

©2020 Authors retain the copyrights

ON FIXED POINT THEOREM IN NON-ARCHIMEDEAN FUZZY NORMED SPACES

M.E. $EGWE^*$

Department of Mathematics, University of Ibadan, Ibadan, Nigeria

* Corresponding author: murphy.egwe@ui.edu.ng

ABSTRACT. Let (\mathfrak{X}, N) be a non-archimedean fuzzy normed space and $(\mathfrak{X}, \|.\|)$, a non-archimedean normed space where \mathfrak{X} is a linear space over a linearly ordered non-archimedean field \mathbb{K} with a non-archimedean valuation. We give a proof of the fixed point theorem in non-archimedean Fuzzy normed space.

1. INTRODUCTION

Definition 1.1 [9]: A valuation is a map $|\cdot|$ from a field K into a non-negative reals such that

- (i) |a| = 0 if and only if a = 0
- (ii) |ab| = |a||b|
- (iii) $|a+b| \leq |a|+|b|$ for all $a, b \in \mathbb{K}$ (triangle inequality).

When a field \mathbb{K} carries an absolute value $|\cdot|$, it is called a valued field $(\mathbb{K}, |\cdot|)$. Examples of the pair $(\mathbb{K}, |\cdot|)$ is called a *valued field*. Examples of valuations are provided by the usual absolute values of \mathbb{R} and \mathbb{C} . In the definition above, if the triangle inequality is replaced by a strong triangle inequality, i.e., $|a+b| \leq \max(|a|, |b|)$ for all $a, b \in K$, the map $|\cdot|$ is then called a *non-archimedean* or *ultrametric valuation*.

Theorem 1.2 [1]: Let be a Complete space, $0 < \lambda < 1$, and $f : X \to X$ be a map such that $||f(x) - f(y)|| \le ||x - y||$ for all $x, y \in X$. Then there exists a unique point x_{\circ} such that $f(x_{\circ}) = x_{\circ}$.

This fixed point in several cases have been obtained in non-archimedean normed and metric spaces (see [2], [4] [5], [6]). In this paper, we shall prove a version given in [4] for non-archimedean fuzzy normed spaces.

Received 2019-10-08; accepted 2019-11-14; published 2020-01-02.

²⁰¹⁰ Mathematics Subject Classification. 46S10, 46S40, 47H10.

Key words and phrases. Fixed point, Non-archimedean, Fuzzy normed space, Spherically complete.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

2. Main Result

Definition 2.1 [4], [11]: Let $(\mathfrak{X}, \|.\|)$, a non-archimedean normed space. A function $N : \mathfrak{X} \times \mathbb{R} \to [0, 1]$ is called a nonarhimedean norm on \mathfrak{X} if for all $x, y \in \mathfrak{X}$ and all $s, t \in \mathbb{R}$,

- (i) N(x,t) = 0 for $t \le 0$,
- (ii) N(x,t) = 1 if and only if x = 0 for all t > 0,

(iii)
$$N(\lambda x, t) = N(x, \frac{t}{|\lambda|})$$
 for $\lambda \neq 0$

- (iv) $N(x+y, \max\{s, t\}) \ge \min\{N(x, s), N(y, t)\}$
- (v) N(x, *) is nondecreasing function of \mathbb{R} and $\lim_{t \to \infty} N(x, t) = 1$

Definition 2.2: Let (\mathfrak{X}, N) be a non-archimedean fuzzy normed space. A closed ball in (\mathfrak{X}, N) with centre a is the set of points $B(x, t) := \{N(x - a, t) \le r, \}$ where $t \in \mathbb{R}^+$.

Definition 2.3: A sequence of *n*-closed balls $B(x_1,t) \subseteq B(x_2,t) \subseteq \cdots \subset B(x_n,t)$ is called a sequence of closed balls ordered by inclusion.

Definition 2.4: Let (\mathfrak{X}, N) be a non-archimedean fuzzy normed space. Let $\{B(x_i, t)\}^n$ be a sequence of closed balls ordered by inclusion. Then, (\mathfrak{X}, N) is said to be spherically complete if the sequence of closed balls $\{B(x, t)\}^n$ satisfies the finite intersection property in (\mathfrak{X}, N) . i.e., $\bigcap_{n} \{B(x_i, t)\} \neq 0$.

Theorem 2.5 [1] Let \mathfrak{V} be a complete normed linear space, $0 < \alpha < 1$, and $\varphi : \mathfrak{V} \to \mathfrak{V}$ such that $\|\varphi(u) - \varphi(\nu)\| \leq \alpha \|u - \nu\|$ for all $u, \nu \in \mathfrak{V}$. Then, there exists a fixed point, $u_{\circ} \in \mathfrak{V}$ such that $\varphi(u_{\circ}) = u_{\circ}$. A version of this theorem on non-archimedean normed space was proved in [6] as seen in the next result.

Proposition 2.6 [6]: Suppose that \mathfrak{X} and \mathfrak{Y} are non-archimedean normed over a non-archimedean field \mathbb{K} with $|p| \neq 1$ for some $p \in \mathbb{N}$. Assume that \mathfrak{X} or \mathfrak{Y} is spherically complete. If $f : \mathfrak{X} \to \mathfrak{Y}$ is a surjective isometry, then for each $x \in \mathfrak{X}$, there exists a unique $y \in \mathfrak{X}$ such that $f(x) + f(y) = f\left(\frac{x+y}{p}\right)$. We now state and prove a version of this result for the non-archimedean fuzzy normed spaces

Proposition 2.7: Let (\mathfrak{X}, N) and (\mathfrak{Y}, N) be non-archimedean fuzzy normed spaces over a non-archimedean field \mathbb{K} with |p| > 1 for some $p \in \mathbb{N}$. Assume that \mathfrak{X} or \mathfrak{Y} is spherically complete. If $f : (\mathfrak{X}, N) \to (\mathfrak{Y}, N)$ is a surjective isometry, then for each $u \in \mathfrak{X}$, there exists a unique $\nu \in \mathfrak{X}$ such that $f(u) + f(\nu) = f\left(\frac{u+\nu}{p}\right)$. **Proof:** First, we prove that (\mathfrak{X}, N) or (\mathfrak{Y}, N) is spherically complete. Suppose that (\mathfrak{X}, N) is spherically complete and let $\{B(y_i, t)\}^n$ be a sequence of closed balls in (\mathfrak{Y}, N) ordered by inclusion. Then by the surjectivity of f, there is a sequence $\{B(x_i, t)\}^n$ of closed balls in (\mathfrak{X}, N) ordered by inclusion with

$$B(x_1,t) = f^{-1}(B(y_1,t)) \subseteq B(x_2,t) = f^{-1}(B(y_2,t)) \subseteq \dots \subseteq B(x_n,t) = f^{-1}(B(y_n,t)).$$

Thus,

$$\bigcap^{n} f^{-1}(B(y_i,t)) \neq \phi \text{ as } \phi \neq \bigcap^{n}(B(x_i,t)) = f^{-1}(B(y_i,t))$$

because (\mathfrak{X}, N) is spherically complete. Thus, (\mathfrak{Y}, N) is spherically complete if (\mathfrak{X}, N) is spherically complete.

Conversely, let (\mathfrak{Y}, N) be spherically complete and $\{B(x, t)\}^n$ a sequence of closed balls in (\mathfrak{X}, N) ordered by inclusion. Then there exists a sequence $\{f(B(x_i, t))\}^n$ of closed balls in (\mathfrak{Y}, N) such that

$$f(B(x_1,t)) \subseteq f(B(x_2,t)) \subseteq \cdots f(B(x_n,t)).$$

Then,

$$B(x_1, t) = f(B(x_1, t)) \subseteq f(B(x_2, t)) = B(x_2, t) \subseteq \cdots f(B(x_n, t)) = B(x_n, t)$$

and

$$\bigcap_{i=1}^{n} B(x_i, t) \neq \phi \text{ as } \phi \neq \bigcap_{i=1}^{n} f(B(x_i, t)) = \bigcap_{i=1}^{n} (B(x_i, t))$$

because (\mathfrak{Y}, N) is spherically complete. Thus, (\mathfrak{X}, N) is spherically complete if (\mathfrak{Y}, N) is. This implies that (\mathfrak{X}, N) or (\mathfrak{Y}, N) is spherically complete.

Next, we show that there exists a unique $\nu \in \mathfrak{X}$ such that $f(u) + f(\nu) = f\left(\frac{u+\nu}{p}\right)$ for each $u \in \mathfrak{X}$. To do this, let $u \in \mathfrak{X}$, and consider the mapping $\varphi : \mathfrak{X} \to \mathfrak{X} : x \mapsto px - u$. Now,

$$N(\varphi(x) - \varphi(y), t) = N(px - u - (py - u), t)$$

$$= N(px - u - py + u), t)$$

$$= N((px - py), t)$$

$$= N(x - y, \frac{t}{|p|})$$

$$< N(x - y, t).$$

Thus, there exists M > 1 such that $M \cdot N(\varphi(x) - \varphi(y), t) < N(x - y, t)$, i.e.,

$$N(\varphi(x) - \varphi(y), t) < \frac{1}{M}N(x - y, t).$$

Obviously, $0 < \frac{1}{M} < 1$, and $N(\varphi(x) - \varphi(y), t) \le N(x - y, t)$ which implies that φ is a contractive mapping. Let $\psi : \mathfrak{Y} \to \mathfrak{Y}$ be an isometry defined by $\psi(y) = f(u) + y$. If $h = \varphi f^{-1} \psi f$. Then,

$$\begin{split} N(\varphi h(x) - h(y), t) &= N((\varphi f^{-1} \psi f)(x) - (\varphi f^{-1} \psi f)(y), t) \\ &= N(p(\varphi f^{-1} \psi f)(x) - u - (p(\varphi f^{-1} \psi f)(y)), t) \\ &= N(p(\varphi f^{-1} \psi f)(x) - u - p(\varphi f^{-1} \psi f)(y) + u, t) \\ &= N(p(\varphi f^{-1} \psi f)(x) - p(\varphi f^{-1} \psi f)(y), t) \\ &= N((\varphi f^{-1} \psi f)(x) - (\varphi f^{-1} \psi f)(y), \frac{t}{|p|}) \\ &< N((\varphi f^{-1} \psi f)(x) - (\varphi f^{-1} \psi f)(y), t) \\ &= N((\psi f)(x) - (\psi f)(y), t) \\ &= N(f(x) - f(y), t) \\ &= N(x - u, t). \end{split}$$

Similarly, there exists $K^* > 1$ such that $K^* \cdot N(h(x) - h(y), t) \leq N(x - y, t)$. This also implies that

$$N(h(x) - h(y), t) \le \frac{1}{K^*}N(x - y, t).$$

Since $\frac{1}{K^*} < 1$ and $N(h(x) - h(y), t) \le N(x - y, t)$, then, h is a contraction mapping. By the fixed point theorem, h has a unique fixed point ν such that

$$(\psi f^{-1}\psi f)(\nu) = h(\nu)$$
$$= \nu.$$

But

$$\psi\left(\frac{u+\nu}{p}\right) = p \cdot \frac{u+\nu}{p} - u$$
$$= u + \nu - u$$
$$= \nu.$$

Therefore, $\psi(\nu) = \psi(f(\nu)) = \psi\left(\frac{u+\nu}{p}\right) = f\left(\frac{u+\nu}{p}\right)$, as f, and ψ are injections. Since $\psi(f(\nu)) = f(u) + f(\nu)$ by definition, it follows that $f(u) + f(\nu) = f\left(\frac{u+\nu}{p}\right)$. \Box

Remark 2.8: It is necessary for |p| > 1 for

(i) if |p| > 1, then

$$N(\varphi(u) - \varphi(\nu), p) = N(u - \nu, t)$$

as

$$N(u-\nu,\frac{t}{|p|}) = N(u-\nu,t)$$

Also,

$$N(h(u) - h(\nu), t) = N(u - \nu, t)$$

 \mathbf{as}

$$N((f^{-1}\psi f)(u) - (f^{-1}\psi f)(\nu), \frac{t}{|p|}) = N((f^{-1}\psi f)(u) - (f^{-1}\psi f)(\nu), t).$$

So, φ and h are not contraction mappings.

(ii) if |p| = 0, then p = 0 by definition of valuation. This negates the assumption that $p \in \mathbb{N}$.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] D. Burago, Y. Burago, S. Ivanon: A course in Metric Geometry, Amer. Math. Soc. 2001.
- [2] Y. Je Cho, T.M. Rassias, R. Saadati: Fuzzy Operator Theory in Mathematical Analysis. Springer International Publishing, 2018
- [3] A. Granas, J. Dugunji: Fixed Point Theory, Springer, 2003.
- [4] D. Kangb, H. Kohb, I.G. Chao: On the Mazur-Ulam theorem in non-archimedean fuzzy normed spaces, Appl. Math. Lett. 25(2012), 301-304.
- [5] H. Mamghaderi, H.P. Masiha: On Stationary Points of Multivalued Strongly Contractive Mappings in Partially Ordered Ultrametric Spaces and non-Archimedean Normed Spaces. p-Adic Numbers, Ultr. Anal. Appl. 9(2)(2017), 144-150.

- [6] M.S. Moslehian, G. Sadeghi: A Mazur-Ulam theorem in non-archimedean normed spaces, Nonlinear Anal., Theory Methods Appl. 69(2008), 3405-3408.
- [7] A. Narayanan, S. Vijayabalaji: Fuzzy n-normed linear spaces. Int. J. Math. Math. Sci. 24(2005), 3963-3977.
- [8] C. Petalas, T. Vidalis: A fixed point theorem in non-archimedean vector spaces, Proc. Amer. Math. Soc. 118(3)(1993), 819-821.
- [9] A.C.M. Rooij: Non-Archimedean functional Analysis, Marcel Dekker NY, 1978.
- [10] F.Shi, C. Huang: Fuzzy bases and the fuzzy dimension of fuzzy vector spaces, Math. Commun. 15(2010), 303-310.
- [11] Z. Wang, P.K. Sahoo: Stability of an ACQ-functional equation in various Stability of an ACQ-functional equation in various. J. Nonlinear Sci. Appl. 8(2015), 64-85.