A NOTE ON GENERALIZED INDEXED PRODUCT SUMMABILITY

A. MISHRA ${ }^{1}$, B. P. PADHY ${ }^{1, *}$, B. K. MAJHI ${ }^{2}$ AND U. K. MISRA ${ }^{3}$
${ }^{1}$ Dept. of Mathematics, KIIT, Deemed to be University, Bhubaneswar, Odisha, India
${ }^{2}$ Dept. of Mathematics, Centurion University of Technology and Management, Odisha, India
${ }^{3}$ Dept. of Mathematics, National Institute of Science and Technology, Berhampur, Odisha, India

*Corresponding author: birupakhya.padhyfma@kiit.ac.in

Abstract

In the past, many researchers like Szasz, Rajgopal, Parameswaran, Ramanujan, Das, Sulaiman, have established results on products of two summability methods. In the present article, we have established a result on generalized indexed product summability which not only generalizes the result of Misra et al [2] and Paikray et al [3] but also the result of Sulaiman [7].

1. Introduction

If we look back to the history, it is found that, in 1952, Szasz [8] published some results on products of summability methods. Subsequently, Rajgopal [5] in 1954, Parameswaran [4] in 1957, Ramanujan [6] in 1958 etc. published some more results on products of summability methods. Later Das [1] in 1969 proved a result on absolute product summability. In 2008, Sulaiman [7] published a result on indexed product summability of an infinite series. The result of Sulaiman was then extended by Paikray et al.[3] in 2010 and Misra et al [2] in 2011.

Let $\sum a_{n}$ be an infinite series with the sum of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real

[^0]constants such that
\[

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\ldots+p_{n} \rightarrow \infty \text { as } n \rightarrow \infty\left(P_{-i}=p_{-i}=0\right) \tag{1.1}
\end{equation*}
$$

\]

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{n} \sum_{\nu=0}^{n} p_{\nu} s_{\nu} \tag{1.2}
\end{equation*}
$$

defines the $\left(R, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ generated by $\left\{p_{n}\right\}$.
The series $\sum a_{n}$ is said to be summable $\left|R, p_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

Similarly, the sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{n} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} \tag{1.4}
\end{equation*}
$$

defines the $\left(N, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ generated by $\left\{p_{n}\right\}$.
Let $\left\{\tau_{n}\right\}$ be the sequence of $\left(N, q_{n}\right)$ transform of the $\left(N, p_{n}\right)$ transform of $\left\{s_{n}\right\}$, generated by the sequence $\left\{q_{n}\right\}$ and $\left\{p_{n}\right\}$ respectively.That is

$$
\tau_{n}=\frac{1}{Q_{n}} \sum_{r=0}^{n} q_{n-r} \frac{1}{P_{r}} \sum_{\nu=0}^{r} p_{r-\nu} s_{\nu}
$$

Then the series $\sum a_{n}$ is said to be summable $\left|\left(N, q_{n}\right)\left(N, p_{n}\right)\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\tau_{n}-\tau_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

and the series $\sum a_{n}$ is said to be summable $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \delta\right|_{k}, k \geq 1,1 \geq \delta k \geq 0$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|\tau_{n}-\tau_{n-1}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

Similarly, if $\left\{\alpha_{n}\right\}$ is a sequence of positive numbers, then the series $\sum a_{n}$ is said to be summable $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{k-1}\left|\tau_{n}-\tau_{n-1}\right|^{k}<\infty \tag{1.7}
\end{equation*}
$$

and the series $\sum a_{n}$ is summable $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n} ; \delta\right|_{k}, k \geq 1,1 \geq \delta k \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}{ }^{\delta k+k-1}\left|\tau_{n}-\tau_{n-1}\right|^{k}<\infty \tag{1.8}
\end{equation*}
$$

For, μ a real number, the series $\sum a_{n}$ is summable $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta, \mu\right|_{k}, k \geq 1,1 \geq \delta k \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}{\alpha_{n}}^{\mu(\delta k+k-1)}\left|\tau_{n}-\tau_{n-1}\right|^{k}<\infty \tag{1.9}
\end{equation*}
$$

We assume through out this paper that $Q_{n}=q_{0}+q_{1}+\ldots+q_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $P_{n}=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

2. Known Theorems

In 2008, Sulaiman [7] has proved the following theorem.

Theorem 2.1. Let $k \geq 1$ and $\left\{\lambda_{n}\right\}$ be a sequence of constants. Let us define

$$
\begin{equation*}
f_{\nu}=\sum_{r=\nu}^{n} \frac{q_{r}}{p_{r}}, F_{\nu}=\sum_{r=\nu}^{n} p_{r} f_{r} \tag{2.1}
\end{equation*}
$$

Let $p_{n} Q_{n}=O\left(P_{n}\right)$ such that

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty} \frac{n^{k-1} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}}=O\left(\frac{\left(\nu q_{\nu}\right)^{k-1}}{Q_{\nu}^{k-1}}\right) \tag{2.2}
\end{equation*}
$$

Then the sufficient condition for the implication $\sum a_{n}$ is summable $\left|R, r_{n}\right|_{k} \Rightarrow \sum a_{n} \lambda_{n}$ is summable $\left|\left(R, q_{n}\right)\left(R, p_{n}\right)\right|_{k}$ are

$$
\begin{align*}
& \left|\lambda_{\nu}\right| F_{\nu}=O\left(Q_{\nu}\right) \tag{2.3}\\
& \left|\lambda_{\nu}\right|=O\left(Q_{\nu}\right) \tag{2.4}\\
& p_{\nu} R_{\nu}\left|\lambda_{\nu}\right|=O\left(Q_{\nu}\right) \tag{2.5}\\
& p_{\nu} q_{\nu} R_{\nu}\left|\lambda_{\nu}\right|=O\left(Q_{\nu} Q_{\nu-1} r_{\nu}\right) \tag{2.6}\\
& p_{n} q_{n} R_{n}\left|\lambda_{n}\right|=O\left(P_{n} Q_{n} r_{n}\right) \tag{2.7}\\
& R_{\nu-1}\left|\Delta \lambda_{\nu}\right| F_{\nu-1}=O\left(Q_{\nu} r_{\nu}\right) \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
R_{\nu-1}\left|\Delta \lambda_{\nu}\right|=O\left(Q_{\nu} r_{\nu}\right) \tag{2.9}
\end{equation*}
$$

where $R_{n}=r_{1}+r_{2}+\ldots+r_{n}$.

Subsequently Paikray et al [3] generalized the above theorem by replacing the (R, p_{n}) summability by A summability. He proved:

Theorem 2.2. Let $k \geq 1$ and $\left\{\lambda_{n}\right\}$ be a sequence of constants. Let us define

$$
\begin{equation*}
f_{\nu}=\sum_{r=\nu}^{n} q_{r} a_{r \nu}, F_{\nu}=\sum_{r=\nu}^{n} f_{r} \tag{2.10}
\end{equation*}
$$

Then the sufficient condition for the implication $\sum a_{n}$ is summable $\left|R, r_{n}\right|_{k} \Rightarrow \sum a_{n} \lambda_{n}$ is summable $\left|\left(R, q_{n}\right)(A)\right|_{k}$ are

$$
\begin{align*}
& \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}}=O\left(\frac{1}{\lambda_{\nu}{ }^{k}}\right), \tag{2.11}\\
& \left(\sum_{r=\nu}^{n} q_{r}{ }^{\frac{k}{k-1}}\right)=O\left(q_{\nu}\right), \tag{2.12}\\
& \left(\sum_{r=\nu}^{n} a_{r, \nu}^{k}\right)=O\left(\nu^{k-1}\right), \tag{2.13}\\
& R_{\nu}=O\left(r_{\nu}\right), \tag{2.14}\\
& \frac{q_{n}}{Q_{n}}=O(1), \tag{2.15}\\
& \frac{q_{n} \lambda_{n} a_{n, n}}{Q_{n-1}}=O(1), \tag{2.16}\\
& \frac{\left(\Delta \lambda_{1}\right)^{k}}{q_{\nu}^{k-1}}=O\left(\nu^{k-1}\right), \tag{2.17}\\
& \frac{\Delta \lambda_{\nu}}{\lambda_{\nu}}=O(1), \tag{2.18}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\lambda_{\nu}{ }^{k}}{q_{\nu}{ }^{k-1}}=O\left(\nu^{k-1}\right) \tag{2.19}
\end{equation*}
$$

where $R_{n}=r_{1}+r_{2}+\ldots+r_{n}$.

In 2011, Misra et al [2], generalize the above theorems and proved the following theorem.

Theorem 2.3. For the sequences of real constants $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ and the sequence of positive numbers $\left\{\alpha_{n}\right\}$, we define

$$
\begin{equation*}
f_{\nu}=\sum_{i=\nu}^{n} \frac{q_{n-i} p_{i-\nu}}{P_{i}} \text { and } F_{\nu}=\sum_{i=\nu}^{n} f_{i} \tag{2.20}
\end{equation*}
$$

Let

$$
\begin{equation*}
Q_{n}=O\left(q_{n} P_{n}\right) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=\nu+1}^{m+1} \frac{\left\{f\left(\alpha_{n}\right)\right\}^{k}\left(\alpha_{n}\right)^{k-1} q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}}=O\left(\frac{\left(\nu q_{\nu}\right)^{k-1}}{Q_{\nu}^{k}}\right) \text { as } m \rightarrow \infty . \tag{2.22}
\end{equation*}
$$

Then for any sequence $\left\{r_{n}\right\}$ and $\left\{\lambda_{n}\right\}$, the sufficient conditions for the implication $\sum a_{n}$ is summable $\left|R, r_{n}\right|_{k} \Rightarrow \sum a_{n} \lambda_{n}$ is summable $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n} ; f\right|_{k}, k \geq 1$, are

$$
\begin{align*}
& \left|\lambda_{\nu}\right| F_{\nu}=O\left(Q_{\nu}\right) \tag{2.23}\\
& \left|\lambda_{n}\right|=O\left(Q_{n}\right) \tag{2.24}\\
& R_{\nu} F_{\nu}\left|\lambda_{\nu}\right|=O\left(Q_{\nu} r_{\nu}\right), \tag{2.25}\\
& q_{n} R_{n} F_{n}\left|\lambda_{n}\right|=O\left(Q_{n} Q_{n-1} r_{n}\right), \tag{2.26}\\
& R_{\nu-1} F_{\nu+1}\left|\Delta \lambda_{\nu}\right|=O\left(Q_{\nu} r_{\nu}\right), \tag{2.27}\\
& R_{\nu-1}\left|\Delta \lambda_{\nu}\right|=O\left(Q_{\nu} r_{\nu}\right) \tag{2.28}\\
& q_{n} R_{n}\left|\lambda_{n}\right|=O\left(Q_{n} Q_{n-1} r_{n}\right), \tag{2.29}\\
& \sum_{n=1}^{\infty} n^{k-1}\left|t_{n}\right|^{k}=O(1) \tag{2.30}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{f\left(\alpha_{n}\right)\right\}^{k}\left(\alpha_{n}\right)^{k-1}\left|t_{n}\right|^{k}=O(1) \tag{2.31}
\end{equation*}
$$

where $R_{n}=r_{1}+r_{2}+\ldots+r_{n}$.

In what follows, we established a theorem on generalized product summability of the infinite series $\sum a_{n} \lambda_{n}$ in the following form:

3. Main Theorem

Theorem 3.1. For ' μ ' a real number, the sequences of real constants $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ and the sequence of positive numbers $\left\{\alpha_{n}\right\}$, we define

$$
\begin{equation*}
f_{\nu}=\sum_{i=\nu}^{n} \frac{q_{n-i} p_{i-\nu}}{P_{i}} \text { and } F_{\nu}=\sum_{i=\nu}^{n} f_{i} \tag{3.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
Q_{n}=O\left(q_{n} P_{n}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty} \frac{\alpha_{n}^{\mu(k \delta+k-1)} q_{n}^{k}}{Q_{n}^{k} Q_{n-1}}=O\left(\frac{\left(\nu q_{\nu}\right)^{k-1}}{Q_{\nu}^{k}}\right) \text { as } m \rightarrow \infty \tag{3.3}
\end{equation*}
$$

Then for any sequence $\left\{r_{n}\right\}$ and $\left\{\lambda_{n}\right\}$, the sufficient conditions for the implication $\sum a_{n}$ is summable $\left|R, r_{n}\right|_{k} \Rightarrow \sum a_{n} \lambda_{n}$ is summable $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta, \mu\right|_{k}, k \geq 1$, are

$$
\begin{align*}
& \left|\lambda_{\nu}\right| F_{\nu}=O\left(Q_{\nu}\right) \tag{3.4}\\
& \left|\lambda_{n}\right|=O\left(Q_{n}\right) \tag{3.5}\\
& R_{\nu} F_{\nu}\left|\lambda_{\nu}\right|=O\left(Q_{\nu} r_{\nu}\right) \tag{3.6}\\
& q_{n} R_{n} F_{n}\left|\lambda_{n}\right|_{n}^{\mu \delta}=O\left(Q_{n} Q_{n-1} r_{n}\right) \tag{3.7}\\
& R_{\nu-1} F_{\nu+1}\left|\Delta \lambda_{\nu}\right|=O\left(Q_{\nu} r_{\nu}\right) \tag{3.8}\\
& R_{\nu-1}\left|\Delta \lambda_{\nu}\right|=O\left(Q_{\nu} r_{\nu}\right) \tag{3.9}\\
& q_{n} R_{n}\left|\lambda_{n}\right| \alpha_{n}^{\mu \delta}=O\left(Q_{n} Q_{n-1} r_{n}\right) \tag{3.10}\\
& \sum_{n=1}^{\infty} n^{k-1}\left|t_{n}\right|^{k}=O(1) \tag{3.11}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\alpha_{n}\right)^{\mu(k-1)}\left|t_{n}\right|^{k}=O(1) \tag{3.12}
\end{equation*}
$$

where $R_{n}=r_{1}+r_{2}+\ldots+r_{n}$.

4. Proof of Theorem 3.1

Let $\left\{t_{n}{ }^{\prime}\right\}$ be the $\left(R, r_{n}\right)$ transform of the series $\sum a_{n}$. Then

$$
\begin{gathered}
t_{n}^{\prime}=\frac{1}{R} \sum_{\nu=0}^{n} r_{\nu} s_{\nu} \\
t_{n}=t_{n}^{\prime}-t^{\prime}{ }_{n-1}=\frac{r_{n}}{R_{n} R_{n-1}} \sum_{\nu=1}^{n} R_{\nu-1} a_{\nu}
\end{gathered}
$$

Let $\left\{s_{n}\right\}$ be the sequence of partial sums of the series $\sum a_{n} \lambda_{n}$ and $\left\{\tau_{n}\right\}$ be the sequence of $\left(N, q_{n}\right)\left(N, p_{n}\right)$ transform of the series $\sum a_{n} \lambda_{n}$. Then

$$
\begin{align*}
& \tau_{n}=\frac{1}{Q_{n}} \sum_{r=0}^{n} q_{n-r} \frac{1}{P_{r}} \sum_{\nu=0}^{r} p_{r-\nu} s_{\nu} \\
& =\frac{1}{Q_{n}} \sum_{\nu=0}^{n} s_{\nu} \sum_{r=\nu}^{n} \frac{q_{n-\nu} p_{r-\nu}}{P_{r}} \\
& =\frac{1}{Q_{n}} \sum_{\nu=0}^{n} f_{\nu} s_{\nu} \tag{4.1}
\end{align*}
$$

Hence

$$
\begin{align*}
& T_{n}=\tau_{n}-\tau_{n-1} \\
& =\frac{1}{Q_{n}} \sum_{\nu=0}^{n} f_{\nu} s_{\nu}-\frac{1}{Q_{n-1}} \sum_{\nu=0}^{n-1} f_{\nu} s_{\nu} \\
& =-\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{\nu=0}^{n} f_{\nu} s_{\nu}+\frac{f_{n} s_{n}}{Q_{n-1}} \\
& =-\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{r=0}^{n} f_{r} \sum_{\nu=0}^{r} a_{\nu} \lambda_{\nu}+\frac{f_{n}}{Q_{n-1}} \sum_{\nu=0}^{n} a_{\nu} \lambda_{\nu} \\
& =-\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{r=0}^{n} a_{r} \lambda_{r} \sum_{\nu=0}^{r} f_{\nu}+\frac{f_{n}}{Q_{n-1}} \sum_{\nu=0}^{n} a_{\nu} \lambda_{\nu} \tag{4.2}\\
& =-\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{\nu=1}^{n} R_{\nu-1} a_{\nu}\left(\frac{\lambda_{\nu}}{R_{\nu-1}} \sum_{r=\nu}^{n} f_{r}\right)+\frac{q_{0} p_{0}}{P_{n} Q_{n-1}} \sum_{\nu=1}^{n} R_{\nu-1} a_{\nu}\left(\frac{\lambda_{\nu}}{R_{\nu-1}}\right) \\
& =-\frac{q_{n}}{Q_{n} Q_{n-1}}\left[\sum_{\nu=1}^{n-1}\left(\sum_{r=1}^{\nu} R_{r-1} a_{r}\right) \Delta\left(\frac{\lambda_{\nu}}{R_{\nu-1}} \sum_{r=\nu}^{n} f_{r}\right)+\left(\sum_{\nu=1}^{n} R_{\nu-1} a_{\nu}\right) \frac{\lambda_{n}}{R_{n-1}} f_{n}\right] \\
& +\frac{q_{0} p_{0}}{P_{n} Q_{n-1}}\left[\sum_{\nu=1}^{n-1}\left(\sum_{r=1}^{\nu} R_{r-1} a_{r}\right) \Delta\left(\frac{\lambda_{\nu}}{R_{\nu-1}}\right)+\left(\sum_{\nu=1}^{n} R_{\nu-1} a_{\nu}\right) \frac{\lambda_{n}}{R_{n-1}}\right] \\
& =-\frac{q_{n}}{Q_{n} Q_{n-1}}\left[\sum_{\nu=1}^{n-1}\left\{\lambda_{\nu} F_{\nu} t_{\nu}+\frac{R_{\nu-1}}{r_{\nu}} f_{\nu} \lambda_{\nu} t_{\nu}+\frac{R_{\nu-1}}{r_{\nu}}\left(\Delta \lambda_{\nu}\right) F_{\nu+1} t_{\nu}\right\}+\frac{R_{n}}{r_{n}} \lambda_{n} F_{n} t_{n}\right] \\
& +\frac{q_{0} p_{0}}{P_{n} Q_{n-1}}\left[\sum_{\nu=1}^{n-1}\left\{\lambda_{\nu} t_{\nu}+\frac{R_{\nu-1}}{r_{\nu}}\left(\Delta \lambda_{\nu}\right) t_{\nu}\right\}+\frac{R_{n}}{r_{n}} \lambda_{n} t_{n}\right] \\
& =\sum_{i=1}^{7} T_{n, i} \text { say. } \tag{4.3}
\end{align*}
$$

In order to prove this theorem, using (4.3) and Minokowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|T_{n, i}\right|^{k}<\infty \text { for } i=1,2,3,4,5,6,7 .
$$

On applying Holder's inequality, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|T_{n, 1}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\mu(\delta k+k-1)}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{\nu=1}^{n-1} \lambda_{\nu} F_{\nu} t_{\nu}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)} \frac{q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{\left|\lambda_{\nu}\right|^{k} F_{\nu}{ }^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1}}\left(\frac{1}{Q_{n-1}} \sum_{\nu=1}^{n-1} q_{\nu}\right)^{k-1} \\
& =O(1) \sum_{\nu=1}^{m} \frac{1}{q_{\nu}{ }^{k-1}}\left|\lambda_{\nu}\right|^{k} F_{\nu}{ }^{k}\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} \frac{\alpha_{n}{ }^{\mu(\delta k+k-1)} q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}} \\
& =O(1) \sum_{\nu=1}^{m} \frac{1}{q_{\nu}{ }^{k-1}}\left|\lambda_{\nu}\right|^{k} F_{\nu}{ }^{k}\left|t_{\nu}\right|^{k} \frac{\left(\nu q_{\nu}\right)^{k-1}}{Q_{\nu}{ }^{k}}, \text { using (3.2) } \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k}\left(\frac{\left|\lambda_{\nu}\right| F_{\nu}}{Q_{\nu}}\right)^{k} \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k} \text { using (3.4) } \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Next

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|T_{n, 2}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{R_{\nu-1}}{r_{\nu}} f_{\nu} \lambda_{\nu} t_{\nu}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)} \frac{q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{R_{\nu}{ }^{k} F_{\nu}{ }^{k}\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1} r_{\nu}{ }^{k}}\left(\frac{1}{Q_{n-1}} \sum_{\nu=1}^{n-1} q_{\nu}\right)^{k-1} \\
& =O(1) \sum_{\nu=1}^{m} \frac{R_{\nu}{ }^{k} F_{\nu}{ }^{k}\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1} r_{\nu}{ }^{k}} \sum_{n=\nu+1}^{m+1} \frac{\alpha_{n}^{\mu(\delta k+k-1)} q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}} \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k}\left(\frac{R_{\nu} F_{\nu}\left|\lambda_{\nu}\right|}{r_{\nu} Q_{\nu}}\right)^{k} \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k} \text { using (3.6) } \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Further

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|T_{n, 3}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{R_{\nu-1}}{r_{\nu}} F_{\nu+1}\left(\Delta \lambda_{\nu}\right) t_{\nu}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)} \frac{q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{\left(R_{\nu-1}\right)^{k}\left(F_{\nu+1}\right)^{k}\left|\Delta \lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1} r_{\nu}{ }^{k}}\left(\frac{1}{Q_{n-1}} \sum_{\nu=1}^{n-1} q_{\nu}\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{\nu=1}^{m} \frac{\left(R_{\nu-1}\right)^{k}\left(F_{\nu+1}\right)^{k}\left|\Delta \lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1} r_{\nu}{ }^{k}} \sum_{n=\nu+1}^{m+1} \frac{\alpha_{n}{ }^{\mu(\delta k+k-1)} q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}} \text { using (3.3) } \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k}\left(\frac{R_{\nu-1} F_{\nu+1}\left|\Delta \lambda_{\nu}\right|}{r_{\nu} Q_{\nu}}\right)^{k} \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k} \text { using (3.7) } \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Again,

$$
\begin{aligned}
& \sum_{n=2}^{m+1}{\alpha_{n}}^{\mu(\delta k+k-1)}\left|T_{n, 4}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\mu(\delta k+k-1)}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \frac{R_{n} \lambda_{n} f_{n} t_{n}}{r_{n}}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}{\alpha_{n}}^{\mu(\delta k+k-1)}\left|t_{n}\right|^{k}\left(\frac{q_{n} R_{n} F_{n}\left|\lambda_{n}\right|}{Q_{n} Q_{n-1} r_{n}}\right)^{k} \\
& =\sum_{n=2}^{m+1}{\alpha_{n}}^{\mu(k-1)}\left|t_{n}\right|^{k}\left(\frac{q_{n} R_{n} F_{n}\left|\lambda_{n}\right| \alpha_{n}{ }^{\mu \delta}}{Q_{n} Q_{n-1} r_{n}}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(k-1)}\left|t_{n}\right|^{k}, \text { using (3.7) } \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

Next,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|T_{n, 5}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\mu(\delta k+k-1)}\left|\frac{p_{0} q_{0}}{P_{n} Q_{n-1}} \sum_{\nu=1}^{n-1} \lambda_{\nu} t_{\nu}\right|^{k} \\
& \leq O(1) \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)} \frac{1}{P_{n}^{k} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1}}\left(\frac{1}{Q_{n-1}} \sum_{\nu=1}^{n-1} q_{\nu}\right)^{k-1} \\
& =O(1) \sum_{\nu=1}^{m} \frac{\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1}} \sum_{n=\nu+1}^{m+1} \frac{\alpha_{n}{ }^{\mu(\delta k+k-1)}}{P_{n}{ }^{k} Q_{n-1}} \\
& =O(1) \sum_{\nu=1}^{m} \frac{\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{q_{\nu}{ }^{k-1}} \sum_{n=\nu+1}^{m+1} \frac{\alpha_{n}{ }^{\mu(\delta k+k-1)} q_{n}{ }^{k}}{Q_{n}{ }^{k} Q_{n-1}} \text { using (3.2) } \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k}\left|t_{\nu}\right|^{k}\left(\frac{\left|\lambda_{\nu}\right|}{Q_{\nu}}\right)^{k} \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k}\left|t_{\nu}\right|^{k} \text { using (3.6) } \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Again,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|T_{n, 6}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|\frac{p_{0} q_{0}}{P_{n} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{R_{\nu-1}}{r_{\nu}}\left(\Delta \lambda_{\nu}\right) t_{\nu}\right|^{k} \\
& \leq O(1) \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)} \frac{1}{P_{n}{ }^{k} Q_{n-1}} \sum_{\nu=1}^{n-1} \frac{\left(R_{\nu-1}\right)^{k}\left|\Delta \lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{r_{\nu}{ }^{k} q_{\nu}^{k-1}}\left(\frac{1}{Q_{n-1}} \sum_{\nu=1}^{n-1} q_{\nu}\right)^{k-1} \\
& =O(1) \sum_{\nu=1}^{m} \frac{\left(R_{\nu-1}\right)^{k}\left|\Delta \lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}}{r_{\nu}{ }^{k} q_{\nu}{ }^{k-1}} \sum_{n=\nu+1}^{m+1} \frac{\alpha_{n}{ }^{\mu(\delta k+k-1)}}{P_{n}{ }^{k} Q_{n-1}} \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k}\left(\frac{R_{\nu-1}\left|\Delta \lambda_{\nu}\right|}{r_{\nu} Q_{\nu}}\right)^{k} \\
& =O(1) \sum_{\nu=1}^{m} \nu^{k-1}\left|t_{\nu}\right|^{k} \text { using (3.9) } \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|T_{n, 7}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|\frac{p_{0} q_{0}}{P_{n} Q_{n-1}} \frac{R_{n}}{r_{n}} \lambda_{n} t_{n}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|t_{n}\right|^{k}\left(\frac{R_{n}\left|\lambda_{n}\right|}{P_{n} Q_{n-1} r_{n}}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(\delta k+k-1)}\left|t_{n}\right|^{k}\left(\frac{q_{n} R_{n}\left|\lambda_{n}\right|}{Q_{n} Q_{n-1} r_{n}}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(k-1)}\left|t_{n}\right|^{k}\left(\frac{q_{n} R_{n}\left|\lambda_{n}\right| \alpha_{n}{ }^{\mu \delta}}{Q_{n} Q_{n-1} r_{n}}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \alpha_{n}{ }^{\mu(k-1)}\left|t_{n}\right|^{k}, \text { using (3.10) } \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

This completes the proof of the theorem.

5. Conclusion

For $\mu=1$, the summability method $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta, \mu\right|_{k}$ reduces to the summability method $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta\right|_{k}$. For, $f\left(\alpha_{n}\right)=\left(\alpha_{n}\right)^{\delta}$ and $\delta \geq 0,\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta ; f\right|_{k}$ - summability reduces to $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta\right|_{k}$ - summability. Again, for $\delta=0,\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta\right|_{k}$ - summability reduces to $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}\right|_{k^{-}}$summability and for $\alpha_{n}=n,\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}\right|_{k^{-}}$summability reduces to $\left|\left(N, q_{n}\right)\left(N, p_{n}\right)\right|_{k}$-summability. When $p_{n}=1=q_{n},\left|\left(N, q_{n}\right)\left(N, p_{n}\right)\right|_{k}$-summability is same as $\left|\left(R, q_{n}\right)\left(R, p_{n}\right)\right|_{k}$-summability. Also, $\left|\left(R, q_{n}\right)\left(R, p_{n}\right)\right|_{k}$-summability reduces to $\left|\left(R, q_{n}\right)(A)\right|_{k}$-summability when $\left(R, p_{n}\right)$-summability is replaced by A - summability. From the above results and discussions, we are in a conclusion that our results are more generalized and in particular generalizes the results of Sulaiman [7], Paikray et al [3] and Misra et al [2].

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] Das, G., Tauberian theorems for absolute Norlund summability, Proc. Lond. Math. Soc. 19 (2) (1969), 357-384.
[2] Misra, M., Padhy, B.P., Buxi, S.K. and Misra, U.K., On indexed product summability of an infinite series, J. Appl. Math. Bioinform. 1 (2) (2011), 147-157.
[3] Paikray, S.K., Misra, U.K. and Sahoo, N.C., Product Summability of an Infinite Series, Int. J. Computer Math. Sci. 1 (7) (2010), 853-863.
[4] Parameswaran, M.R., Some product theorems in summability, Math. Z. 68 (1957), 19-26.
[5] Rajgopal, C.T., Theorems on product of two summability methods with applications, J. Indian Math. Soc. 18 (1) (1954), 88-105.
[6] Ramanujan, M.S., On products of summability methods, Math. Z. 69 (1) (1958), 423-428.
[7] Sulaiman, W.T., A Note on product summability of an infinite series, Int. J. Math. Sci. 2008 (2008), Article ID 372604.
[8] Szasz, O., On products of summability methods, Proc. Amer. Math. Soc. 3 (2) (1952), 257-263.

[^0]: Received 2019-11-02; accepted 2019-12-02; published 2020-03-02.
 2010 Mathematics Subject Classification. 40D25.
 Key words and phrases. $\left|\left(R, q_{n}\right)\left(R, p_{n}\right)\right|_{k}$-product summability; $\quad\left|\left(N, q_{n}\right)\left(N, p_{n}\right)\right|_{k}$-product summability; $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}\right|_{k}$-product summability; $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n} ; \delta\right|_{k}$-product summability; $\left|\left(N, q_{n}\right)\left(N, p_{n}\right), \alpha_{n}, \delta, \mu\right|_{k}$-product summability.

