ON q-MOCANU TYPE FUNCTIONS ASSOCIATED WITH q-RUSCHEWEYH DERIVATIVE OPERATOR

KHALIDA INAYAT NOOR AND SHUJAAT ALI SHAH*

COMSATS University Islamabad, Pakistan
*Corresponding author: shaglike@yahoo.com

Abstract

In this paper, we introduce certain subclasses of analytic functions defined by using the q difference operator. Mainly we give several inclusion results for defined classes. Also, certain applications due to q-Ruscheweyh derivative operator will be discussed.

1. Introduction

Let \mathbf{A} denotes the class of analytic functions $f(z)$ in the open unit disk $E=\{z:|z|<1\}$ such that

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

Subordination of two functions f and g is denoted by $f \prec g$ and defined as $f(z)=g(w(z))$, where $w(z)$ is Schwartz function in E (see [10]). Let S, S^{*} and C denote the subclasses of A of univalent functions, starlike functions and convex functions respectively. Mocanu [11] introduced the class $M(\alpha)$ of α-convex functions $f \in S$ satisfies;

$$
\left((1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right) \prec \frac{1+z}{1-z},
$$

where $\alpha \in[0,1], \frac{f(z)}{z} f^{\prime}(z) \neq 0$ and $z \in E$. We see that $M_{0}=S^{*}$ and $M_{1}=C$. This class is vastly studied by several authors, see $[2,14]$.

We recall here some basic definitions and concept details of q-calculus that are used in this paper.

Received February $4^{\text {th }}, 2020$; accepted March $31^{\text {st }}, 2020$; published May $11^{\text {th }}, 2020$.
2010 Mathematics Subject Classification. 30C45, 30C55.
Key words and phrases. Mocanu functions; q-difference operator; q-Ruscheweyh derivative operator.

The q-difference operator, which was introduced by Jackson [7], defined by

$$
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} ; \quad q \neq 1, \quad z \neq 0
$$

for $q \in(0,1)$. It is clear that $\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z)$, where $f^{\prime}(z)$ is the ordinary derivative of the function. For more properties of D_{q}; see $[3-5,9,18]$.

It can easily be seen that, for $n \in \mathbb{N}=\{1,2,3, .$.$\} and z \in E$,

$$
D_{q}\left\{\sum_{n=1}^{\infty} a_{n} z^{n}\right\}=\sum_{n=1}^{\infty}[n]_{q} z^{n-1},
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+q^{2}+\ldots
$$

We have the following rules of D_{q}.

$$
\begin{gathered}
D_{q}(a f(z) \pm b g(z))=a D_{q} f(z) \pm b D_{q} g(z) . \\
D_{q}(f(z) g(z))=f(q z) D_{q}(g(z))+g(z) D_{q}(f(z)) . \\
D_{q}\left(\frac{f(z)}{g(z)}\right)=\frac{D_{q}(f(z)) g(z)-f(z) D_{q}(g(z))}{g(q z) g(z)}, \quad g(q z) g(z) \neq 0 . \\
D_{q}(\log f(z))=\frac{D_{q}(f(z))}{f(z)} .
\end{gathered}
$$

Some properties related with function theory involving q-theory were first introduced by Ismail et al. [6]. Moreover, several authors studied in this matter such as $[1,12,13,15]$.

Now, by making use of the principle of subordination together with q-difference operator, we have the following classes:

Let a function $p \in \mathbf{A}$ with $p(0)=1$ is in the class $\widetilde{P}_{q}(\beta)$ if and only if

$$
\begin{equation*}
p(z) \prec p_{q, \beta}(z), \quad \text { where } p_{q, \beta}(z)=\left(\frac{1+z}{1-q z}\right)^{\beta}, \quad(0<\beta \leq 1) . \tag{1.2}
\end{equation*}
$$

It is very easy to see that $p_{q, \beta}(z)$ is convex univalent in E for $0<\beta \leq 1$. Aslo, $p_{q, \beta}(z)$ is symmetric with respect to the real axis, that is,

$$
0<\Re\left(p_{q, \beta}(z)\right)<\left(\frac{1}{1-q}\right)^{\beta}
$$

Definition 1.1. Let function $f \in \mathbf{A}$ and $0 \leq \alpha \leq 1, q \in(0,1)$. Then $f \in M_{q}^{\beta}(\alpha)$ if and only if

$$
J_{q}(\alpha, f) \in \widetilde{P}_{q}(\beta),
$$

where

$$
J_{q}(\alpha, f)=(1-\alpha) \frac{z D_{q} f}{f}+\alpha \frac{D_{q}\left(z D_{q} f\right)}{D_{q} f} .
$$

Moreover, let us denote

$$
M_{q}^{\beta}(0)=S_{q}^{*}(\beta), \quad M_{q}^{\beta}(1)=C_{q}(\beta) .
$$

A function $f \in \mathbf{A}$ is said to be in $S_{q}^{*}(\beta)$ and $C_{q}(\beta)$ if and only if

$$
\frac{z D_{q} f(z)}{f(z)} \prec p_{q, \beta}(z) \text { and } \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)} \prec p_{q, \beta}(z),
$$

respectively.

Special cases:
(i) If $q \rightarrow 1^{-}$, then the class $M_{q}^{\beta}(\alpha)$ reduces to the class $M^{\beta}(\alpha)$.
(ii) If $q \rightarrow 1^{-}$and $\beta=1$, then the class $M_{q}^{\beta}(\alpha)$ reduces to the class $M(\alpha)$ introduced by Mocanu [11].
(iii) If $q \rightarrow 1^{-}, \alpha=0$ and $\beta=1$, then the class $M_{q}^{\beta}(\alpha)$ reduces to the well known class S^{*} of starlike functions.
(iv) If $q \rightarrow 1^{-}, \alpha=1$ and $\beta=1$, then the class $M_{q}^{\beta}(\alpha)$ reduces to the well known class C of convex functions.

The authors in [8], introduced an operator $R_{q}^{\lambda}: \mathbf{A} \rightarrow \mathbf{A}$ defined as:

$$
\begin{align*}
R_{q}^{\lambda} f(z) & =\digamma_{\lambda+1, q}(z) * f(z) \tag{1.3}\\
& =z+\sum_{n=2}^{\infty} \frac{[n+\lambda-1]_{q}!}{[\lambda]_{q}![n-1]_{q}!} a_{n} z^{n}, \tag{1.4}
\end{align*}
$$

where $f \in \mathbf{A}, \digamma_{\lambda+1, q}(z)=z+\sum_{n=2}^{\infty} \frac{[n+\lambda-1]_{q}!}{\left.[\lambda]_{q}!n-1\right]_{q}!} z^{n}$ and $*$ denotes convolution.
This series (1.4) is absolutely convergent in E. For $q \rightarrow 1^{-}$, we have the operator R^{λ}, called Ruscheweyh derivative operator introduced in [16].

In this case

$$
\begin{aligned}
R^{\lambda} f(z) & =\lim _{q \rightarrow 1^{-}} R_{q}^{\lambda} f(z)=z+\sum_{n=2}^{\infty} \frac{(n+\lambda-1)!}{\lambda!(n-1)!} a_{n} z^{n} \\
& =\frac{z}{(1-z)^{\lambda+1}} * f(z) .
\end{aligned}
$$

We note that $R_{q}^{0} f(z)=f(z)$ and $R_{q}^{1} f(z)=z D_{q} f(z)$. Also

$$
R_{q}^{n} f(z)=\frac{z D_{q}^{n}\left(z^{n-1} f(z)\right)}{[n]_{q}!} ; n \in \mathbb{N}=\{1,2,3, \ldots\}
$$

The following identity can be easily obtained from (1.4)

$$
\begin{equation*}
z D_{q}\left(R_{q}^{\lambda} f(z)\right)=\left(1+\frac{[\lambda]_{q}}{q^{\lambda}}\right) R_{q}^{\lambda+1} f(z)-\frac{[\lambda]_{q}}{q^{\lambda}} R_{q}^{\lambda} f(z) \tag{1.5}
\end{equation*}
$$

Now, we define

Definition 1.2. Let $f \in \mathbf{A}$ and $n \in \mathbb{N}, 0 \leq \alpha \leq 1, q \in(0,1)$ and $\beta \in(0,1]$. Then

$$
f \in M_{q}^{\beta}(n, \alpha) \text { if and only if } R_{q}^{n} f(z) \in M_{q}^{\beta}(\alpha) .
$$

Moreover, let us denote

$$
M_{q}^{\beta}(n, 0)=S_{q}^{*}(n, \beta) \text { and } M_{q}^{\beta}(n, 1)=C_{q}(n, \beta)
$$

Note that

$$
\begin{equation*}
f \in C_{q}(n, \beta) \Leftrightarrow z D_{q} f \in S_{q}^{*}(n, \beta) \tag{1.6}
\end{equation*}
$$

2. Main Results

We need the following basic result to prove our main results:

Lemma 2.1. [17] Let β and γ be complex numbers with $\beta \neq 0$ and let $h(z)$ be analytic in E with $h(0)=1$ and $\operatorname{Re}\{\beta h(z)+\gamma\}>0$. If $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ is analytic in E, then

$$
p(z)+\frac{z D_{q} p(z)}{\beta p(z)+\gamma} \prec h(z)
$$

implies that $p(z) \prec h(z)$.

Theorem 2.1. Let $0 \leq \alpha \leq 1, \beta \in(0,1]$ and $q \in(0,1)$. Then

$$
M_{q}^{\beta}(\alpha) \subset S_{q}^{*}(\beta)
$$

Proof. Let $f \in M_{q}^{\beta}(\alpha)$ and let

$$
\begin{equation*}
\frac{z D_{q} f(z)}{f(z)}=p(z) \tag{2.1}
\end{equation*}
$$

We note that $p(z)$ is analytic in E with $p(0)=1$.
The q-logarithmic differentiation of (2.1) yields

$$
\frac{D_{q}\left(z D_{q}(f(z))\right)}{D_{q} f(z)}-\frac{D_{q}(f(z))}{f(z)}=\frac{D_{q} p(z)}{p(z)}
$$

Equivalently

$$
\frac{D_{q}\left(z D_{q}(f(z))\right)}{D_{q} f(z)}=p(z)+\frac{z D_{q} p(z)}{p(z)} .
$$

Since $f \in M_{q}^{\beta}(\alpha)$, so we get

$$
\begin{equation*}
J_{q}(\alpha, f)=p(z)+\alpha \frac{z D_{q} p(z)}{p(z)} \prec p_{q, \beta}(z) \tag{2.2}
\end{equation*}
$$

Since $\operatorname{Re}\left\{\frac{1}{\alpha} p_{q, \beta}(z)\right\}>0$ in E, so by (2.2) together with Lemma 2.1, we obtain $p(z) \prec p_{q, \beta}(z)$. Consequently $f \in S_{q}^{*}(\beta)$.

Corollary 2.1. For $q \rightarrow 1^{-}$, we have $M^{\beta}(\alpha) \subset S^{*}(\beta)$. Furthermore, for $\beta=1, M(\alpha) \subset S^{*}$.

Corollary 2.2. For $q \rightarrow 1^{-}, \alpha=1$ and $\beta=1$, we have well known fundamental result $C \subset S^{*}$.

Theorem 2.2. Let $\alpha>1, \beta \in(0,1]$ and $q \in(0,1)$. Then

$$
M_{q}^{\beta}(\alpha) \subset C_{q}(\beta)
$$

Proof. Let $f \in M_{q}^{\beta}(\alpha)$. Then, by Definition 1.1,

$$
(1-\alpha) \frac{z D_{q} f(z)}{f(z)}+\alpha \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=p_{1}(z) \in \widetilde{P}_{q}(\beta)
$$

Now,

$$
\begin{aligned}
\alpha \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)} & =(1-\alpha) \frac{z D_{q} f(z)}{f(z)}+\alpha \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}+(\alpha-1) \frac{z D_{q} f(z)}{f(z)} \\
& =(\alpha-1) \frac{z D_{q} f(z)}{f(z)}+p_{1}(z)
\end{aligned}
$$

This implies

$$
\begin{aligned}
\frac{D_{q}\left(z D_{q} f\right)}{D_{q} f} & =\left(\frac{1}{\alpha}-1\right) \frac{z D_{q} f}{f}+\frac{1}{\alpha} p_{1}(z) \\
& =\left(\frac{1}{\alpha}-1\right) p_{2}(z)+\frac{1}{\alpha} p_{1}(z) .
\end{aligned}
$$

Since $p_{1}, p_{2} \in \widetilde{P}_{q}(\beta)$ and is $\widetilde{P}_{q}(\beta)$ convex set, so $\frac{D_{q}\left(z D_{q} f\right)}{D_{q} f} \in \widetilde{P}_{q}(\beta)$. Hence, proof is complete.

Theorem 2.3. For $0 \leq \alpha_{1}<\alpha_{2}<1$

$$
M_{q}^{\beta}\left(\alpha_{2}\right) \subset M_{q}^{\beta}\left(\alpha_{1}\right)
$$

Proof. For $\alpha_{1}=0$, this is obvious from Theorem 2.1.
Let $f \in M_{q}^{\beta}\left(\alpha_{2}\right)$. Then, by Definition 1.1,

$$
\begin{equation*}
\left(1-\alpha_{2}\right) \frac{z D_{q} f(z)}{f(z)}+\alpha_{2} \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=q_{1}(z) \in \widetilde{P}_{q}(\beta) \tag{2.3}
\end{equation*}
$$

Now, we can easily write

$$
\begin{equation*}
J_{q}\left(\alpha_{1}, f(z)\right)=\frac{\alpha_{1}}{\alpha_{2}} q_{1}(z)+\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) q_{2}(z) \tag{2.4}
\end{equation*}
$$

where we have used (2.3) and $\frac{z D_{q} f(z)}{f(z)}=q_{2}(z) \in \widetilde{P}_{q}(\beta)$. Since $\widetilde{P}_{q}(\beta)$ is convex set, so (2.4) follows our required result.

Remark 2.1. If $\alpha_{2}=1$ and let $f \in M_{q}^{\beta}(1)=C_{q}(\beta)$. Then, from Theorem 2.3, we can write

$$
f \in M_{q}^{\beta}\left(\alpha_{1}\right), \text { for } 0 \leq \alpha_{1}<1
$$

Now, by making use of Theorem 2.1, we obtain $f \in S_{q}^{*}(\beta)$. Thus we have, $C_{q}(\beta) \subset S_{q}^{*}(\beta)$.

We develop some applications in terms of q-linear operator, which we call q-Ruscheweyh derivative operator, given by (1.3).

Theorem 2.4. Let $0 \leq \alpha \leq 1, \beta \in(0,1], n \in \mathbb{N}_{0}$ and $q \in(0,1)$. Then

$$
M_{q}^{\beta}(n+1, \alpha) \subset S_{q}^{*}(n+1, \beta)
$$

Proof. One can easily prove this result by using similar arguments as used in Theorem 2.1 and letting

$$
\frac{z D_{q} f_{n+1, q}(z)}{f_{n+1, q}(z)}=p(z) \quad\left(\text { for } \quad f_{n+1, q}(z)=R_{q}^{n+1} f(z)\right)
$$

where $p(z)$ is analytic in E with $p(0)=1$.

Theorem 2.5. Let $0 \leq \alpha \leq 1, \beta \in(0,1], n \in \mathbb{N}_{0}$ and $q \in(0,1)$. Then

$$
S_{q}^{*}(n+1, \beta) \subset S_{q}^{*}(n, \beta)
$$

Proof. Let $f \in S_{q}^{*}(n+1, \beta)$ and let $f_{n+1}(z)=R_{q}^{n+1} f(z)$. Then

$$
\frac{z D_{q} f_{n+1, q}(z)}{f_{n+1, q}(z)} \prec p_{q, \beta}(z)
$$

where $p_{q, \beta}(z)$ is given by (1.2).
Now, let

$$
\begin{equation*}
\frac{z D_{q} f_{n, q}(z)}{f_{n, q}(z)}=H(z) \tag{2.5}
\end{equation*}
$$

where $H(z)$ is analytic in E with $H(0)=1$. Using identity (1.5) and (2.5), we get

$$
\frac{z D_{q}\left(f_{n, q}(z)\right)}{f_{n, q}(z)}=\left(1+N_{q}\right) \frac{f_{n+1, q}(z)}{f_{n, q}(z)}-N_{q}
$$

equivalently

$$
\left(1+N_{q}\right) \frac{f_{n+1, q}(z)}{f_{n, q}(z)}=H(z)+N_{q}, \quad\left(\text { for } N_{q}=\frac{[n]_{q}}{q^{n}}\right)
$$

The q-logarithmic differentiation yields,

$$
\begin{equation*}
\frac{z D_{q}\left(f_{n+1, q}(z)\right)}{f_{n+1, q}(z)}=p(z)+\frac{z D_{q} H(z)}{H(z)+N_{q}} \tag{2.6}
\end{equation*}
$$

Since $f \in S_{q}^{*}(n+1, \beta)$, So (2.6) implies

$$
\begin{equation*}
p(z)+\frac{z D_{q} H(z)}{H(z)+N_{q}} \prec p_{q, \beta}(z) . \tag{2.7}
\end{equation*}
$$

Since $\operatorname{Re}\left\{p_{q, \beta}(z)+N_{q}\right\}>0$ in E, we use Lemma 2.1 along with (2.7), to get $H(z) \prec p_{q, \beta}(z)$. Consequently, $f \in S_{q}^{*}(n, \beta)$.

Theorem 2.6. Let $0 \leq \alpha \leq 1, \beta \in(0,1], n \in \mathbb{N}_{0}$ and $q \in(0,1)$. Then

$$
C_{q}(n+1, \beta) \subset C_{q}(n, \beta)
$$

Proof. Let

$$
\begin{aligned}
& f \in C_{q}(n+1, \beta) \\
& \Leftrightarrow z f^{\prime} \in S_{q}^{*}(n+1, \beta) \quad(b y(1.6)) \\
& \Rightarrow z f^{\prime} \in S_{q}^{*}(n, \beta) \quad(b y \text { Theorem} 2.5) \\
& \Leftrightarrow f \in C_{q}(n, \beta) . \quad \quad(b y(1.6))
\end{aligned}
$$

Remark 2.2. From Theorem 2.4 and Theorem 2.5, we can extend the inclusions as following

$$
\begin{gathered}
M_{q}^{\beta}(n+1, \alpha) \subset S_{q}^{*}(n+1, \beta) \subset S_{q}^{*}(n, \beta) \subset \ldots \subset S_{q}^{*}(\beta) \\
C_{q}(n+1, \beta) \subset C_{q}(n, \beta) \subset \ldots \subset C_{q}(\beta)
\end{gathered}
$$

Theorem 2.7. Let $f \in \mathbf{A}$. Then $f \in M_{q}^{\beta}(n+1, \alpha), \alpha \neq 0$, if and only if there exists $g \in S_{q}^{*}(n+1, \beta)$ such that

$$
\begin{equation*}
f(z)=\left[\frac{1}{\alpha}\right]_{q}\left[\int_{0}^{t} t^{\frac{1}{\alpha}-1}\left(\frac{g(t)}{t}\right)^{\frac{1}{\alpha}} d_{q} t\right]^{\alpha} \tag{2.8}
\end{equation*}
$$

Proof. Let $f \in M_{q}^{\beta}(n+1, \alpha)$. Then

$$
\begin{equation*}
J_{q}(\alpha, f)=(1-\alpha) \frac{z D_{q} f(z)}{f(z)}+\alpha \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)} \in \widetilde{P}_{q}(\beta) \tag{2.9}
\end{equation*}
$$

On some simple calculations of (2.8), we get

$$
\begin{equation*}
z D_{q} f(z)(f(z))^{\frac{1}{\alpha}-1}=(g(z))^{\frac{1}{\alpha}} \tag{2.10}
\end{equation*}
$$

The q-logarithmic differentiation of (2.10), gives

$$
\begin{equation*}
(1-\alpha) \frac{z D_{q} f(z)}{f(z)}+\alpha \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=\frac{z D_{q} g(z)}{g(z)} \tag{2.11}
\end{equation*}
$$

From (2.9) and (2.11), we conclude our required result.

Theorem 2.8. Let $f \in \mathbf{A}$ and define, for $f \in M_{q}^{\beta}(n, \alpha)$,

$$
\begin{equation*}
F_{c, q}(z)=\frac{[c+1]_{q}}{z^{c}} \int_{0}^{z} t^{b-1} f(t) d_{q} t \tag{2.12}
\end{equation*}
$$

Then $F_{c, q} \in S_{q}^{*}(n, \beta)$.

Proof. Let $f \in M_{q}^{\beta}(n, \alpha)$. If we set, for $F_{c, q}^{n}(z)=R_{q}^{n}\left(F_{c, q}(z)\right)$

$$
\begin{equation*}
\frac{z D_{q}\left(F_{c, q}^{n}(z)\right)}{F_{c, q}^{n}(z)}=Q(z) \tag{2.13}
\end{equation*}
$$

where $Q(z)$ is analytic in E with $Q(0)=1$.
From (2.12), we can write

$$
\frac{D_{q}\left(z^{c} F_{c, q}(z)\right)}{[c+1]_{q}}=z^{c-1} f(z)
$$

Using product rule of the q-difference operator, we get

$$
\begin{equation*}
z D_{q} F_{c, q}(z)=\left(1+\frac{[c]_{q}}{q^{c}}\right) f(z)-\frac{[c]_{q}}{q^{c}} F_{c, q}(z) \tag{2.14}
\end{equation*}
$$

From (2.13), (2.14) and (1.3), we have

$$
Q(z)=\left(1+\frac{[c]_{q}}{q^{c}}\right) \frac{z\left(f_{n, q}(z)\right)}{F_{c, q}^{n}(z)}-\frac{[c]_{q}}{q^{c}}
$$

where $F_{c, q}^{n}(z)=R_{q}^{n}\left(F_{c, q}(z)\right)$ and $f_{n, q}(z)=R_{q}^{n}(f(z))$
On q-logarithmic differentiation, we get

$$
\begin{equation*}
\frac{z D_{q}\left(f_{n, q}(z)\right)}{f_{n, q}(z)}=Q(z)+\frac{z D_{q} Q(z)}{Q(z)+[N]_{q}}, \quad\left(\text { for } N_{q}=\frac{[c]_{q}}{q^{c}}\right) \tag{2.15}
\end{equation*}
$$

Since $f \in M_{q}^{\beta}(n, \alpha) \subset S_{q}^{*}(n, \beta)$, so (2.15) implies

$$
Q(z)+\frac{z D_{q} Q(z)}{Q(z)+[c]_{q}} \prec p_{q, \beta}(z)
$$

Now, by applying Lemma 2.1, we conclude $Q(z) \prec p_{q, \beta}(z)$. Consequently, $\frac{z D_{q}\left(F_{c, q}^{n}(z)\right)}{F_{c, q}^{n}(z)} \prec p_{q, \beta}(z)$. Hence $F_{c, q} \in S_{q}^{*}(n, \beta)$.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] O. Altintas, N. Mustafa, Coefficient bounds and distortion theorems for the certain analytic functions, Turk. J. Math. 43 (2019), 985-997.
[2] J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl. (2013), Art. ID 349.
[3] H. Exton, q-Hypergeometric functions and applications, Ellis Horwood Limited, UK, 1983.
[4] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge, UK, 1990.
[5] H.A. Ghany, q-derivative of basic hypergeomtric series with respect to parameters, Int. J. Math. Anal. 3 (2009), $1617-1632$.
[6] M.E.H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var., Theory Appl. 14 (1990), 77-84.
[7] F.H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edin. 46 (1908), 253-281.
[8] S. Kanas, R. Raducanu, Some classes of analytic functions related to Conic domains, Math. Slovaca. 64 (2014), 1183-1196.
[9] V. Koc, P. Cheung, Quantum Calculus, Springer, 2001.
[10] S.S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Marcel Dekker, New York, Basel, 2000.
[11] P.T. Mocanu, Une propriete de convexite generlise dans la theorie de la representation conforme, Math. (Cluj). 11 (1969), 127-133.
[12] M. Naeem, S. Hussain, T. Mahmood, S. Khan, M. Darus, A new subclass of analytic functions defined by using Salagean q-differential operator, Mathematics. 7 (2019), 458.
[13] K.I. Noor, On generalized q-close-to-convexity, Appl. Math. Inf. Sci. 11 (2017), 1383-1388.
[14] K.I. Noor, S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl. 340 (2008), 1145-1152.
[15] K.I. Noor, S. Riaz, Generalized q-starlike functions, Stud. Sci. Math. Hungerica. 54 (2017), 509-522.
[16] S. Ruscheweyh, New criteria for univalent functions. Proc. Amer. Math. Soc. 49 (1975), 109-115.
[17] H. Shamsan, S. Latha, On genralized bounded Mocanu variation related to q-derivative and conic regions, Ann. Pure Appl. Math. 17 (2018), 67-83.
[18] H.E.O. Ucar, Coefficient inequality for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126.

