A NOTE ON OLIVIER'S THEOREM AND CONVERGENCE IN ERDŐS-ULAM DENSITY

JÓzSEF BUKOR*

Department of Mathematics and Informatics, J. Selye University, 94501 Komárno, Slovakia

* Corresponding author: bukorj@ujs.sk

Abstract

Olivier's Theorem says that if $\sum a_{n}$ is a convergent positive series and $\left(a_{n}\right)$ is monotone decreasing, then $n a_{n} \rightarrow 0$. Šalát and Toma [4] proved that the monotonicity condition can be omitted if the convergence of $\left(n a_{n}\right)_{n}$ is replaced by the statistical convergence. The aim of this note is to give an alternative proof and generalization of this result.

1. Introduction

A classical Olivier's Theorem says that if $\sum a_{n}$ is a convergent positive series and $\left(a_{n}\right)$ is monotone decreasing, then $n a_{n} \rightarrow 0$.
T. Šalát and V. Toma proved in 2003 [4] that the monotonicity condition in the above result can be omitted if the convergence of $\left(n a_{n}\right)_{n}$ is replaced by the statistical convergence. This result was generalized and extended by several authors, see e.g., [3] and [2].

The aim of this note is to give an alternative proof and a generalization of the result of Šalát and Toma, and extend a result of Niculescu and Prǎjiturǎ (see [3], Theorem 6) which we recall later.

From now on, we call a positive function $f: \mathbb{N} \rightarrow(0, \infty)$ weight function (or Erdős-Ulam function) if it satisfies

$$
\sum_{n=1}^{\infty} f(n)=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{f(n)}{\sum_{j=1}^{n} f(j)}=0
$$

Received February $20^{\text {th }}, 2020$; accepted March $19^{\text {th }}, 2020$; published May $1^{\text {st }}, 2020$.
2010 Mathematics Subject Classification. 40A30, 40A35.
Key words and phrases. positive series; weighted density; convergence in density.

With respect to a weight function f the f-weighted densities are defined as follows. For $A \subset \mathbb{N}$ let

$$
F(A, n)=\frac{\sum_{j=1}^{n} f(j) \cdot \chi_{A}(j)}{\sum_{j=1}^{n} f(j)}
$$

where χ_{A} denotes the characteristic function of A. Now we define the lower and upper f-densities of A by

$$
\underline{d}_{f}(A)=\liminf _{n \rightarrow \infty} F(A, n) \quad \text { and } \quad \bar{d}_{f}(A)=\limsup _{n \rightarrow \infty} F(A, n)
$$

respectively. In the case when $\underline{d}_{f}(A)=\bar{d}_{f}(A)$ we say that A has the f-density property denoted by $d_{f}(A)$.
Note that the asymptotic density corresponds to $f(n)=1$, while the logarithmic density does to $f(n)=$ $1 / n$. The logarithmic density is related to the asymptotic density via the inequalities

$$
0 \leq \underline{d}_{1}(A) \leq \underline{d}_{\frac{1}{n}}(A) \leq \bar{d}_{\frac{1}{n}}(A) \leq \bar{d}_{1}(A) \leq 1
$$

Define the function f^{*} by

$$
\begin{equation*}
f^{*}(n)=\frac{f(n)}{\sum_{j=1}^{n} f(j)} \tag{1.1}
\end{equation*}
$$

The logarithmic density can be considered as a density derived from the asymptotic density by (1.1). This method can be extended for an arbitrary weighted density given by the weight function f to provide a new weight function f^{*} (and, consequently, a new weighted density). Moreover, for arbitrary $A \subset \mathbb{N}$ we have

$$
\begin{equation*}
\underline{d}_{f}(A) \leq \underline{d}_{f^{*}}(A) \leq \bar{d}_{f^{*}}(A) \leq \bar{d}_{f}(A) \tag{1.2}
\end{equation*}
$$

see [1].
The concept of convergence in density is an extension of the concept of statistical convergence. A sequence $\left(a_{n}\right)$ converges to a number α in density d_{f}, which we denote as $\left(d_{f}\right)-\lim _{n \rightarrow \infty} a_{n}=\alpha$, provided the set

$$
A_{\varepsilon}=\left\{n \in \mathbb{N}:\left|a_{n}-\alpha\right| \geq \varepsilon\right\}
$$

has zero f-density, i.e., $d_{f}\left(A_{\varepsilon}\right)=0$.
Now, we can rewrite the result of Šalát and Toma as
if $\sum a_{n}$ is a convergent positive series, then $\left(d_{1}\right)-\lim _{n \rightarrow \infty} n a_{n}=0$.

Niculescu and Prǎjiturǎ [3] studied an analogous question for the harmonic density. They stated that

$$
\begin{equation*}
\text { if } \sum a_{n} \text { is a convergent positive series, then }\left(d_{\frac{1}{n}}\right)-\lim _{n \rightarrow \infty}(n \ln n) a_{n}=0 \tag{1.4}
\end{equation*}
$$

We generalize these results above.

2. Results

In the proof of our theorem we will use the following observation.

Lemma 2.1. Let f be an Erdös-Ulam function and f^{*} is defined by (1.1). Let A be an infinite set of positive integers such that $\sum_{k \in A} f^{*}(k)$ is convergent. Then $d_{f}(A)=0$.

Proof. From the assertion of the lemma $d_{f^{*}}(A)=0$ follows immediately. But inequality (1.2) does not give any information on the behavior of $\bar{d}_{f}(A)$. Taking into account that the upper density of a set does not change by removing finitely many elements. This observation, together with the fact that the tail of a convergent series tends to zero shows

$$
\begin{gathered}
\bar{d}_{f}(A)=\lim _{n \rightarrow \infty}\left(\limsup _{m \rightarrow \infty} \frac{\sum_{k \in A \cap[n, m]} f(k)}{\sum_{k=1}^{m} f(k)}\right) \leq \lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} \sum_{k \in A \cap[n, m]} \frac{f(k)}{\sum_{j=1}^{k} f(j)}\right) \\
=\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} \sum_{k \in A \cap[n, m]} f^{*}(k)\right) \leq \lim _{n \rightarrow \infty} \sum_{k \in A \cap[n, \infty)} f^{*}(k)=0 .
\end{gathered}
$$

Hence $d_{f}(A)=0$.

Theorem 2.1. Let f be an Erdős-Ulam function. If $\sum a_{n}$ is a convergent positive series, then

$$
\begin{equation*}
\left(d_{f}\right)-\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} f(k)}{f(n)} a_{n}=0 \tag{2.1}
\end{equation*}
$$

Proof. Fix $\varepsilon>0$, and consider the set

$$
A_{\varepsilon}=\left\{n \in \mathbb{N}: \frac{\sum_{k=1}^{n} f(k)}{f(n)} a_{n} \geq \varepsilon\right\}
$$

Since

$$
\varepsilon \sum_{n \in A_{\varepsilon}} f^{*}(n)=\varepsilon \sum_{n \in A_{\varepsilon}} \frac{f(n)}{\sum_{k=1}^{n} f(k)} \leq \sum_{n \in A_{\varepsilon}} a_{n} \leq \sum_{n \in \mathbb{N}} a_{n}<\infty
$$

applying Lemma 2.1 we immediately get that the set A_{ε} has zero f-density. Then (2.1) holds and the proof is completed.

Corollary 2.1. If we consider the asymptotic density in (2.1), then we conclude (1.3). Similarly, the logarithmic density (if $f(n)=1 / n$) leads to (1.4). For $f(n)=1 /(n \ln n)$ (the case of loglog-density), we obtain

$$
\text { if } \sum a_{n} \text { is a convergent positive series, then }\left(d_{\frac{1}{n \ln n}}\right)-\lim _{n \rightarrow \infty} n(\ln n)(\ln \ln n) a_{n}=0 \text {. }
$$

Roughly speaking, if $\sum a_{n}$ is a convergent positive series, then the fast growing of the weight function f guarantees a less speed convergence of $\left(a_{n}\right)$ to zero in density d_{f}.

For example, let $f(n)=e^{\sqrt{n}} /(2 \sqrt{n})$. In this case $\sum_{k=1}^{n} f(k) \sim e^{\sqrt{n}}$ and we have

$$
\text { if } \sum a_{n} \text { is a convergent positive series, then }\left(d_{f}\right)-\lim _{n \rightarrow \infty} \sqrt{n} a_{n}=0 \text {. }
$$

Next, we show that (1.3) is best possible in the sense that we cannot replace $\left(d_{1}\right)-\lim _{n \rightarrow \infty} n a_{n}=0$ with $\left(d_{1}\right)-\lim _{n \rightarrow \infty} n \omega_{n} a_{n}=0$, where ω_{n} is an arbitrary sequence tending to infinity.

Theorem 2.2. Let $\left(\omega_{n}\right)$ be an increasing sequence, tending to infinity. Then there exists a sequence (a_{n}) of positive terms, such that $\sum a_{n}$ converges and $\left(d_{1}\right)-\lim _{n \rightarrow \infty} n \omega_{n} a_{n} \neq 0$.

Proof. The construction of $\left(a_{n}\right)$ is based on the fact that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{k=m}^{2 m} \frac{1}{k \omega_{k}} \leq \lim _{m \rightarrow \infty} \frac{1}{\omega_{m}} \sum_{k=m}^{2 m} \frac{1}{k}=\lim _{m \rightarrow \infty} \frac{\ln 2}{\omega_{m}}=0 . \tag{2.2}
\end{equation*}
$$

Using (2.2) we are able to define an increasing sequence $\left(m_{i}\right)$ for that

$$
m_{i+1}>2 m_{i} \quad \text { and } \quad \sum_{k=m_{i}}^{2 m_{i}} \frac{1}{k \omega_{k}}<\frac{1}{2^{i}}, \quad i=1,2, \ldots
$$

Define the sequence $\left(a_{n}\right)$ as

$$
a_{n}=\left\{\begin{array}{lll}
\frac{1}{n^{2} \omega_{n}} & \text { if } & n \in \mathbb{N} \backslash \bigcup_{i=1}^{\infty}\left[m_{i}, 2 m_{i}\right] \\
\frac{1}{n \omega_{n}} & \text { if } & n \in \bigcup_{i=1}^{\infty}\left[m_{i}, 2 m_{i}\right] .
\end{array}\right.
$$

Then $\sum a_{n}$ converges since

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n}= \sum_{n \in \mathbb{N} \backslash \cup_{i=1}^{\infty}\left[m_{i}, 2 m_{i}\right]} \frac{1}{n^{2} \omega_{n}}+\sum_{n \in \cup_{i=1}^{\infty}\left[m_{i}, 2 m_{i}\right]} \frac{1}{n \omega_{n}} \\
& \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}+\sum_{i=1}^{\infty} \sum_{k=m_{i}}^{k=2 m_{i}} \frac{1}{k \omega_{k}}<\frac{\pi^{2}}{6}+\sum_{i=1}^{\infty} \frac{1}{2^{i}}=\frac{\pi^{2}}{6}+1 .
\end{aligned}
$$

We are going to show that $\left(d_{1}\right)-\lim _{n \rightarrow \infty} n \omega_{n} a_{n}=0$ fails. Fix $\varepsilon \in(0,1)$ and consider the set

$$
A_{\varepsilon}=\left\{n \in \mathbb{N}: n \omega_{n} a_{n} \geq \varepsilon\right\}
$$

Then for any $n \in\left[m_{i}, 2 m_{i}\right]$ we have $n \omega_{n} a_{n}=1$ and therefore the set A_{ε} does not have zero asymptotic density.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] J. Bukor, F. Filip and J. T. Tóth, Sets with countably infinitely many prescribed weighted densities, Rocky Mountain J. Math.(to appear).
[2] A. Faisant,G. Grekos and L. Mišík, Some generalizations of Olivier's theorem, Math. Bohem. 141 (4) (2016), 483-494.
[3] C. P. Niculescu and G. T. Prǎjiturǎ, Some open problems concerning the convergence of positive series, Ann. Acad. Rom. Sci. Ser. Math. Appl. 6 (1) (2014), 92-107.
[4] T. Šalát and V. Toma, A Classical Olivier's Theorem and Statistical Convergence, Ann. Math. Blaise Pascal, 10 (2) (2003), 305-313.

