_{\sigma} - \sum_i a_i^q f(x_i) = f(y_q)$, there exists $i \in \mathbb{N}$ such that

$$\left| f(y_p) - \left(\sum_{k=1}^{j} a_k^p f(x_k) + \frac{1}{i+1} \sum_{k=1}^{i} \left[(i-k+1) a_{\sigma^k(j)}^p f(x_{\sigma^k(j)}) \right] \right) \right| < \frac{\varepsilon}{3}$$
(2.4)

$$\left| f(y_q) - \left(\sum_{k=1}^{j} a_k^q f(x_k) + \frac{1}{i+1} \sum_{k=1}^{n} \left[(i-k+1) a_{\sigma^k(j)}^q f(x_{\sigma^k(j)}) \right] \right) \right| < \frac{\varepsilon}{3}$$
(2.5)

for each $j \in \mathbb{N}$. Then, if $p, q \ge n_0$ we have that

$$||y_p - y_q|| = |f(y_p) - f(y_q)| \le (2.4) + (2.5)$$
(2.6)

$$+ \left| \sum_{k=1}^{j} (a_{k}^{p} - a_{k}^{q}) f(x_{k}) + \sum_{k=1}^{i} \left[\frac{i - k + 1}{i + 1} (a_{\sigma^{k}(j)}^{p} - a_{\sigma^{k}(j)}^{q}) f(x_{\sigma^{k}(j)}) \right] \right|,$$
(2.7)

where $(2.6) \leq \frac{\varepsilon}{3}$. Therefore, since X is Banach space, there exists $y_0 \in X$ such that $\lim_n ||y_n - y_0|| = 0$. We will check that $wV_{\sigma} - \sum_i a_i^0 x_i = y_0$.

If $\varepsilon > 0$ is given, we can fix a natural n such that $||a^n - a^0|| < \frac{\varepsilon}{3H}$ and $||y_n - y_0|| < \frac{\varepsilon}{3}$. Consider a functional $f \in B_{X^*}$. We have that there exists $i_0 \in \mathbb{N}$ such that if $i \ge i_0$ is

$$\left| f(y_n) - \left(\sum_{k=1}^j a_k^n f(x_k) + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1) a_{\sigma^k(j)}^n f(x_{\sigma^k(j)}) \right] \right) \right| < \frac{\varepsilon}{3}$$

for every $j \in \mathbb{N}$. Then, if $i \ge i_0$ and $j \in \mathbb{N}$, we have that

$$\begin{aligned} f(y_0) &- \left(\sum_{k=1}^j a_k^0 f(x_k) + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1)a_{\sigma^k(j)}^0 f(x_{\sigma^k(j)}) \right] \right) \right| \le |f(y_0 - y_n)| \\ &+ \left| f(y_n) - \left(\sum_{k=1}^j a_k^n f(x_k) + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1)a_{\sigma^k(j)}^n f(x_{\sigma^k(j)}) \right] \right) \right| \\ &+ \left| \sum_{k=1}^j (a^n - a^0) f(x_k) + \frac{1}{i+1} \sum_{k=1}^i \left[(i-k+1)(a_{\sigma^k(j)}^n - a_{\sigma^k(j)}^0) f(x_{\sigma^k(j)}) \right] \right| \le \varepsilon \end{aligned}$$

that is, $wV_{\sigma} - \sum_{i} a_{i}^{0} x_{i} = y_{0}$ and $a^{0} \in S_{w\sigma}(\sum_{i} x_{i})$.

Conversely, if $S_{w\sigma}(\sum_i x_i)$ is complete, which implies that $c_0 \subset S_{w\sigma}(\sum_i x_i)$. Suppose that there exists $f \in X^*$ verifying $\sum_{i=1}^{\infty} |f(x_i)| = +\infty$.

Then, as we did in Theorem 2.1, a sequence $a = (a_i)$ in c_0 can be obtained such that $\sum_i a_i f(x_i) = +\infty$ since $a \in S_{w\sigma}(\sum_i x_i)$, there will exists $x_0 \in X$ such that $wV_{\sigma} - \sum_i a_i x_i = x_0$ and it will be $V_{\sigma} - \sum_i a_i f(x_i) = x_0$. But this implies that the sequence $\left(\sum_{i=1}^n a_i f(x_i)\right)_n$ is bounded which is a contradiction.

Remark 2.2. Let X be a Banach space $\sum_i x_i$ a series in X. We consider the linear map $T:S_{w\sigma}(\sum_i x_i) \to X$ defined by $T(a) = wV_{\sigma} - \sum_i a_i x_i$. We will show that $\sum_i x_i$ is wuc series if and only if T is continuous.

We define $H = \sup\{\|\sum_{i=1}^{n} a_i x_i\| : n \in \mathbb{N}, |a_i| \leq 1, i \in \{1, \dots, n\}\}$ and take $a \in S_{w\sigma}(\sum_i x_i)$. Then $wV_{\sigma} - \sum_i a_i x_i = x_0$ exists and we can take $f \in S_{X^*}$ such that $|T(a)| = |f(T(a))| = |V_{\sigma} - \sum_i a_i f(x_i)| \leq H ||a||$.

Conversely if T is continuous. Then if $\{a_1, \ldots, a_n\} \subset [-1, 1]$, we have that $\|\sum_{i=1}^n a_i x_i\| = \|wV_{\sigma} - \sum_{i=1}^\infty a_i x_i\| \le \|T\|$ (considering $a_i = 0$ if i > n), which implies that $\sum_i x_i$ is a wuck series.

From the previous theorem and its proof the following corallary can be easily proved.

Corollary 2.2. Let X be a Banach space $\sum_i x_i$ a series in X. Then the following are equivalent:

- (1) $\sum_i x_i$ is a wuc series.
- (2) $S_{w\sigma}(\sum_i x_i)$ is complete.
- (3) $c_0 \subset S_{w\sigma}(\sum_i x_i) \ (wV_{\sigma} \sum_i a_i x_i \text{ exists for each } a = (a_i) \in c_0).$

Let us see that the hypothesis of completeness in the two previous theorems is completely necessary.

Let X be a non-complete normed space. Then it is easy to prove that there exists a sequence $\sum_i x_i$ in X such that $||x_i|| < \frac{1}{i2^i}$ and $\sum_i x_i = x^{**} \in X^{**} \setminus X$. Then we have that $V_{\sigma} - \sum_i x_i = x^{**}$. If we consider

the series $\sum_i z_i$ defined by $z_i = ix_i$ for each $n \in \mathbb{N}$, we have that $\sum_i z_i$ is wuc series. Consider the sequence $a = (a_i) \in c_0$ given by $a_i = \frac{1}{i}$. It is satisfied that $V_{\sigma} - \sum_i a_i z_i \in X^{**} \setminus X$ and therefore $a \notin S_{\sigma}(\sum_i z_i)$ and $a \notin S_{w\sigma}(\sum_i z_i)$.

Let X be a normed space and X^* its dual space. Let also $\sum_i f_i$ be a series in X^* . It is known that [6], $\sum_i f_i$ is wuc if and only if $\sum_i |f_i(x)| < \infty$ for each $x \in X$.

Now we consider the vector space

$$S_{*w\sigma}(\sum_{k} f_i) = \{a = (a_i) \in \ell_{\infty} : *wV_{\sigma} - \sum_{i} a_i f_i \ exists\}$$

, where $*wV_{\sigma} - \sum_{i} a_{i}f_{i} = f_{0}$ if and only if $V_{\sigma} - \sum_{i} a_{i}f_{i}(x) = f_{0}(x)$ for each $x \in X$.

Theorem 2.3. Let X be a normed space. It is satisfied that $1 \Rightarrow 2 \Rightarrow 3$, where:

(1) $\sum_{i} f(i)$ is a wuc series.

(2)
$$S_{*w\sigma}(\sum_i f_i) = \ell_{\infty}.$$

(3) If $x \in X$ and $M \subset \mathbb{N}$, then $V_{\sigma} - \sum_{i \in M} f_i(x)$ exists.

Besides, if X is a barelled normed space, the three items are equivalent.

Proof. From the * weak compacity of B_{X^*} we deduce that $1 \Rightarrow 2$. It is clear that $2 \Rightarrow 3$.

We suppose now that X is barelled and we will prove that $3 \Rightarrow 1$. Effectively, our goal is to prove that $E = \{\sum_{i=1}^{n} a_i f_i : n \in \mathbb{N}, |a_i| \le 1, i \in \{1, \dots, n\}\}$ is pointwise bounded for each $x \in X$ and therefore E is bounded, which implies that $\sum_i f_i$ is wuc series. Suppose that E is not pointwise bounded, that is, there exists $x_0 \in X$ such that $\sum_i |f_i(x_0)| = +\infty$. Then, we can choose a subset $M \subset \mathbb{N}$ such that $\sum_{i \in M} f_i(x_0) = + -\infty$. But, by hypothesis, $V_{\sigma} - \sum_{i \in M} f_i(x_0)$ exists, which is a contradiction.

When $\sigma(j) = j + 1$, we have the almost all definitions and theorems in [2] concerning almost summability.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- A. Aizpuru, A. Gutierrez-Davila, A. Sala, Unconditionally Cauchy series and Cesaro summability, J. Math. Anal. Appl. 324 (2006), 39–48.
- [2] A. Aizpuru, R. Armario, F.J. Perez-Fernandez, Almost summability and unconditionally Cauchy series, Bull. Belg. Math. Soc. Simon Stevin. 15 (2008), 635–644.
- [3] S. Banach, Théorie des opérations linéaires. Chelsea Publishing company, New York, (1978).
- [4] C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach Spaces. Stud. Math. 17 (1958), 151–164.
- [5] J. Boos, P. Cass, Classical and modern methods in summability, Oxford University Press, Oxford; New York, 2000.

- [6] J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York, 1984.
- [7] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [8] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
- C.W. Mcarthur.On relationships amongst certain spaces of sequences in an arbitrary Banach Space, Can. J. Math. 8 (1956), 192–197.
- [10] M. Mursaleen, O.H.H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), 1700–1704.
- [11] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983), 505–509.
- [12] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure Appl. Math. 10 (1979), 457-460.
- [13] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513–527.
- [14] F. Nuray, E. Savaş, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 10 (1994), 267–274.
- [15] F. Nuray, H. Gök, U. Ulusu, \mathcal{I}_{σ} -convergence, Math. Commun. 16 (2011), 531–538.
- [16] N. Pancaroğlu, F. Nuray, Statistical lacunary invariant summability, Theor. Math. Appl. 3 (2) (2013), 71–78.
- [17] N. Pancaroğlu, F. Nuray, On Invariant Statistically Convergence and Lacunary Invariant Statistically Convergence of Sequences of Sets, Prog. Appl. Math. 5 (2) (2013), 23–29.
- [18] F.J. Perez-Fernandez, F. Benitez-Trujillo, A. Aizpuru, Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series, Czechoslovak Math. J. 50 (2000), 889?896.
- [19] R.A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94.
- [20] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104–110.
- [21] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [22] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), 1-8.
- [23] E. Savaş, Strong σ -convergent sequences, Bull. Calcutta Math. 81 (1989), 295–300.
- [24] E. Savaş, F. Nuray, On σ -statistically convergence and lacunary σ -statistically convergence, Math. Slovaca, 43 (3) (1993), 309–315.