REPRODUCING FORMULAS FOR THE FOURIER-LIKE MULTIPLIERS OPERATORS IN q-RUBIN SETTING

AHMED SAOUDI ${ }^{1,2, *}$
${ }^{1}$ Northern Border University, College of Science, Arar, P.O. Box 1631, Saudi Arabia
${ }^{2}$ Université de Tunis El Manar, Faculté des sciences de Tunis, Tunisie
*Corresponding author: ahmed.saoudi@ipeim.rnu.tn

Abstract

The aim of this work is to study of the q^{2}-Fourier multiplier operators on \mathbb{R}_{q} and we give for them Calderón's reproducing formulas and best approximation on the q^{2}-analogue Sobolev type space \mathcal{H}_{q} using the theory of q^{2}-Fourier transform and reproducing kernels.

1. Introduction

The q^{2}-analogue differential-difference operator ∂_{q}, also called q-Rubin's operator defined on \mathbb{R}_{q} in $[11,12]$ by

$$
\partial_{q} f(z)=\left\{\begin{array}{cc}
\frac{f\left(q^{-1} z\right)+f\left(-q^{-1} z\right)-f(q z)+f(-q z)-2 f(-z)}{2(1-q) z} & \text { if } z \neq 0 \\
\lim _{z \rightarrow 0} \partial_{q} f(z) \text { in } \mathbb{R}_{q} & \text { if } z=0 .
\end{array}\right.
$$

This operator has correct eigenvalue relationships for analogue exponential Fourier analysis using the functions and orthogonalities of [9].

The q^{2}-analogue Fourier transform we employ to make our constructions and results in this paper is based on analogue trigonometric functions and orthogonality results from [9] which have important applications to

Received January $13^{\text {th }}$, 2020; accepted January $30^{\text {th }}, 2020$; published May $1^{\text {st }}, 2020$.
2010 Mathematics Subject Classification. 46E35; 43A32.
Key words and phrases. q-Fourier analysis; q-Rubin's operator; L^{2}-multiplier operators; Calderón's reproducing formulas; extremal functions.
q-deformed quantum mechanics. This transform generalizing the usual Fourier transform, is given by

$$
\mathcal{F}_{q}(f)(x):=K \int_{-\infty}^{+\infty} f(t) e\left(-i t x ; q^{2}\right) d_{q} t, \quad x \in \widetilde{\mathbb{R}}_{q}
$$

In this paper we study the Fourier multiplier operators \mathcal{T}_{m} defined for $f \in L_{q}^{2}$ by

$$
\mathcal{T}_{m} f(x):=\mathcal{F}_{q}^{-1}\left(m_{a} \mathcal{F}_{q}(f)\right)(x), \quad x \in \mathbb{R}_{q}
$$

where the function m_{a} is given by

$$
m_{a}(x)=m(a x)
$$

These operators are a generalization of the multiplier operators \mathcal{T}_{m} associated with a bounded function m and given by $\mathcal{T}_{m}(\varphi)=\mathcal{F}^{-1}(m \mathcal{F}(\varphi))$, where $\mathcal{F}(\varphi)$ denotes the ordinary Fourier transform on \mathbb{R}^{n}. These operators made the interest of several Mathematicians and they were generalized in many settings, (see for instance $[1,2,14,18])$.

This paper is organized as follows. In Section 2, we recall some basic harmonic analysis results related with the q-Rubin's operator ∂_{q} and we introduce preliminary facts that will be used later.

In section 3, we study the q^{2}-Fourier L^{2}-multiplier operators \mathcal{T}_{q} and we give for them a Plancherel formula and pointwise reproducing formulas. Afterward, we give Calderón's reproducing formulas by using the theory of q^{2}-analogue Fourier transform.

The last section of this paper is devoted to giving best approximation for the operators \mathcal{T}_{q} and good estimates of the associated extremal function on the q^{2}-analogue Sobolev type space \mathcal{H}_{q} studied in [15-17].

2. Notations and preliminaries

Throughout this paper, we assume $0<q<1$ and we refer the reader to [5, 7] for the definitions and properties of hypergeometric functions. In this section we will fix some notations and recall some preliminary results. We put $\mathbb{R}_{q}=\left\{ \pm q^{n}: n \in \mathbb{Z}\right\}$ and $\widetilde{\mathbb{R}}_{q}=\mathbb{R}_{q} \cup\{0\}$. For $a \in \mathbb{C}$, the q-shifted factorials are defined by

$$
(a ; q)_{0}=1 ; \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), n=1,2, \ldots ; \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

We denote also

$$
[a]_{q}=\frac{1-q^{a}}{1-q}, \quad a \in \mathbb{C} \quad \text { and } \quad[n]_{q}!=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathbb{N}
$$

A q-analogue of the classical exponential function is given by (see $[11,12]$)

$$
\begin{equation*}
e\left(z ; q^{2}\right)=\cos \left(-i z ; q^{2}\right)+i \sin \left(-i z ; q^{2}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\cos \left(z ; q^{2}\right)=\sum_{n=0}^{+\infty} q^{n(n+1)} \frac{(-1)^{n} z^{2 n}}{[2 n] q!}, \quad \sin \left(z ; q^{2}\right)=\sum_{n=0}^{+\infty} q^{n(n+1)} \frac{(-1)^{n} z^{2 n+1}}{[2 n+1] q!} \tag{2.2}
\end{equation*}
$$

satisfying the following inequality for all $x \in \mathbb{R}_{q}$

$$
\begin{equation*}
\left|\cos \left(x ; q^{2}\right)\right| \leq \frac{1}{(q ; q)_{\infty}}, \quad \sin \left(x ; q^{2}\right) \left\lvert\, \leq \frac{1}{(q ; q)_{\infty}} \quad\right. \text { and } \quad\left|e\left(i x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}} \tag{2.3}
\end{equation*}
$$

The q-differential-difference operators is defined as (see [11, 12])

$$
\partial_{q} f(z)= \begin{cases}\frac{f\left(q^{-1} z\right)+f\left(-q^{-1} z\right)-f(q z)+f(-q z)-2 f(-z)}{2(1-q) z} & \text { if } z \neq 0 \\ \lim _{z \rightarrow 0} \partial_{q} f(z) \text { in } \mathbb{R}_{q} & \text { if } z=0\end{cases}
$$

and we denote a repeated application by

$$
\partial_{q}^{0} f=f, \quad \partial_{q}^{n+1} f=\partial_{q}\left(\partial_{q}^{n} f\right)
$$

The q-Jackson integrals are defined by (see [6])

$$
\begin{gathered}
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{+\infty} q^{n} f\left(a q^{n}\right) \\
\int_{a}^{b} f(x) d_{q} x=(1-q) \sum_{n=0}^{+\infty} q^{n}\left(b f\left(b q^{n}\right)-a f\left(a q^{n}\right)\right)
\end{gathered}
$$

and

$$
\int_{-\infty}^{+\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{+\infty} q^{n}\left\{f\left(q^{n}\right)+f\left(-q^{n}\right)\right\}
$$

provided the sums converge absolutely.
In the following we denote by

- $\mathcal{C}_{q, 0}$ the space of bounded functions on \mathbb{R}_{q}, continued at 0 and vanishing a ∞.
- \mathcal{C}_{q}^{p} the space of functions p-times q-differentiable on \mathbb{R}_{q} such that for all $0 \leq n \leq p$. $\partial_{q}^{p} f$ is continuous on \mathbb{R}_{q},
- \mathcal{D}_{q} the space of functions infinitely q-differentiable on \mathbb{R}_{q} with compact supports.
- \mathcal{S}_{q} stands for the q-analogue Schwartz space of smooth functions over \mathbb{R}_{q} whose q-derivatives of all order decay at infinity. \mathcal{S}_{q} is endowed with the topology generated by the following family of semi-norms:

$$
\|u\|_{M, \mathcal{S}_{q}}(f):=\sup _{x \in \mathbb{R} ; k \leq M}(1+|x|)^{M}\left|\partial_{q}^{k} u(x)\right| \quad \text { for all } \quad u \in \mathcal{S}_{q} \quad \text { and } \quad M \in \mathbb{N} .
$$

- $\mathcal{S}^{\prime}{ }_{q}$ the space of tempered distributions on \mathbb{R}_{q}, it is the topological dual of \mathcal{S}_{q}.
- $L_{q}^{p}=\left\{f:\|f\|_{q, p}=\left(\int_{-\infty}^{+\infty}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$.
- $L_{q}^{\infty}=\left\{f:\|f\|_{q, \infty}=\sup _{x \in \mathbb{R}_{q}}|f(x)|<\infty\right\}$.

The q^{2}-Fourier transform was defined by R. L. Rubin defined in [11], as follow

$$
\mathcal{F}_{q}(f)(x)=K \int_{-\infty}^{+\infty} f(t) e\left(-i t x ; q^{2}\right) d_{q} t, \quad x \in \widetilde{\mathbb{R}}_{q}
$$

where

$$
K=\frac{\left(q ; q^{2}\right)_{\infty}}{2\left(q^{2} ; q^{2}\right)_{\infty}(1-q)^{2}}
$$

To get convergence of our analogue functions to their classical counterparts as $q \uparrow 1$ as in [9,12], we impose the condition that $1-q=q^{2 m}$ for some integer m. Therefore, in the remainder of this paper, letting $q \uparrow 1$ subject to the condition

$$
\frac{\log (1-q)}{\log (q)} \in 2 \mathbb{Z}
$$

It was shown in $([4,11])$ that the q^{2}-Fourier transform \mathcal{F}_{q} verifies the following properties:
(a) If $f, u f(u) \in L_{q}^{1}$, then

$$
\partial_{q}\left(\mathcal{F}_{q}\right)(f)(x)=\mathcal{F}_{q}(-i u f(u))(x)
$$

(b) If $f, \partial_{q} f \in L_{q}^{1}$, then

$$
\begin{equation*}
\mathcal{F}_{q}\left(\partial_{q}(f)\right)(x)=i x \mathcal{F}_{q}(f)(x) \tag{2.4}
\end{equation*}
$$

(c) If $f \in L_{q}^{1}$, then $\mathcal{F}_{q}(f) \in \mathcal{C}_{q, 0}$ and we have

$$
\begin{equation*}
\left\|\mathcal{F}_{q}(f)\right\|_{q, \infty} \leq \frac{2 K}{(q ; q)_{\infty}}\|f\|_{q, 1} \tag{2.5}
\end{equation*}
$$

(d) If $f \in L_{q}^{1}$, then, we have the reciprocity formula

$$
\begin{equation*}
\forall t \in \mathbb{R}_{q}, \quad f(t)=K \int_{-\infty}^{+\infty} \mathcal{F}_{q}(f)(x) e\left(i t x ; q^{2}\right) d_{q} x \tag{2.6}
\end{equation*}
$$

(e) The q^{2}-Fourier transform \mathcal{F}_{q} is an isomorphism from \mathcal{S}_{q} onto itself and we have, for all $f \in \mathcal{S}_{q}$

$$
\begin{equation*}
\mathcal{F}_{q}^{-1}(f)(x)=\mathcal{F}_{q}(f)(-x)=\overline{\mathcal{F}_{q}(\bar{f})}(x) \tag{2.7}
\end{equation*}
$$

(f) \mathcal{F}_{q} is an isomorphism from L_{q}^{2} onto itself, and we have

$$
\begin{equation*}
\left\|\mathcal{F}_{q}(f)\right\|_{2, q}=\|f\|_{q, 2}, \quad \forall f \in L_{q}^{2} \tag{2.8}
\end{equation*}
$$

and

$$
\forall t \in \mathbb{R}_{q}, \quad f(t)=K \int_{-\infty}^{+\infty} \mathcal{F}_{q}(f)(x) e\left(i t x ; q^{2}\right) d_{q} x
$$

The q-translation operator $\tau_{q ; x}, x \in \mathbb{R}_{q}$ is defined on L_{q}^{1} by (see [11])

$$
\begin{aligned}
& \tau_{q, y}(f)(x)=K \int_{-\infty}^{+\infty} \mathcal{F}_{q}(f)(t) e\left(i t x ; q^{2}\right) e\left(i t y ; q^{2}\right) d_{q} t, \quad y \in \mathbb{R}_{q} \\
& \tau_{q, 0}(f)(x)=(f)(x)
\end{aligned}
$$

It was shown in [11] that the q-translation operator can be also defined on L_{q}^{2}. Furthermore, it verifies the following properties
(a) For $f, g \in L_{q}^{1}$, we have

$$
\tau_{q, y} f(x)=\tau_{q, x} f(y), \quad \forall x, y \in \mathbb{R}_{q}
$$

and

$$
\int_{-\infty}^{+\infty} \tau_{q, y}(f)(-x) g(x) d_{q} x=\int_{-\infty}^{+\infty} f(x) \tau_{q, y}(g)(-x) d_{q} x, \quad \forall y \in \widetilde{\mathbb{R}}_{q}
$$

(b) For all $f \in L_{q}^{1}$ and all $y \in \mathbb{R}_{q}$, we have(see [3])

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \tau_{q, y}(f)(x) d_{q} x=\int_{-\infty}^{+\infty} f(x) d_{q} x \tag{2.9}
\end{equation*}
$$

(c) For all $y \in \mathbb{R}_{q}$ and for all $f \in L_{q}^{p}, 1 \leq p \leq \infty$, we have $\tau_{q, y}(f) \in L_{q}^{p}$ (see [3]) and

$$
\begin{equation*}
\left\|\tau_{q, y} f\right\|_{q, p} \leq M\|f\|_{q, p} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\frac{4(-q, q)_{\infty}}{(1-q)^{2} q(q, q)_{\infty}}+2 C, \quad \text { with } \quad C=K^{2}\left\|e\left(\cdot, q^{2}\right)\right\|_{\infty, q}\left\|e\left(\cdot, q^{2}\right)\right\|_{1, q} \tag{2.11}
\end{equation*}
$$

(d) $\tau_{q ; y} f$ is an isomorphism for $f \in L_{q}^{2}$ onto itself and we have

$$
\begin{equation*}
\left\|\tau_{q, y} f\right\|_{q, 2} \leq \frac{2}{(q, q)_{\infty}}\|f\|_{q, 2}, \quad \forall y \in \widetilde{\mathbb{R}}_{q} \tag{2.12}
\end{equation*}
$$

(e) Let $f \in L_{q}^{2}$, then

$$
\begin{equation*}
\mathcal{F}_{q}\left(\tau_{q, y} f\right)(\lambda)=e\left(i \lambda y ; q^{2}\right) \mathcal{F}_{q}(f)(\lambda), \quad \forall y \in \widetilde{\mathbb{R}}_{q} \tag{2.13}
\end{equation*}
$$

The q-convolution product is defined by using the q-translation operator, as follow For $f \in L_{q}^{2}$ and $g \in L_{q}^{1}$, the q-convolution product is given by

$$
f * g(y)=K \int_{-\infty}^{+\infty} \tau_{q, y} f(x) g(x) d_{q} x
$$

The q-convolution product satisfying the following properties:
(a) $f * g=g * f$.
(b) $\forall f, g \in L_{q}^{1} \cap L_{q}^{2}, \quad \mathcal{F}_{q}\left(f *_{q} g\right)=\mathcal{F}_{q}(f) \mathcal{F}_{q}(g)$.
(c) $\forall f, g \in \mathcal{S}_{q}, \quad f *_{q} g \in \mathcal{S}_{q}$.
(d) $f * g \in L_{q}^{2}$ if and only if $\mathcal{F}_{q}(f) \mathcal{F}_{q}(g) \in L_{q}^{2}$ and we have

$$
\mathcal{F}_{q}(f * g)=\mathcal{F}_{q}(f) \mathcal{F}_{q}(g)
$$

(e) Let $f, g \in L_{q}^{2}$. Then we have

$$
\begin{equation*}
\|f * g\|_{q, 2}^{2}=K\left\|\mathcal{F}_{q}(f) \mathcal{F}_{q}(g)\right\|_{q, 2}^{2} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
f * g=\mathcal{F}_{q}^{-1}\left(\mathcal{F}_{q}(f) \mathcal{F}_{q}(g)\right) \tag{2.15}
\end{equation*}
$$

(f) If $f, g \in L_{q}^{1}$ then $f * g \in L_{q}^{1}$ and

$$
\begin{equation*}
\|f * g\|_{q, 1}=K M\|f\|_{q, 1}\|g\|_{q, 1} \tag{2.16}
\end{equation*}
$$

3. L^{2}-Multiplier operators for the q-RUbin-Fourier transform

In this section we study the q^{2}-Fourier-multiplier operators and we establish theirs Calderón's reproducing formulas in L^{2}-case.

Definition 3.1. Let $a \in \mathbb{R}_{q}^{+}, m \in L_{q}^{2}$ and f a smooth function on \mathbb{R}_{q}. We define the q^{2}-Fourier L^{2}-multiplier operators \mathcal{T}_{m} for a regular function f on \mathbb{R}_{q} as follow

$$
\begin{equation*}
\mathcal{T}_{m} f(x)=\mathcal{F}_{q}^{-1}\left(m_{a} \mathcal{F}_{q}(f)\right)(x), \quad x \in \mathbb{R}_{q}, \tag{3.1}
\end{equation*}
$$

where the function m_{a} is given by

$$
m_{a}(x)=m(a x)
$$

Remark 3.1. Let $a \in \mathbb{R}_{q}^{+}, m \in L_{q}^{2}$ and f, we can write the operator \mathcal{T}_{m} as

$$
\begin{equation*}
\mathcal{T}_{m} f(x)=\mathcal{F}_{q}^{-1}\left(m_{a}\right) * f(x), \quad x \in \mathbb{R}_{q} \tag{3.2}
\end{equation*}
$$

where

$$
\mathcal{F}_{q}^{-1}\left(m_{a}\right)(x)=\frac{1}{a} \mathcal{F}_{q}^{-1}(m)\left(\frac{x}{a}\right) .
$$

Proposition 3.1. (i) If $m \in L_{q}^{2}$ and $f \in L_{q}^{1}$, then $\mathcal{T}_{m} f \in L_{q}^{2}$, and we have

$$
\left\|\mathcal{T}_{m} f\right\|_{q, 2} \leq \frac{2 K}{\sqrt{a}(q, q)_{\infty}}\|m\|_{q, 2}\|f\|_{q, 1}
$$

(ii) If $m \in L_{q}^{\infty}$ and $f \in L_{q}^{2}$, then $\mathcal{T}_{m} f \in L_{q}^{2}$, and we have

$$
\left\|\mathcal{T}_{m} f\right\|_{q, 2} \leq\|m\|_{\infty, q}\|f\|_{q, 2}
$$

(iii) If $m \in L_{q}^{2}$ and $f \in L_{q}^{2}$, then $\mathcal{T}_{m} f \in L_{q}^{\infty}$, and we have

$$
\mathcal{T}_{m} f(x)=K \int_{-\infty}^{\infty} m(a \xi) \mathcal{F}_{q}(f)(\xi) e\left(i \xi x ; q^{2}\right) d_{q} \xi, \quad x \in \mathbb{R}_{q}
$$

and

$$
\left\|\mathcal{T}_{m} f\right\|_{q, \infty} \leq \frac{2 K}{\sqrt{a}(q, q)_{\infty}}\|m\|_{q, 2}\|f\|_{q, 2}
$$

Proof. i) Let $m \in L_{q}^{2}$, and $f \in L^{1}$. From the definition of the q^{2}-Fourier L^{2}-multiplier operators (3.1) and relations (2.5) and (2.8) we get that the function $\mathcal{T}_{m} f$ belongs to L_{q}^{2}, and we have

$$
\begin{aligned}
\left\|\mathcal{T}_{m} f\right\|_{q, 2} & =\left\|m_{a} \mathcal{F}_{q}(f)\right\|_{q, 2} \\
& \leq \frac{1}{\sqrt{a}}\|m\|_{q, 2}\left\|\mathcal{F}_{q}(f)\right\|_{q, \infty} \\
& \leq \frac{2 K}{\sqrt{a}(q, q)_{\infty}}\|m\|_{q, 2}\|f\|_{q, 1}
\end{aligned}
$$

ii) The result follows from the Plancherel Theorem for the Rubin operator.
iii) Let $m \in L_{q}^{2}$, and $f \in L_{q}^{2}$, then from inversion formula we get $\mathcal{T}_{m} f \in L_{q}^{\infty}$, and by relation (2.5) we obtain

$$
\left\|\mathcal{T}_{m} f\right\|_{q, \infty} \leq \frac{2 K}{(q, q)_{\infty}}\left\|m_{a} \mathcal{F}_{q}(f)\right\|_{q, 1}
$$

then, using Hölder's inequality, we get

$$
\left\|\mathcal{T}_{m} f\right\|_{q, \infty} \leq \frac{2 K}{\sqrt{a}(q, q)_{\infty}}\|m\|_{q, 2}\|f\|_{q, 2}
$$

In the following, we give Plancherel and pointwise reproducing inversion formulas for the q^{2}-Fouriermultiplier operators \mathcal{T}_{m}.

Theorem 3.1. Let m be a function in L_{q}^{2} satisfying the admissibility condition:

$$
\begin{equation*}
\int_{0}^{\infty}\left|m_{a}(x)\right|^{2} \frac{d_{q} a}{a}=1, \quad x \in \mathbb{R}_{q} \tag{3.3}
\end{equation*}
$$

i)Plancherel formula: For all f in L_{q}^{2}, we have

$$
\int_{0}^{\infty}\left\|\mathcal{T}_{m} f\right\|_{q, 2}^{2} \frac{d_{q} a}{a}=K \int_{-\infty}^{\infty}|f(x)|^{2} d_{q}(x)
$$

ii) First Calderón's formula: Let f be a function in L_{q}^{1} such that $\mathcal{F}_{q} f$ in L_{q}^{1} then we have

$$
f(x)=\int_{0}^{\infty}\left(\mathcal{T}_{m} f * \mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(x) \frac{d_{q} a}{a}, \quad x \in \mathbb{R}_{q}
$$

Proof. i) According to identity (2.14) and relation (3.2) we have

$$
\begin{aligned}
\int_{0}^{\infty}\left\|\mathcal{T}_{m} f\right\|_{q, 2}^{2} \frac{d_{q} a}{a} & =\int_{0}^{\infty}\left\|\mathcal{F}_{q}^{-1}\left(m_{a}\right) * f\right\|_{q, 2}^{2} \frac{d_{q} a}{a} \\
& =K \int_{0}^{\infty}\left\|m_{a} \mathcal{F}_{q}(f)\right\|_{q, 2}^{2} \frac{d_{q} a}{a} \\
& =K \int_{-\infty}^{\infty}\left|\mathcal{F}_{q}(x)\right|^{2}\left(\int_{0}^{\infty}\left|m_{a}\right|^{2} \frac{d_{q} a}{a}\right) d_{q} x
\end{aligned}
$$

The result follows from Plancherel Theorem (2.8) and the assumption (3.3).
ii) Let f be a function in L_{q}^{1}, then

$$
\int_{0}^{\infty}\left(\mathcal{T}_{m} f * \mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(x) \frac{d_{q} a}{a}=\int_{0}^{\infty}\left(K \int_{-\infty}^{\infty} \mathcal{T}_{m} f(y) \tau_{q, x}\left(\mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(y) d_{q} y\right) \frac{d_{q} a}{a}
$$

From Proposition 3.1 i), relation (2.12) and Plancherel Theorem, it is obvious that $\mathcal{T}_{m} f, \tau_{q, x}\left(\mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right) \in L_{q}^{2}$. After that, according to relation (2.13), identity (3.1) and Plancherel Theorem of the q^{2}-Fourier transform, we obtain

$$
\int_{0}^{\infty}\left(\mathcal{T}_{m} f * \mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(x) \frac{d_{q} a}{a}=K \int_{0}^{\infty}\left(\int_{-\infty}^{\infty} e\left(i x y ; q^{2}\right) \mathcal{F}_{q}(f)(y)\left|m_{a}(y)\right|^{2} d_{q} y\right) \frac{d_{q} a}{a}
$$

Since

$$
\int_{0}^{\infty}\left(\int_{-\infty}^{\infty}\left|e\left(i x y ; q^{2}\right) \mathcal{F}_{q}(f)(y) \| m_{a}(y)\right|^{2} d_{q} y\right) \frac{d_{q} a}{a} \leq\left\|\mathcal{F}_{q}(f)\right\|_{q, 1} \leq \infty
$$

then, by Fubini's theorem, we have

$$
\begin{aligned}
\int_{0}^{\infty}\left(\mathcal{T}_{m} f * \mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(x) \frac{d_{q} a}{a} & =K \int_{-\infty}^{\infty} e\left(i x y ; q^{2}\right) \mathcal{F}_{q}(y)\left(\int_{0}^{\infty}\left|m_{a}(y)\right|^{2} \frac{d_{q} a}{a}\right) d_{q} y \\
& =K \int_{-\infty}^{\infty} e\left(i x y ; q^{2}\right) \mathcal{F}_{q}(y) d_{q} y=f(x)
\end{aligned}
$$

We need the following technical lemma to establish the Calderón's reproducing formulas for the q^{2}-Fourier L^{2}-multiplier operators.

Lemma 3.1. Let m be a function in $L_{q}^{2} \cap L_{q}^{\infty}$ satisfy the admissibility condition (3.3). Then the function

$$
\Phi_{\gamma, \delta}(x)=\int_{\gamma}^{\delta}|m(a x)|^{2} \frac{d_{q} a}{a}
$$

belongs to L_{q}^{2} for all $0<\gamma<\delta<\infty$ and we have

$$
\Phi_{\gamma, \delta}(x) \in L_{q}^{2} \cap L_{q}^{\infty} .
$$

Proof. Using Hölder's inequality for the measure $\frac{d_{q} a}{a}$, we get

$$
\left|\Phi_{\gamma, \delta}(x)\right|^{2} \leq \ln (\delta / \gamma) \int_{\gamma}^{\delta}|m(a x)|^{4} \frac{d_{q} a}{a}, \quad x \in \mathbb{R}_{q}
$$

Therefore,

$$
\begin{aligned}
\left\|\Phi_{\gamma, \delta}\right\|_{q, 2}^{2} & \leq \ln (\delta / \gamma) \int_{\gamma}^{\delta}\left(\int_{-\infty}^{\infty}|m(a x)|^{4} d_{q} x\right) \frac{d_{q} a}{a} \\
& \leq \ln (\delta / \gamma) \int_{\gamma}^{\delta}\left(\int_{-\infty}^{\infty}|m(x)|^{4} d_{q} x\right) \frac{d a}{a^{2}} \\
& \leq\left(\frac{1}{\gamma}-\frac{1}{\delta}\right) \ln (\delta / \gamma)\|m\|_{q, 2}^{2}\|m\|_{q, \infty}^{2}<\infty
\end{aligned}
$$

On the other hand, from the admissibility condition (3.3), we get

$$
\left\|\Phi_{\gamma, \delta}\right\|_{q, \infty} \leq 1
$$

which completes the proof.

Theorem 3.2. (Second Calderón's formula) Let $f \in L_{q}^{2}, m \in L_{q}^{2} \cap L_{q}^{\infty}$ satisfy the admissibility condition (3.3) and $0<\gamma<\delta<\infty$. Then the function

$$
f_{\gamma, \delta}(x)=\int_{\gamma}^{\delta}\left(\mathcal{T}_{m} f * \mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(x) \frac{d_{q} a}{a}, \quad x \in \mathbb{R}_{q}
$$

belongs to L_{q}^{2} and satisfies

$$
\begin{equation*}
\lim _{(\gamma, \delta) \rightarrow(0, \infty)}\left\|f_{\gamma, \delta}-f\right\|_{q, 2}=0 \tag{3.4}
\end{equation*}
$$

Proof. Let f be a function in L_{q}^{2}, and $m \in L_{q}^{2} \cap L_{q}^{\infty}$, then

$$
\int_{0}^{\infty}\left(\mathcal{T}_{m} f * \mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(x) \frac{d_{q} a}{a}=\int_{0}^{\infty}\left(K \int_{-\infty}^{\infty} \mathcal{T}_{m} f(y) \tau_{q, x}\left(\mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right)(y) d_{q} y\right) \frac{d_{q} a}{a}
$$

According to Proposition 3.1, relation (2.12) and Plancherel Theorem, it is obvious that $\mathcal{T}_{m} f, \tau_{q, x}\left(\mathcal{F}_{q}^{-1}\left(\overline{m_{a}}\right)\right) \in L_{q}^{2}$. Then, from relation (2.13) and the identity (3.1), we obtain

$$
f_{\gamma, \delta}(x)=K \int_{\gamma}^{\delta}\left(\int_{-\infty}^{\infty} e\left(i x y, q^{2}\right) \mathcal{F}_{q}(f)(y)\left|m_{a}(y)\right|^{2} d_{q} y\right) \frac{d_{q} a}{a}
$$

By Fubini-Tonnelli's theorem, Hölder's inequality and Lemma 3.1, we get

$$
\begin{aligned}
\int_{\gamma}^{\delta}\left(\int_{-\infty}^{\infty}\left|e\left(i x y, q^{2}\right) \mathcal{F}_{q}(f)(y) \| m_{a}(y)\right|^{2} d_{q} y\right) \frac{d_{q} a}{a} & \leq \frac{2}{(q, q)_{\infty}} \int_{-\infty}^{\infty}\left|\mathcal{F}_{q}(f)(y)\right| \Phi_{\gamma, \delta}(y) d_{q} y \\
& \leq \frac{2}{(q, q)_{\infty}}\|f\|_{q, 2}\left\|\Phi_{\gamma, \delta}\right\|_{q, 2}<\infty
\end{aligned}
$$

Then, according to Fubini's theorem and the inversion formula, we have

$$
\begin{aligned}
f_{\gamma, \delta}(x) & =K \int_{-\infty}^{\infty} e\left(i x y, q^{2}\right) \mathcal{F}_{q}(f)(y)\left(\int_{\gamma}^{\delta}\left|m_{a}(y)\right|^{2} \frac{d_{q} a}{a}\right) d_{q} y \\
& =K \int_{-\infty}^{\infty} e\left(i x y, q^{2}\right) \mathcal{F}_{q}(f)(y) \Phi_{\gamma, \delta}(y) d_{q} y \\
& =\mathcal{F}_{q}^{-1}\left[\mathcal{F}_{q}(f) \Phi_{\gamma, \delta}\right](x)
\end{aligned}
$$

On the other hand, the function $\Phi_{\gamma, \delta}$ belongs to L_{q}^{∞} which allows to see that $f_{\gamma, \delta}$ belongs to L_{q}^{2} and using the identity (2.15), we obtain

$$
\mathcal{F}_{q}\left(f_{\gamma, \delta}\right)=\mathcal{F}_{q}(f) \Phi_{\gamma, \delta}
$$

By the Plancherel formula we get

$$
\left\|f_{\gamma, \delta}-f\right\|_{q, 2}^{2}=\int_{-\infty}^{\infty}\left|\mathcal{F}_{q}(f)(y)\right|^{2}\left(1-\Phi_{\gamma, \delta}(y)\right)^{2} d_{q} y
$$

The the admissibility condition (3.3) leads to

$$
\lim _{(\gamma, \delta) \rightarrow(0, \infty)} \Phi_{\gamma, \delta}(y)=1, \quad y \in \mathbb{R}_{q}
$$

and

$$
\left|\mathcal{F}_{q}(f)(y)\right|^{2}\left(1-\Phi_{\gamma, \delta}(y)\right)^{2} \leq\left|\mathcal{F}_{q}(f)(y)\right|^{2}
$$

Finally, the relation (3.4) follows from the dominated convergence theorem.

4. The extremal function associated with q^{2}-Fourier L^{2}-multiplier operators

In this section, we study the extremal function associated to the q^{2}-Fourier L^{2}-multiplier operators.
Let $s \in \mathbb{R}$ and $1 \leq p<\infty$, the q^{2}-analogue Sobolev type spaces is defined in [15] by

$$
\mathcal{W}_{q}^{s, p}=\left\{u \in \mathcal{S}_{q}^{\prime}:\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \mathcal{F}_{q}(u) \in L_{q}^{p}\right\}
$$

In the particular case $p=2$, we denote $\mathcal{W}_{q}^{s, p}$ by \mathcal{H}_{q}^{s} which provided with the inner product

$$
\langle u, v\rangle_{\mathcal{H}_{q}^{s}}=\int_{-\infty}^{+\infty}\left(1+\xi^{2}\right)^{s} \mathcal{F}_{q}(u)(\xi) \overline{\mathcal{F}_{q}(v)(\xi)} d_{q} \xi
$$

and the norm

$$
\|u\|_{\mathcal{H}_{q}^{s}}:=\sqrt{\langle u, u\rangle_{\mathcal{H}_{q}^{s}}} .
$$

\mathcal{H}_{q}^{s} is a Hilbert space satisfying the following properties
(a) $\mathcal{H}_{q}^{0}=L_{q}^{2}$.
(b) For all $s>0$ the space \mathcal{H}_{q}^{s} is continuously contained in L_{q}^{2} and we have

$$
\begin{equation*}
\|f\|_{q, 2} \leq\|f\|_{\mathcal{H}_{q}^{s}} \tag{4.1}
\end{equation*}
$$

Proposition 4.1. Let m be a function in L_{q}^{∞}. Then the q^{2}-Fourier L^{2}-multiplier operators \mathcal{T}_{m} are bounded and linear from \mathcal{H}_{q}^{s} into L_{q}^{2} and we have for all $f \in \mathcal{H}_{q}^{s}$

$$
\left\|\mathcal{T}_{m} f\right\|_{q, 2} \leq\|m\|_{q, \infty}\|f\|_{\mathcal{H}_{q}^{s}}
$$

Proof. Let $f \in \mathcal{H}_{q}^{s}$. According to Proposition 3.1 (ii), the operator \mathcal{T}_{m} belongs to L_{q}^{2} and we have

$$
\left\|\mathcal{T}_{m} f\right\|_{q, 2} \leq\|m\|_{q, \infty}\|f\|_{q, 2}
$$

On the other hand, by the inequality (4.1) we have $\|f\|_{q, 2} \leq\|f\|_{\mathcal{H}_{q}^{s}}$, which gives the result.

Definition 4.1. Let $\eta>0$ and let m be a function in L_{q}^{∞}. We denote by $\langle u, v\rangle_{\mathcal{H}_{q}^{s}, \eta}$ the inner product defined on the space \mathcal{H}_{q}^{s} by

$$
\begin{equation*}
\langle f, g\rangle_{\mathcal{H}_{q}^{s}, \eta}=\eta\langle f, g\rangle_{\mathcal{H}_{q}^{s}}+\left\langle\mathcal{T}_{m} f, \mathcal{T}_{m} g\right\rangle_{q, 2} \tag{4.2}
\end{equation*}
$$

and the norm

$$
\|f\|_{\mathcal{H}_{q}^{s}, \eta}=\sqrt{\langle f, f\rangle_{\mathcal{H}_{q}^{s}, \eta}}
$$

It is easy to show the following results.

Proposition 4.2. Let m be a function in L_{q}^{∞} and f in \mathcal{H}_{q}^{s}
(i) The norm $\|\cdot\|_{\mathcal{H}_{q}^{s}, \eta}$ satisfies:

$$
\|f\|_{\mathcal{H}_{q}^{s}, \eta}^{2}=\eta\|f\|_{\mathcal{H}_{q}^{s}}^{2}+\left\|\mathcal{T}_{m} f\right\|_{q, 2}^{2}
$$

(ii) The norms $\|\cdot\|_{\mathcal{H}_{q}^{s}, \eta}$ and $\|\cdot\|_{\mathcal{H}_{q}^{s}}$ are equivalent and we have

$$
\sqrt{\eta}\|f\|_{\mathcal{H}_{q}^{s}} \leq\|f\|_{\mathcal{H}_{q}^{s}, \eta} \leq \sqrt{\eta+\|m\|_{q, \infty}^{2}}\|f\|_{\mathcal{H}_{q}^{s}}
$$

Theorem 4.1. Let $s>\frac{1}{2}$ and m be a function in L_{q}^{∞}. Then the Hilbert space $\left(\mathcal{H}_{q}^{s},\langle\cdot, \cdot\rangle_{\mathcal{H}_{q}^{s}, \eta}\right)$ has the following reproducing Kernel

$$
\begin{equation*}
\Psi_{s, \eta}(x, y)=\int_{-\infty}^{\infty} \frac{e\left(i x \xi, q^{2}\right) e\left(-i y \xi, q^{2}\right)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} d_{q}(\xi) \tag{4.3}
\end{equation*}
$$

such that
(i) For all $y \in \mathbb{R}_{q}$, the function $x \mapsto \Psi_{s, \eta}(x, y)$ belongs to \mathcal{H}_{q}^{s}.
(ii) For all $f \in \mathcal{H}_{q}^{s}$ and $y \in \mathbb{R}_{q}$, we have the reproducing property

$$
\left\langle f, \Psi_{s, \eta}(\cdot, y)\right\rangle_{\mathcal{H}_{q}^{s}, \eta}=f(y)
$$

(iii) The Hilbert space $\left(\mathcal{H}_{q}^{s},\langle\cdot, \cdot\rangle_{\mathcal{H}_{q}^{s}}\right)$ has the following reproducing Kernel

$$
\begin{equation*}
\Psi_{s}(x, y)=\int_{-\infty}^{\infty} \frac{e\left(i x \xi, q^{2}\right) e\left(-i y \xi, q^{2}\right)}{\left(1+|\xi|^{2}\right)^{s}} d_{q}(\xi) \tag{4.4}
\end{equation*}
$$

Proof. (i) Let $y \in \mathbb{R}_{q}$ and $s>\frac{1}{2}$. From the relation (2.3), we show that the function

$$
\varphi_{y}: \xi \longrightarrow \frac{e\left(-i y \xi, q^{2}\right)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}}
$$

belongs to $L_{q}^{1} \cap L_{q}^{2}$. Hence the function $\Psi_{s, \eta}$ is well defined and by the inversion formula, we obtain

$$
\Psi_{s, \eta}(x, y)=\mathcal{F}_{q}^{-1}\left(\varphi_{y}\right)(x), \quad x \in \mathbb{R}_{q}
$$

On the other hand, using Plancherel theorem, we get that $\Psi_{s, \eta}(\cdot, y)$ belongs to L_{q}^{2} and we have

$$
\begin{equation*}
\mathcal{F}_{q}\left(\Psi_{s, \eta}(\cdot, y)\right)(\xi)=\frac{e\left(-i y \xi, q^{2}\right)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}}, \quad \xi \in \mathbb{R}_{q} \tag{4.5}
\end{equation*}
$$

Therefore, by the identity (2) we obtain

$$
\left|\mathcal{F}_{q}\left(\Psi_{s, \eta}(\cdot, y)\right)(\xi)\right| \leq \frac{(q, q)_{\infty}^{-1}}{2 \eta\left(1+|\xi|^{2}\right)^{s}},
$$

and

$$
\left\|\Psi_{s, \eta}(\cdot, y)\right\|_{\mathcal{H}_{q}^{s}}^{2} \leq\left(2 \eta(q, q)_{\infty}\right)^{-2}\left\|\left(1+|\cdot|^{2}\right)^{-s}\right\|_{q, 1}<\infty .
$$

This proves that for every $y \in \mathbb{R}_{q}$, the function $\Psi_{s, \eta}(\cdot, y)$ belongs to \mathcal{H}_{q}^{s}.
(ii) Let $f \in \mathcal{H}_{q}^{s}$ and $y \in \mathbb{R}_{q}$. According to the definition of inner product (4.2) and identity (4.5), we obtain

$$
\left\langle f, \Psi_{s, \eta}(\cdot, y)\right\rangle_{\mathcal{H}_{q}^{s}, \eta}=\int_{-\infty}^{\infty} e\left(i x \xi, q^{2}\right) \mathcal{F}_{q}(\xi) d_{q}(\xi) .
$$

On the other hand, the function $\xi \longmapsto\left(1+|\xi|^{2}\right)^{-s / 2}$ belongs to L_{q}^{2} for all $s>1 / 2$. Therefore, the function $\mathcal{F}_{q}(f)$ belongs to L_{q}^{1} and we have

$$
\left\langle f, \Psi_{s, \eta}(\cdot, y)\right\rangle_{\mathcal{H}_{q}^{s}, \eta}=f(y) .
$$

(iii) The result is obtained by taking m a null function and $\eta=1$.

The main result of this section can be stated as follows.

Theorem 4.2. Let $s>\frac{1}{2}$ and m be a function in L_{q}^{∞} and $a>0$. For any $h \in L_{q}^{2}$ and for any $\eta>0$, there exists a unique function $f_{\eta, h, a}^{*}$, where the infimum

$$
\begin{equation*}
\inf _{f \in \mathcal{H}_{q}^{s}}\left\{\eta\|f\|_{\mathcal{H}_{q}^{s}}^{2}+\left\|h-\mathcal{T}_{m} f\right\|_{q, 2}^{2}\right\} \tag{4.6}
\end{equation*}
$$

is attained. Moreover the extremal function $f_{\eta, h, a}^{*}$ is given by

$$
\begin{equation*}
f_{\eta, h, a}^{*}(y)=\int_{\infty}^{\infty} h(x) \overline{\Theta_{s, \eta}(x, y)} d_{q} x, \tag{4.7}
\end{equation*}
$$

where

$$
\Theta_{s, \eta}(x, y)=\int_{-\infty}^{\infty} \frac{m_{a}(\xi) e\left(i x \xi, q^{2}\right)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} e\left(-i y \xi, q^{2}\right) d_{q} \xi .
$$

Proof. The existence and unicity of the extremal function $f_{\eta, h, a}^{*}$ satisfying (4.6) is given by $[8,10,13]$. On the other hand from Theorem 4.1 we have

$$
f_{\eta, h, a}^{*}(y)=\left\langle h, \mathcal{T}_{m}\left(\Psi_{s, \eta}(\cdot, y)\right)\right\rangle_{q, 2} .
$$

From Proposition 3.1 and identity (4.5) we obtain

$$
\begin{aligned}
\Theta_{s, \eta}(x, y) & =\mathcal{T}_{m}\left(\Psi_{s, \eta}(\cdot, y)\right)(x) \\
& =\int_{-\infty}^{\infty} \frac{m_{a}(\xi) e\left(i x \xi, q^{2}\right)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} e\left(-i y \xi, q^{2}\right) d_{q} \xi .
\end{aligned}
$$

Theorem 4.3. Let $s>\frac{1}{2}$ and m be a function in L_{q}^{∞} and $h \in L_{q}^{2}$. Then the extremal function $f_{\eta, h, a}^{*}$ satisfies the following properties:

$$
\mathcal{F}_{q}\left(f_{\eta, h, a}^{*}\right)(\xi)=\frac{\overline{m_{a}(\xi)}}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} \mathcal{F}_{q}(h)(\xi), \quad \xi \in \mathbb{R}_{q}
$$

and

$$
\left\|f_{\eta, h, a}^{*}\right\|_{\mathcal{H}_{q}^{s}}^{2} \leq \frac{1}{4 \eta}\|h\|_{q, 2}^{2}
$$

Proof. Let $y \in \mathbb{R}_{q}$, then the function

$$
g_{y}: \xi \longmapsto \frac{m_{a}(\xi) e\left(-i y \xi, q^{2}\right)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}}
$$

belongs to $L_{q}^{1} \cap L_{q}^{2}$ and by the inversion formula we obtain

$$
\Theta_{s, \eta}(x, y)=\mathcal{F}_{q}^{-1}\left(g_{y}\right)(x), \quad x \in \mathbb{R}_{q}
$$

Hence, by Plancherel formula, we have $\Theta_{s, \eta}(\cdot, y)$ belongs to L_{q}^{2} and

$$
\begin{aligned}
f_{\eta, h, a}^{*}(y) & =\int_{-\infty}^{\infty} \mathcal{F}_{q}(h)(\xi) \overline{g_{y}(\xi)} d_{q} \xi \\
& =\int_{-\infty}^{\infty} \frac{\overline{m_{a}(\xi)} \mathcal{F}_{q}(h)(\xi)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} e\left(i y \xi, q^{2}\right) d_{q} \xi
\end{aligned}
$$

On the other hand, the function

$$
F: \xi \longmapsto \frac{\overline{m_{a}(\xi)} \mathcal{F}_{q}(h)(\xi)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}}
$$

belongs to $L_{q}^{1} \cap L_{q}^{2}$ and by the inversion formula we obtain

$$
f_{\eta, h, a}^{*}(y)=\mathcal{F}_{q}^{-1}(F)(y) .
$$

Afterwards, by Plancherel formula, it follows that $f_{\eta, h, a}^{*}$ belongs to L_{q}^{2} and we have

$$
\mathcal{F}_{q}\left(f_{\eta, h, a}^{*}\right)(\xi)=\frac{\overline{m_{a}(\xi)} \mathcal{F}_{q}(h)(\xi)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}}, \quad \xi \in \mathbb{R}_{q}
$$

Hence

$$
\begin{aligned}
\left(1+|\xi|^{2}\right)^{s}\left|\mathcal{F}_{q}\left(f_{\eta, h, a}^{*}\right)(\xi)\right|^{2} & =\left(1+|\xi|^{2}\right)^{s}\left|\frac{\overline{m_{a}(\xi)} \mathcal{F}_{q}(h)(\xi)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}}\right|^{2} \\
& \leq\left(1+|\xi|^{2}\right)^{s} \frac{\left|\overline{m_{a}(\xi)} \mathcal{F}_{q}(h)(\xi)\right|^{2}}{4 \eta\left(1+|\xi|^{2}\right)^{s}\left|m_{a}(\xi)\right|^{2}} \\
& \leq \frac{1}{4 \eta}\left|\mathcal{F}_{q}(h)(\xi)\right|^{2}
\end{aligned}
$$

Finally, using Plancherel theorem, we obtain

$$
\left\|f_{\eta, h, a}^{*}\right\|_{\mathcal{H}_{q}^{s}}^{2} \leq \frac{1}{4 \eta}\|h\|_{q, 2}^{2}
$$

Theorem 4.4. (Third Calderón's formula). Let $s>\frac{1}{2}$, m be a function in L_{q}^{∞} and $f \in \mathcal{H}_{q}^{s}$. The extremal function given by

$$
\begin{equation*}
f_{\eta, a}^{*}(y)=\int_{-\infty}^{\infty} \mathcal{T}_{m} f(x) \overline{\Theta_{s, \eta}(x, y)} d_{q} x \tag{4.8}
\end{equation*}
$$

satisfies

$$
\lim _{\eta \rightarrow 0^{+}}\left\|f_{\eta, a}^{*}-f\right\|_{\mathcal{H}_{q}^{s}}=0
$$

Moreover, $\left\{f_{\eta, a}^{*}\right\}_{\eta>0}$ converges uniformly to f when η converge to 0^{+}.

Proof. Let $f \in \mathcal{H}_{q}^{s}, h=\mathcal{T}_{m} f$ and $f_{\eta, a}^{*}=f_{\eta, h, a}^{*}$. According to Proposition 4.1 the function h belongs to L_{q}^{2}. From the definition of the q^{2}-Fourier-multiplier operators \mathcal{T}_{m} and Theorem 4.3, we obtain

$$
\mathcal{F}_{q}\left(f_{\eta, a}^{*}\right)(\xi)=\frac{\left|m_{a}(\xi)\right|^{2}}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} \mathcal{F}_{q}(f)(\xi), \quad \xi \in \mathbb{R}_{q}
$$

Hence, it follows that

$$
\begin{equation*}
\mathcal{F}_{q}\left(f_{\eta, a}^{*}-f\right)(\xi)=\frac{-\eta\left(1+|\xi|^{2}\right)^{s}}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} \mathcal{F}_{q}(f)(\xi), \quad \xi \in \mathbb{R}_{q} \tag{4.9}
\end{equation*}
$$

Therefore,

$$
\left\|f_{\eta, a}^{*}-f\right\|_{\mathcal{H}_{q}^{s}}^{2}=\int_{-\infty}^{\infty} \frac{\eta^{2}\left(1+|\xi|^{2}\right)^{3 s}(\xi)\left|\mathcal{F}_{q}(f)(\xi)\right|^{2}}{\left(\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}\right)^{2}} d_{q} x
$$

Then, from the dominated convergence theorem and the following inequality

$$
\frac{\eta^{2}\left(1+|\xi|^{2}\right)^{3 s}\left|\mathcal{F}_{q}(f)(\xi)\right|^{2}}{\left(\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}\right)^{2}} \leq\left(1+|\xi|^{2}\right)^{s}\left|\mathcal{F}_{q}(f)(\xi)\right|^{2}
$$

we deduce that

$$
\lim _{\eta \rightarrow 0^{+}}\left\|f_{\eta, a}^{*}-f\right\|_{\mathcal{H}_{q}^{s}}=0
$$

On the other hand, the function $\xi \longmapsto\left(1+|\xi|^{2}\right)^{-s / 2}$ belongs to L_{q}^{2} for all $s>1 / 2$. Therefore, the function $\mathcal{F}_{q}(f)$ belongs to $L_{q}^{1} \cap L_{q}^{2}$ for all $f \in \mathcal{H}_{q}^{s}$. Then, according to (4.9) and the inversion formula for the q^{2}-Fourier transform, we get

$$
f_{\eta, a}^{*}(y)-f(y)=K \int_{-\infty}^{\infty} \frac{-\eta\left(1+|\xi|^{2}\right)^{s} \mathcal{F}_{q}(f)(\xi)}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} e\left(i y \xi, q^{2}\right) d_{q} x
$$

By using the dominated convergence theorem and the fact

$$
\frac{\eta\left(1+|\xi|^{2}\right)^{s}\left|\mathcal{F}_{q}(f)(\xi)\right|^{2}}{\eta\left(1+|\xi|^{2}\right)^{s}+\left|m_{a}(\xi)\right|^{2}} \leq\left|\mathcal{F}_{q}(f)(\xi)\right|
$$

we deduce that

$$
\lim _{\eta \rightarrow 0^{+}} \sup _{y \in \mathbb{R}_{q}}\left\|f_{\eta, a}^{*}(y)-f(y)\right\|=0
$$

which completes the proof of the Theorem.

Acknowledgement 4.1. The author gratefully acknowledge the approval and the support of this research study by the grant no. 7909-SCI-2018-3-9-F from the Deanship of Scientific Research at Northern Border University, Arar, K.S.A.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] J.-P. Anker, Lp Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. Math. 132 (1990), 597-628.
[2] J. J. Betancor, Ó. Ciaurri, and J. L. Varona, The multiplier of the interval $[-1,1]$ for the Dunkl transform on the real line, J. Funct. Ana. 242 (1) (2007), 327-336.
[3] N. Bettaibi, K. Mezlini, and M. El Guénichi, On rubin's harmonic analysis and its related positive definite functions, Acta Math. Sci. 32 (5) (2012), 1851-1874.
[4] A. Fitouhi and R. H. Bettaieb, Wavelet transforms in the q^{2}-analogue Fourier analysis, Math. Sci. Res. J. 12(9) (2008), 202-214.
[5] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge University Press, 2004.
[6] F. Jackson, On a q-Definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[7] V. Kac and P. Cheung, Quantum calculus, Springer Science \& Business Media, 2001.
[8] G. Kimeldorf and G. Wahba, Some results on Tchebycheffian spline functions, J. Math. Anal. Appl. 33(1) (1971), 82-95.
[9] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1) (1992), 445-461.
[10] T. Matsuura, S. Saitoh, and D. Trong, Approximate and analytical inversion formulas in heat conduction on multidimensional spaces, J. Inverse Ill-posed Probl. 13 (5) (2005), 479-493.
[11] R. Rubin, Duhamel solutions of non-homogeneous q^{2}-analogue wave equations, Proc. Amer. Math. Soc. 135 (3) (2007), 777-785.
[12] R. L. Rubin, A q^{2}-Analogue Operator for q^{2}-Analogue Fourier Analysis, J. Math. Anal. Appl. 212(2) (1997), 571-582.
[13] S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 83 (7) (2004), 727-733.
[14] A. Saoudi, Calderón's reproducing formulas for the Weinstein L^{2}-multiplier operators, Asian-Eur. J. Math. https://doi. org/10.1142/S1793557121500030 (2019).
[15] A. Saoudi and A. Fitouhi, On q ${ }^{2}$-analogue Sobolev type spaces, Le Mat. 70 (2) (2015), 63-77.
[16] A. Saoudi and A. Fitouhi, Three Applications In q^{2}-Analogue Sobolev Spaces, Appl. Math. E-Notes. 17 (2017), 1-9.
[17] A. Saoudi and A. Fitouhi, Littlewood-Paley decomposition in quantum calculus, Appl. Anal. https://doi.org/10.1080/ 00036811.2018 .1555321 (2018).
[18] A. Saoudi and I. A. Kallel, L^{2}-Uncertainty Principle for the Weinstein-Multiplier Operators, Int. J. Anal. Appl. 17 (1) (2019), 64-75.

