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Abstract. In this paper, we introduce certain subclasses of analytic functions defined by using the q-

difference operator. Mainly we give several inclusion results for defined classes. Also, certain applications

due to q-Ruscheweyh derivative operator will be discussed.

1. Introduction

Let A denotes the class of analytic functions f(z) in the open unit disk E = {z : |z| < 1} such that

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Subordination of two functions f and g is denoted by f ≺ g and defined as f(z) = g(w(z)), where w(z) is

Schwartz function in E (see [10]). Let S, S∗ and C denote the subclasses of A of univalent functions, starlike

functions and convex functions respectively. Mocanu [11] introduced the class M (α) of α−convex functions

f ∈ S satisfies; (
(1− α)

zf ′(z)

f(z)
+ α

(zf ′(z))
′

f ′(z)

)
≺ 1 + z

1− z
,

where α ∈ [0, 1], f(z)
z f ′(z) 6= 0 and z ∈ E. We see that M0 = S∗ and M1 = C. This class is vastly studied

by several authors, see [2, 14].

We recall here some basic definitions and concept details of q-calculus that are used in this paper.
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The q-difference operator, which was introduced by Jackson [7], defined by

Dqf(z) =
f(z)− f(qz)

(1− q)z
; q 6= 1, z 6= 0,

for q ∈ (0, 1). It is clear that limq→1− Dqf(z) = f ′(z), where f ′(z) is the ordinary derivative of the function.

For more properties of Dq; see [3–5,9, 18].

It can easily be seen that, for n ∈ N = {1, 2, 3, ..} and z ∈ E,

Dq

{ ∞∑
n=1

anz
n

}
=

∞∑
n=1

[n]q z
n−1,

where

[n]q =
1− qn

1− q
= 1 + q + q2 + ... .

We have the following rules of Dq.

Dq (af (z)± bg (z)) = aDqf (z)± bDqg (z) .

Dq (f (z) g (z)) = f (qz)Dq (g (z)) + g(z)Dq (f (z)) .

Dq

(
f(z)

g(z)

)
=
Dq (f(z)) g(z)− f(z)Dq (g(z))

g(qz)g(z)
, g(qz)g(z) 6= 0.

Dq (log f(z)) =
Dq (f(z))

f(z)
.

Some properties related with function theory involving q-theory were first introduced by Ismail et al. [6].

Moreover, several authors studied in this matter such as [1, 12,13,15].

Now, by making use of the principle of subordination together with q-difference operator, we have the

following classes:

Let a function p ∈ A with p(0) = 1 is in the class P̃q(β) if and only if

p(z) ≺ pq,β(z), where pq,β(z) =

(
1 + z

1− qz

)β
, (0 < β ≤ 1) . (1.2)

It is very easy to see that pq,β(z) is convex univalent in E for 0 < β ≤ 1. Aslo, pq,β(z) is symmetric with

respect to the real axis, that is,

0 < < (pq,β(z)) <

(
1

1− q

)β
.
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Definition 1.1. Let function f ∈ A and 0 ≤ α ≤ 1, q ∈ (0, 1). Then f ∈Mβ
q (α) if and only if

Jq (α, f) ∈ P̃q(β),

where

Jq (α, f) = (1− α)
zDqf

f
+ α

Dq (zDqf)

Dqf
.

Moreover, let us denote

Mβ
q (0) = S∗q (β) , Mβ

q (1) = Cq (β) .

A function f ∈ A is said to be in S∗q (β) and Cq (β) if and only if

zDqf(z)

f(z)
≺ pq,β(z) and

Dq (zDqf(z))

Dqf(z)
≺ pq,β(z),

respectively.

Special cases:

(i) If q → 1−, then the class Mβ
q (α) reduces to the class Mβ (α).

(ii) If q → 1− and β = 1, then the class Mβ
q (α) reduces to the class M (α) introduced by Mocanu [11].

(iii) If q → 1−, α = 0 and β = 1, then the class Mβ
q (α) reduces to the well known class S∗ of starlike

functions.

(iv) If q → 1−, α = 1 and β = 1, then the class Mβ
q (α) reduces to the well known class C of convex

functions.

The authors in [8], introduced an operator Rλq : A→ A defined as:

Rλq f(z) = zλ+1,q(z) ∗ f(z) (1.3)

= z +

∞∑
n=2

[n+ λ− 1]q!

[λ]q! [n− 1]q!
anz

n, (1.4)

where f ∈ A, zλ+1,q(z) = z +
∑∞
n=2

[n+λ−1]q !
[λ]q ![n−1]q !

zn and * denotes convolution.

This series (1.4) is absolutely convergent in E. For q → 1−, we have the operator Rλ, called Ruscheweyh

derivative operator introduced in [16].

In this case

Rλf(z) = lim
q→1−

Rλq f(z) = z +

∞∑
n=2

(n+ λ− 1)!

λ! (n− 1)!
anz

n

=
z

(1− z)λ+1
∗ f(z).

We note that R0
qf(z) = f(z) and R1

qf(z) = zDqf(z). Also

Rnq f(z) =
zDn

q

(
zn−1f(z)

)
[n]q!

; n ∈ N = {1, 2, 3, ...} .
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The following identity can be easily obtained from (1.4)

zDq

(
Rλq f(z)

)
=

(
1 +

[λ]q
qλ

)
Rλ+1
q f(z)−

[λ]q
qλ

Rλq f(z). (1.5)

Now, we define

Definition 1.2. Let f ∈ A and n ∈ N, 0 ≤ α ≤ 1, q ∈ (0, 1) and β ∈ (0, 1]. Then

f ∈Mβ
q (n, α) if and only if Rnq f(z) ∈Mβ

q (α) .

Moreover, let us denote

Mβ
q (n, 0) = S∗q (n, β) and Mβ

q (n, 1) = Cq (n, β) .

Note that

f ∈ Cq (n, β)⇔ zDqf ∈ S∗q (n, β) . (1.6)

2. Main Results

We need the following basic result to prove our main results:

Lemma 2.1. [17] Let β and γ be complex numbers with β 6= 0 and let h(z) be analytic in E with h(0) = 1

and Re {βh(z) + γ} > 0. If p(z) = 1 + p1z + p2z
2 + ... is analytic in E, then

p(z) +
zDqp(z)

βp(z) + γ
≺ h(z)

implies that p(z) ≺ h(z).

Theorem 2.1. Let 0 ≤ α ≤ 1, β ∈ (0, 1] and q ∈ (0, 1). Then

Mβ
q (α) ⊂ S∗q (β) .

Proof. Let f ∈Mβ
q (α) and let

zDqf(z)

f(z)
= p(z). (2.1)

We note that p(z) is analytic in E with p(0) = 1.

The q-logarithmic differentiation of (2.1) yields

Dq (zDq (f(z)))

Dqf(z)
− Dq (f(z))

f(z)
=
Dqp(z)

p(z)
.

Equivalently

Dq (zDq (f(z)))

Dqf(z)
= p(z) +

zDqp(z)

p(z)
.

Since f ∈Mβ
q (α), so we get

Jq (α, f) = p(z) + α
zDqp(z)

p(z)
≺ pq,β(z). (2.2)
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Since Re
{

1
αpq,β(z)

}
> 0 in E, so by (2.2) together with Lemma 2.1, we obtain p(z) ≺ pq,β(z). Consequently

f ∈ S∗q (β). �

Corollary 2.1. For q → 1−, we have Mβ(α) ⊂ S∗ (β). Furthermore, for β = 1, M(α) ⊂ S∗.

Corollary 2.2. For q → 1−, α = 1 and β = 1, we have well known fundamental result C ⊂ S∗.

Theorem 2.2. Let α > 1, β ∈ (0, 1] and q ∈ (0, 1). Then

Mβ
q (α) ⊂ Cq (β) .

Proof. Let f ∈Mβ
q (α). Then, by Definition 1.1,

(1− α)
zDqf(z)

f(z)
+ α

Dq (zDqf(z))

Dqf(z)
= p1(z) ∈ P̃q(β).

Now,

α
Dq (zDqf(z))

Dqf(z)
= (1− α)

zDqf(z)

f(z)
+ α

Dq (zDqf(z))

Dqf(z)
+ (α− 1)

zDqf(z)

f(z)

= (α− 1)
zDqf(z)

f(z)
+ p1(z).

This implies

Dq (zDqf)

Dqf
=

(
1

α
− 1

)
zDqf

f
+

1

α
p1(z)

=

(
1

α
− 1

)
p2(z) +

1

α
p1(z).

Since p1, p2 ∈ P̃q(β) and is P̃q(β) convex set, so
Dq(zDqf)
Dqf

∈ P̃q(β). Hence, proof is complete. �

Theorem 2.3. For 0 ≤ α1 < α2 < 1

Mβ
q (α2) ⊂Mβ

q (α1) .

Proof. For α1 = 0, this is obvious from Theorem 2.1.

Let f ∈Mβ
q (α2). Then, by Definition 1.1,

(1− α2)
zDqf(z)

f(z)
+ α2

Dq (zDqf(z))

Dqf(z)
= q1(z) ∈ P̃q(β). (2.3)

Now, we can easily write

Jq (α1, f(z)) =
α1

α2
q1(z) +

(
1− α1

α2

)
q2(z), (2.4)

where we have used (2.3) and
zDqf(z)
f(z) = q2(z) ∈ P̃q(β). Since P̃q(β) is convex set, so (2.4) follows our

required result. �
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Remark 2.1. If α2 = 1 and let f ∈Mβ
q (1) = Cq(β). Then, from Theorem 2.3, we can write

f ∈Mβ
q (α1) , for 0 ≤ α1 < 1,

Now, by making use of Theorem 2.1, we obtain f ∈ S∗q (β). Thus we have, Cq(β) ⊂ S∗q (β).

We develop some applications in terms of q-linear operator, which we call q-Ruscheweyh derivative oper-

ator, given by (1.3).

Theorem 2.4. Let 0 ≤ α ≤ 1, β ∈ (0, 1], n ∈ N0 and q ∈ (0, 1). Then

Mβ
q (n+ 1, α) ⊂ S∗q (n+ 1, β) .

Proof. One can easily prove this result by using similar arguments as used in Theorem 2.1 and letting

zDqfn+1,q(z)

fn+1,q(z)
= p(z)

(
for fn+1,q(z) = Rn+1

q f(z)
)
,

where p(z) is analytic in E with p(0) = 1. �

Theorem 2.5. Let 0 ≤ α ≤ 1, β ∈ (0, 1], n ∈ N0 and q ∈ (0, 1). Then

S∗q (n+ 1, β) ⊂ S∗q (n, β) .

Proof. Let f ∈ S∗q (n+ 1, β) and let fn+1(z) = Rn+1
q f(z). Then

zDqfn+1,q(z)

fn+1,q(z)
≺ pq,β(z),

where pq,β(z) is given by (1.2).

Now, let

zDqfn,q(z)

fn,q(z)
= H(z), (2.5)

where H(z) is analytic in E with H(0) = 1. Using identity (1.5) and (2.5), we get

zDq (fn,q(z))

fn,q(z)
= (1 +Nq)

fn+1,q(z)

fn,q(z)
−Nq,

equivalently

(1 +Nq)
fn+1,q(z)

fn,q(z)
= H(z) +Nq,

(
for Nq =

[n]q
qn

)
.

The q-logarithmic differentiation yields,

zDq (fn+1,q(z))

fn+1,q(z)
= p(z) +

zDqH(z)

H(z) +Nq
. (2.6)

Since f ∈ S∗q (n+ 1, β), So (2.6) implies

p(z) +
zDqH(z)

H(z) +Nq
≺ pq,β(z). (2.7)
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Since Re {pq,β(z) +Nq} > 0 in E, we use Lemma 2.1 along with (2.7), to get

H(z) ≺ pq,β(z). Consequently, f ∈ S∗q (n, β). �

Theorem 2.6. Let 0 ≤ α ≤ 1, β ∈ (0, 1], n ∈ N0 and q ∈ (0, 1). Then

Cq (n+ 1, β) ⊂ Cq (n, β) .

Proof. Let

f ∈ Cq (n+ 1, β)

⇔ zf ′ ∈ S∗q (n+ 1, β) (by (1.6))

⇒ zf ′ ∈ S∗q (n, β) (by Theorem2.5)

⇔ f ∈ Cq (n, β) . (by (1.6))

�

Remark 2.2. From Theorem 2.4 and Theorem 2.5, we can extend the inclusions as following

Mβ
q (n+ 1, α) ⊂ S∗q (n+ 1, β) ⊂ S∗q (n, β) ⊂ ... ⊂ S∗q (β) .

Cq (n+ 1, β) ⊂ Cq (n, β) ⊂ ... ⊂ Cq (β) .

Theorem 2.7. Let f ∈ A. Then f ∈Mβ
q (n+ 1, α), α 6= 0, if and only if there exists g ∈ S∗q (n+ 1, β) such

that

f(z) =

[
1

α

]
q

[∫ t

0

t
1
α−1

(
g(t)

t

) 1
α

dqt

]α
. (2.8)

Proof. Let f ∈Mβ
q (n+ 1, α). Then

Jq (α, f) = (1− α)
zDqf(z)

f(z)
+ α

Dq (zDqf(z))

Dqf(z)
∈ P̃q(β). (2.9)

On some simple calculations of (2.8), we get

zDqf(z) (f(z))
1
α−1 = (g(z))

1
α . (2.10)

The q-logarithmic differentiation of (2.10), gives

(1− α)
zDqf(z)

f(z)
+ α

Dq (zDqf(z))

Dqf(z)
=
zDqg(z)

g(z)
. (2.11)

From (2.9) and (2.11), we conclude our required result. �
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Theorem 2.8. Let f ∈ A and define, for f ∈Mβ
q (n, α),

Fc,q(z) =
[c+ 1]q
zc

∫ z

0

tb−1f(t)dqt. (2.12)

Then Fc,q ∈ S∗q (n, β).

Proof. Let f ∈Mβ
q (n, α). If we set, for Fnc,q(z) = Rnq (Fc,q(z))

zDq

(
Fnc,q(z)

)
Fnc,q(z)

= Q(z), (2.13)

where Q(z) is analytic in E with Q(0) = 1.

From (2.12), we can write

Dq (zcFc,q(z))

[c+ 1]q
= zc−1f(z).

Using product rule of the q-difference operator, we get

zDqFc,q(z) =

(
1 +

[c]q
qc

)
f(z)−

[c]q
qc
Fc,q(z). (2.14)

From (2.13), (2.14) and (1.3), we have

Q(z) =

(
1 +

[c]q
qc

)
z (fn,q(z))

Fnc,q(z)
−

[c]q
qc
,

where Fnc,q(z) = Rnq (Fc,q(z)) and fn,q(z) = Rnq (f(z))

On q-logarithmic differentiation, we get

zDq (fn,q(z))

fn,q(z)
= Q(z) +

zDqQ(z)

Q(z) + [N ]q
,

(
for Nq =

[c]q
qc

)
. (2.15)

Since f ∈Mβ
q (n, α) ⊂ S∗q (n, β), so (2.15) implies

Q(z) +
zDqQ(z)

Q(z) + [c]q
≺ pq,β(z).

Now, by applying Lemma 2.1, we conclude Q(z) ≺ pq,β(z). Consequently,
zDq(Fnc,q(z))

Fnc,q(z)
≺ pq,β(z). Hence

Fc,q ∈ S∗q (n, β). �
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