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Abstract. In this article, an analytical solution based on the series expansion method is proposed to solve

the telegraph equation of space - fractional order (TESFO), namely the Aboodh transformation method

(ATM) subjected to the appropriate initial condition. Using ATM, it is possible to find exact solution or

a closed approximate solution of a differential equation. Finally, several numerical examples are given to

illustrate the accuracy and stability of this method.

1. Introduction

In the last few decades, fractional calculus found many applications in various fields of physical sciences

such as viscoelasticity, diffusion, control, relaxation processes and so on [1]. Suspension flows are traditionally

modeled by parabolic partial differential equations. Sometimes they can be better modeled by hyperbolic

equations such as the telegraph equation, which have parabolic asymptotic. In particular the experimental

data described in [1] seem to be better modeled by the telegraph equation than by the heat equation. The

telegraph equation is used in signal analysis for transmission and propagation of electrical signals and also

used modeling reaction diffusion. The different type solutions of the fractional telegraph equations have been
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discussed by Momani [2] by using decomposition method, Yildirim [3] by homotopy perturbation method.

Our concern in this work is to consider the space-fractional telegraph equations as

Dα
xu(x, t) = aut + utt + bu(x, t) + g(x, t), 0 < x < 1

where t ≥ 0, 0 < α ≤ 2, a, b are given constants, g(x, t) is given function.

The main objective of this paper is to introduce a new analytical and approximate solution of spatial frac-

tional telegraphic equations using the Aboodh transformation method(ATM), where in [5] authors proposed

a Sumudu transformation method (STM) which is used to solve this equation.

2. Preliminary

2.1. Fundamental Properties of Fractional Calculus. In this section we give definitions and some basic

results.

Definition 2.1. An Aboodh transform is defined for functions of exponential order. We consider functions

in the set F defined by;

F =
{
f(t) :

∣∣f(t)
∣∣ < Me−vt, if t ∈

[
0;∞

[
, M, k1, k2 > 0; k1 ≤ v ≤ k2

}
(2.1)

For a given function in the set F , M must be finite number and k1, k2 may be finite or infinite with variable

v define as k1 ≤ v ≤ k2. Then, the Aboodh transform denoted by the operator A(:) is defined by the integral

equation:

T (v) = A
[
f(t)

]
=

1

v

∞∫
0

f(t)e−vtdt, t ≥ 0, k1 ≤ v ≤ k2. (2.2)

For a given function in the set F , M must be finite number and k1, k2 may be finite or infinite with variable

v define as k1 ≤ v ≤ k2. Then, the Aboodh transform denoted by the operator A(:) is defined by the integral

equation:

T (v) = A
[
f(t)

]
=

1

v

∞∫
0

f(t)e−vtdt, t ≥ 0, k1 ≤ v ≤ k2. (2.3)

Standard Aboodh transform for some special functions found are given below in Table (2.1).
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f(t) T (v) = A
[
f(t)

]
1

1

v2

t
1

v3

tn, n ≥ 1
n!

vn+2

eat
1

v2 − av
sin(at)

1

v(v2 + a2)

cos(at)
1

v2 + a2

sinh(at)
1

v(v2 − a2)

t cosh(at)
1

v2 − a2
TABLE(2.1): Aboodh transform of some functions.

Definition 2.2. The Riemann-Liouville fractional integral of order α ∈ R+ is defined as

D−αf (t) = Iαf(t) =
1

Γ (α)

t∫
0

f(x)

(t− x)
1−α dx, 0 < α ≤ 1 (2.4)

I0f(t) = f(t)

Properties of the operator Iα can be found in for α, β > 0, and γ > −1, we have:

IαIβf(t) = IβIαf(t) = Iα+βf(t)

Iαtγ =
Γ (γ + 1)

Γ (α+ γ + 1)
tα+γ

Definition 2.3. The caputo fractional derivative (CFD) operator Dα
t of order α is

Dα
t f(t) = In−αDnf(t) =

1

Γ (n− α)

t∫
0

f (n)(x)

(t− x)
1+α−n dx, x > 0 (2.5)

for n− 1 < α ≤ n, n ∈ N, t > 0.

Definition 2.4. The Mittage Leffler function Eα (z) with α > 0, is definite by the following series:

Eα (z) =
zα

Γ (nα+ 1)
, z ∈ C (2.6)

where n ∈ Z+, α ∈ R+.

Definition 2.5. The Aboodh transform A [Dα
xf(x)] of the fractional derivative using the Caputo idea of the

function is given by:

A [Dα
xf(x)]

]
= vαT (v)−

n−1∑
k=0

f (k)(0)

v2−α+k
(2.7)
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It is easy to understand that:

A [Dα
t f(x; t)]

]
= vαA [f(x; t)]

]
−
n−1∑
k=0

f (k)(x; 0)

v2−α+k
, n− 1 < α ≤ n, (2.8)

Remark 2.1. The Aboodh transform is linear, i.e., if α and β are any constants and f(t) and g(t) are

functions defined over the set F above, then

A
[
αf(t)± βg(t)

]
= αA

[
f(t)

]
± βA

[
g(t)

]
.

3. Procedure Solution Using ATM for Solving Linear TESFO

We consider the following linear TESFO of the form:

Dα
xu(x, t) = aut + utt + bu(x, t) + g(x, t), 0 < x < 1, (3.1)

t ≥ 0, 0 < α ≤ 2

where g(x, t) is the source term and a ,b are constants.

With Initial Condition

∂(r)u(0, t)

∂xr
= u(r)(0, t)

∣∣∣
t=0

= fr(t), r = 0, 1, 2, ......., n− 1. (3.2)

Now applying the AT into Eq(3.1) we have:

A [Dα
xu(x, t)] = A [aut + utt + bu(x, t)] +A [g(x, t)] (3.3)

Substituting Eq(2.8) into Eq(3.3) we get:

vαA [u(x; t)]
]
−
m−1∑
k=0

u(k)(0; t)

v2−α+k
= A [aut + utt + bu(x, t)] +A [g(x, t)] (3.4)

A [u(x; t)] =

m−1∑
k=0

fk(t)

v2+k
+ v−αA [aut + utt + bu(x, t)] + v−αA [g(x, t)] (3.5)

So, according to Aboodh decomposition method (ADM) we can obtain the solution result u(x, t) as

u(x, t) =

∞∑
n=0

un(x, t) (3.6)

Now, substituting Eq(3.6) into Eq(3.5) gives

A

[
∞∑
n=0

un(x, t)

]
=

m−1∑
k=0

fk(t)

v2+k
+ v−αA

[
a

(
∞∑
n=0

un(x, t)

)
t

+

(
∞∑
n=0

un(x, t)

)
tt

+ b

∞∑
n=0

un(x, t)

]
+ v−αA [g(x, t)] (3.7)

From Eq(3.7) we can define all the coefficients of un+1(x, t)

So we get the zero coefficients u0(x, t) as:

A [u0(x, t)] =

m−1∑
k=0

fk(t)

v2+k
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The first component u1(x, t) as:

A [u1(x, t)] = v−αA [a (u0(x, t))t + (u0(x, t))tt + bu0(x, t) + g(x, t)]

Finally the remaining coefficients of un+1(x, t)can be find in a way like each coefficients is found by using

the coming before components.

A [un+1(x, t)] = v−αA [a (un(x, t))t + (un(x, t))tt + bun(x, t) + g(x, t)] , n ≥ 0.

Applying the Aboodh inverse to the above equations yields the following:

u0(x, t) = A−1
[
m−1∑
k=0

fk(t)

v2+k

]

u1(x, t) = A−1 [v−αA [a (u0(x, t))t + (u0(x, t))tt + bu0(x, t) + g(x, t)]]

...

un+1(x, t) = A−1 [v−αA [a (un(x, t))t + (un(x, t))tt + bun(x, t) + g(x, t)]]

So that, the AS un(x, t) is given as:

un(x, t) =

n−1∑
j=0

uj(x, t) (3.8)

Such that

lim
n→∞

un(x, t) = u(x, t) (3.9)

4. Illustrative Examples

In this section we shall test two examples using the ATM to solve the TESFO and the solutions we got

it by using the present procedure will be comparing with original ES.

Example 4.1. consider the following homogeneous TESFO

Dα
xu(x, t) = utt + ut + u, x, t ≥ 0, 0 < α ≤ 2, (4.1)

with initial conditions 
u(0, t) = e−t, t ≥ 0

ux(0, t) = e−t, t ≥ 0

(4.2)

we appling the AT with (2.8) into (4.1) and (4.2) we get:

vαA [u(x; t)]−
1∑
k=0

u(k)(0; t)

v2−α+k
= A [u(x, t)tt + u(x, t)t + u(x, t)] (4.3)

So, we have

A [u(x; t)] =
e−t

v2
+
e−t

v3
+ v−αA [u(x, t)tt + u(x, t)t + u(x, t)] (4.4)
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So, according to ADM we can obtain the solution result u(x, t) as

u(x, t) =

∞∑
n=0

un(x, t)

substituting (3.6) into (4.4) gives

A

[ ∞∑
n=0

un(x, t)

]
=
e−t

v2
+
e−t

v3
+ v−αA

[( ∞∑
n=0

un(x, t)

)
)tt +

( ∞∑
n=0

un(x, t)

)
)t +

( ∞∑
n=0

un(x, t)

)]
(4.5)

according to equation (4.5), we can calculate the terms un+1(x, t)

So, we get the coefficients of u0(x, t) as

A [u0(x; t)] =
e−t

v2
+
e−t

v3
(4.6)

So, we can use the Aboodh inverse in (4.6), we get

u0(x; t) = A−1
[
e−t

v2
+
e−t

v3

]
= e−t + xe−t

and in the same way we calculate the coefficients of u1(x, t)

A [u1(x, t)] = v−αA [(u0(x, t)) tt + (u0(x, t)) t + (u0(x, t))] (4.7)

Also, we have

u1(x, t) = A−1
[
v−αA [(u0(x, t)) tt + (u0(x, t)) t + (u0(x, t))]

]
(4.8)



u1(x, t) = A−1 [v−αA [e−t + xe−t]]

= A−1
[
e−t

vα
+

e−t

vα+3

]
= e−tA−1

[
1

vα+2
+

1

vα+3

]

= e−t
(

xα

Γ(α+ 1)
+

xα+1

Γ(α+ 2)

)
(4.9)

We can find the coefficients of un(x, t) with the recurente relation as follows

un+1(x, t) = A−1
[
v−αA [(un(x, t)) tt + (un(x, t)) t + (un(x, t))]

]
, ∀n ≥ 0 (4.10)

Also, we have

u2(x, t) = e−t
(

x2α

Γ(2α+ 1)
+

x2α+1

Γ(2α+ 2)

)
...

...

un(x, t) = e−t
(

xnα

Γ(nα+ 1)
+

xnα+1

Γ(nα+ 2)

)
(4.11)
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Finally, we obtain the approximate solution

un(x, t) = e−t
(

1 + x+
xα

Γ(α+ 1)
+

xα+1

Γ(α+ 2)
+

x2α

Γ(2α+ 1)
+

x2α+1

Γ(2α+ 2)
+ ..................

)
(4.12)

If we put α = 1 in (4.12), we can conclude the exact solution

u(x, t) = e−t
(

1 + x+ x+
x2

2!
+
x2

2!
+
x3

3!
+
x3

3!
+ ..................

)
= 2e−t+x − e−t

(a) (1.1) (b) (1.2)

(c) (1.3)

Figure 1. Comparison between (1.1) the exact solution for α = 1 and (1.2), (1.3) the

approximative solutions using 4-term of the ATM for α = 1.7 and α = 1.9 respectively.
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Example 4.2. We consider a linear telegraph equation described by

Dα
xu(x, t) = utt + 2ut + u x, t ≥ 0, 0 < α ≤ 2, (4.13)

with initial conditions 
u(0, t) = e−3t, t ≥ 0

ux(0, t) = 2e−3t, t ≥ 0

(4.14)

we appling the AT with (2.8) into (4.13) and (4.14) we get:

vαA [u(x; t)]−
1∑
k=0

u(k)(0; t)

v2−α+k
= A [u(x, t)tt + 2u(x, t)t + u(x, t)] (4.15)

So, we have

A [u(x; t)] =
e−3t

v2
+ 2

e−3t

v3
+ v−αA [u(x, t)tt + 2u(x, t)t + u(x, t)] (4.16)

So, according to ADM we can obtain the solution result u(x; t) as

u(x, t) =

∞∑
n=0

un(x, t) (4.17)

substituting (3.6) into (4.16) gives

A

[
∞∑
n=0

un(x, t)

]
=
e−3t

v2
+ 2

e−3t

v3
+ v−αA

[(
∞∑
n=0

un(x, t)

)
)tt + 2

(
∞∑
n=0

un(x, t)

)
)t +

(
∞∑
n=0

un(x, t)

)]
(4.18)

according to equation (4.18), we can calculate the terms un+1(x, t).

So, we get the coefficients of u0(x, t) as

A [u0(x; t)] =
e−3t

v2
+ 2

e−3t

v3
(4.19)

we use the Aboodh inverse in (4.19), we obtain

u0(x; t) = e−3t + 2xe−3t

and in the same way we calculate the coefficients of u1(x, t)

A [u1(x, t)] = v−αA [(u0(x, t)) tt + 2 (u0(x, t)) t + (u0(x, t))] (4.20)

Also, we have

u1(x, t) = A−1
[
v−αA [(u0(x, t)) tt + 2 (u0(x, t)) t + (u0(x, t))]

]
(4.21)
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u1(x, t) = A−1
[
v−αA

[
4e−3t + 8xe−3t

]]

= e−3tA−1
[

4

vα+2
+

8

vα+3

]

= 4e−3t
(

xα

Γ(α+ 1)
+

2xα+1

Γ(α+ 2)

)
(4.22)

We can find the coefficients of un(x, t) with the recurrence relation as follows

un+1(x, t) = A−1
[
v−αA [(un(x, t)) tt + 2 (un(x, t)) t + (un(x, t))]

]
(4.23)

Also, we have 

u2(x, t) = A−1 [v−αA [(u1(x, t)) tt + 2 (u1(x, t)) t + (u1(x, t))]]

= 4A−1
[
v−αA

[
e−3t

(
4xα

Γ(α+ 1)
+

8xα+1

Γ(α+ 2)

)]]

= 4e−3tA−1
[

4

v2α+2
+

8

v2α+3

]

= 16e−3t
(

x2α

Γ(2α+ 1)
+

2x2α+1

Γ(2α+ 2)

)

(4.24)

we can give the general solution as follow

un(x, t) = 4ne−3t
(

xnα

Γ(nα+ 1)
+

2xnα+1

Γ(nα+ 2)

)
(4.25)

Finally, we obtain the approximate solution

un(x, t) = e−3t

(
1 + 2x+

4xα

Γ(α+ 1)
+

8xα+1

Γ(α+ 2)
+

16x2α

Γ(2α+ 1)
+

32x2α+1

Γ(2α+ 2)
+ .......

4nxnα

Γ(nα+ 1)
+ 2

4nxnα+1

Γ(nα+ 2)
+ .....

)
(4.26)

If we put α = 2 in (4.26), we can conclude the exact solution

u(x, t) = e−3t
(

1 + 2x+
4x2

2!
+

8x3

3!
+

16x4

4!
+ .....

)
= e−3te2x = e−3t+2x (4.27)
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(a) (2.1) (b) (2.2)

(c) (2.3)

Figure 2. Comparison between (2.1) the exact solution for α = 2 and (2.2), (2.3) the

approximative solutions using 4-term of the ATM for α = 1.7 and α = 1.9 respectively.

Conclusion. The application of ATM was extended successfully for solving the TESFO. The ATM was

clearly very efficient and powerful technique in finding the approximative solution of the proposed equations.

In order to check the effectiveness of the introduced procedure, two numerical examples are tested, by

comparing the approximative solution with the exact solution.
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