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Abstract. In this paper, we define the concept of direct product of finite fuzzy normal subrings over non-

associative and non-commutative rings (LA-ring) and investigate the some fundamental properties of direct

product of fuzzy normal subrings.

1. Introduction

In 1972, a generalization of commutative semigroups has been established by Kazim et al [12]. In ternary

commutative law: abc = cba, they introduced the braces on the left side of this law and explored a new

pseudo associative law, that is (ab)c = (cb)a. This law (ab)c = (cb)a is called the left invertive law. A groupoid

S is said to be a left almost semigroup (abbreviated as LA-semigroup) if it satisfies the left invertive law:

(ab)c = (cb)a. This structure is also known as Abel-Grassmann’s groupoid (abbreviated as AG-groupoid)

in [22]. An AG-groupoid is a midway structure between an abelian semigroup and a groupoid. Mushtaq et

al [21], investigated the concept of ideals of AG-groupoids.

In [4] (resp. [1]), a groupoid S is said to be medial (resp. paramedial) if (ab)(cd) = (ac)(bd) (resp.

(ab)(cd) = (db)(ca)). In [12], an AG-groupoid is medial, but in general an AG-groupoid needs not to be
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paramedial. Every AG-groupoid with left identity is paramedial by Protic et al [22] and also satisfies

a(bc) = b(ac), (ab)(cd) = (dc)(ba).

In [13], if (S, ·,≤) is an ordered semigroup and ∅ 6= A ⊆ S, we define a subset of S as follows: (A] = {s ∈

S : s ≤ a for some a ∈ A}. A non-empty subset A of S is called a subsemigroup of S if A2 ⊆ A. A is called

a left (resp. right) ideal of S if following hold (1) SA ⊆ A (resp. AS ⊆ A). (2) If a ∈ A and b ∈ S such that

b ≤ a implies b ∈ A. Equivalent definition: A is called a left (resp. right) ideal of S if (A] ⊆ A and SA ⊆ A

(resp. AS ⊆ A).

In [13,15], an ordered semigroup S is said to be a regular if for every a ∈ S, there exists an element x ∈ S

such that a ≤ axa. In [14,15], an ordered semigroup S is said to be an intra-regular if for every a ∈ S there

exist elements x, y ∈ S such that a ≤ xa2y.

We will define the concept of fuzzy left (resp. right, interior, quasi-, bi-, generalized bi-) ideals of an

ordered AG-groupoid S. We will establish a study by discussing the different properties of such ideals. We

will also characterize regular (resp. intra-regular, both regular and intra-regular) ordered AG-groupoids by

the properties of fuzzy left (right, quasi-, bi-, generalized bi-) ideals.

2. Fuzzy Ideals on ordered AG-groupoids

In [25] An ordered AG-groupoid S, is a partially ordered set, at the same time an AG-groupoid such that

a ≤ b, implies ac ≤ bc and ca ≤ cb for all a, b, c ∈ S. Two conditions are equivalent to the one condition

(ca)d ≤ (cb)d for all a, b, c, d ∈ S.

Let S be an ordered AG-groupoid and ∅ 6= A ⊆ S, we define a subset (A] = {s ∈ S : s ≤ a for some

a ∈ A} of S, obviously A ⊆ (A]. If A = {a}, then we write (a] instead of ({a}]. For ∅ 6= A,B ⊆ S, then

AB = {ab | a ∈ A, b ∈ B}, ((A]] = (A], (A](B] ⊆ (AB], ((A](B]] = (AB], if A ⊆ B then (A] ⊆

(B], (A ∩B] 6= (A] ∩ (B] in general.

For ∅ 6= A ⊆ S. A is called an AG-subgroupoid of S if A2 ⊆ A. A is called a left (resp. right) ideal of S

if the following hold (1) SA ⊆ A (resp. AS ⊆ A). (2) if a ∈ A and b ∈ S such that b ≤ a implies b ∈ A.

Equivalent definition: A is called a left (resp. right) ideal of S if (A] ⊆ A and SA ⊆ A (resp. AS ⊆ A). A

is called an ideal of S if A is both a left ideal and a right ideal of S. In particular, if A and B are any types

of ideals of S, then (A ∩B] = (A] ∩ (B].

We denote by L(a), S(a), I(a) the left ideal, the right ideal and the ideal of S, respectively generated

by a. We have L(a) = {s ∈ S : s ≤ a or s ≤ xa for some x ∈ S} = (a ∪ Sa], S(a) = (a ∪ aS],

I(a) = (a ∪ Sa ∪ aS ∪ (Sa)S].

First time, Zadeh introduced the concept of fuzzy set in his classical paper [27] of 1965. This concept has

provided a useful mathematical tool for describing the behavior of systems that are too complex to admit

precise mathematical analysis by classical methods and tools. Extensive applications of fuzzy set theory
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have been found in various fields such as artificial intelligence, computer science, management science, expert

systems, finite state machines, languages, robotics, coding theory and others.

Rosenfeld [23], was the first, who introduced the concept of fuzzy set in a group. The study of fuzzy set in

semigroups was established by Kuroki [18, 19]. He studied fuzzy ideals and fuzzy interior (resp. quasi-, bi-,

generalized bi-, semiprime, semiprime quasi-) ideals of semigroups. A systematic exposition of fuzzy semi-

groups appeared by Mordeson et al [20], where one can find the theoretical results on fuzzy semigroups and

their use in fuzzy finite state machines and languages. Fuzzy sets in ordered semigroups/ordered groupoids

were first explored by Kehayopulu et al [16, 17]. They also studied fuzzy ideals and fuzzy interior (resp.

quasi-, bi-, generalized bi-) ideals in ordered semigroups.

By a fuzzy subset µ of an ordered AG-groupoid S, we mean a function µ : S → [0, 1], the complement of

µ is denoted by µ′, is a fuzzy subset of S given by µ′(x) = 1− µ(x) for all x ∈ S.

A fuzzy subset µ of S is called a fuzzy AG-subgroupoid of S if µ(xy) ≥ µ(x) ∧ µ(y) for all x, y ∈ S. µ

is called a fuzzy left (resp. right) ideal of S if (1) µ(xy) ≥ µ(y) (resp. µ(xy) ≥ µ(x)). (2) x ≤ y, implies

µ(x) ≥ µ(y) for all x, y ∈ S. µ is a fuzzy ideal of S if µ is both a fuzzy left ideal and a fuzzy right ideal of

S. Every fuzzy ideal (whether left, right, two-sided) is a fuzzy AG-subgroupoid of S but the converse is not

true in general.

A fuzzy subset µ of S is called a fuzzy interior ideal of S if (1) µ ((xy)z) ≥ µ (y) . (2) x ≤ y, implies µ(x) ≥

µ(y) for all x, y, z ∈ S. A fuzzy subset µ of S is called a fuzzy quasi-ideal of S if (1) (µ ◦ S)∩ (S ◦ µ) ⊆ µ. (2)

x ≤ y, implies µ(x) ≥ µ(y) for all x, y ∈ S. A fuzzy AG-subgroupoid µ of S is called a fuzzy bi-ideal of S if

(1) µ((xa)y) ≥ min{µ(x), µ(y)}. (2) x ≤ y, implies µ(x) ≥ µ(y) for all x, a, y ∈ S. A fuzzy subset µ of S is

called a fuzzy generalized bi-ideal of S if (1) µ((xa)y) ≥ min{µ(x), µ(y)}. (2) x ≤ y, implies µ(x) ≥ µ(y) for

all x, a, y ∈ S. Every fuzzy bi-ideal of S is a fuzzy generalized bi-ideal of S. A fuzzy ideal µ of S is called a

fuzzy idempotent of S if µ ◦ µ = µ.

We denote by F (S), the set of all fuzzy subsets of S. We define an order relation ”⊆” on F (S) such that

µ ⊆ γ if and only if µ(x) ≤ γ(x) for all x ∈ S. Then (F (S), ◦,⊆) is an ordered AG-groupoid.

By the symbols µ ∧ γ and µ ∨ γ, we mean the following fuzzy subsets:

(µ ∧ γ)(x) = min{µ(x), γ(x)} and (µ ∨ γ)(x) = max{µ(x), γ(x)}.

For ∅ 6= A ⊆ S, the characteristic function of A is denoted by χA and defined by

χA(a) =

 1 if a ∈ A

0 if a /∈ A

An ordered AG-groupoid S can be considered a fuzzy subset of itself and we write S = χS , i.e., S(x) =

χS(x) = 1 for all x ∈ S. This implies that S(x) = 1 for all x ∈ S.
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Let x ∈ S, we define a set Ax = {(y, z) ∈ S × S | x ≤ yz}. Let µ and γ be two fuzzy subsets of S, then

product of µ and γ is denoted by µ ◦ γ and defined by:

(µ ◦ γ)(x) =

 ∨(y,z)∈Ax
min{µ(y), γ(z)} if Aa 6= ∅

0 if Aa = ∅

Now we give the imperative properties of such ideals of an odered AG-groupoid S, which will be very

helpful in later sections.

Lemma 2.1. Let S be an ordered AG-groupoid. Then the following properties hold.

(1) (µ ◦ γ) ◦ β = (β ◦ γ) ◦ µ,

(2) (µ ◦ γ) ◦ (β ◦ δ) = (µ ◦ β) ◦ (γ ◦ δ) for all fuzzy subsets µ, γ, β and δ of S.

Proof. Let µ, γ and β be fuzzy subsets of an ordered AG-groupoid S. We have to show that (µ ◦ γ) ◦ β =

(β ◦ γ) ◦ µ. Now

((µ ◦ γ) ◦ β)(x) = ∨(y,z)∈Ax
min{(µ ◦ γ)(y), β(z)}

= ∨(y,z)∈Ax
min{∨(s,t)∈Ay

min{µ(s), γ(t)}, β(z)}

= ∨((s,t),z)∈Ax
min{min{µ(s), γ(t)}, β(z)}

= ∨((s,t),z)∈Ax
min{(µ(s), γ(t)), β(z)}

= ∨((z,t),s)∈Ax
min{(β(z), γ(t)), µ(s)}

= ∨((z,t),s)∈Ax
min{min{β(z), γ(t)}, µ(s)}

= ∨(w,s)∈Ax
min{∨(z,t)∈Aw

min{β(z), γ(t)}, µ(s)}

= ∨(w,s)∈Ax
min{(β ◦ γ)(w), µ(s)} = ((β ◦ γ) ◦ µ)(x)

Similarly, we can prove (2) . �

Proposition 2.1. Let S be an ordered AG-groupoid with left identity e. Then the following assertions hold.

(1) µ ◦ (γ ◦ β) = γ ◦ (µ ◦ β) ,

(2) (µ ◦ γ) ◦ (β ◦ δ) = (δ ◦ γ) ◦ (β ◦ µ),

(3) (µ ◦ γ) ◦ (β ◦ δ) = (δ ◦ β) ◦ (γ ◦ µ) for all fuzzy subsets µ, γ, β and δ of S.

Proof. Same as Lemma 2.1. �

Theorem 2.1. Let A and B be two non-empty subsets of an ordered AG-groupoid S. Then the following

assertions hold.

(1) If A ⊆ B then χA ⊆ χB .

(2) χA ◦ χB = χ(AB].
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(3) χA ∪ χB = χA∪B .

(4) χA ∩ χB = χA∩B .

Proof. Straight forward. �

Theorem 2.2. Let A be a non-empty subset of an ordered AG-groupoid S. Then the following properties

hold.

(1) A is an AG-subgroupoid of S if and only if χA is a fuzzy AG-subgroupoid of S.

(2) A is a left (resp. right, two-sided) ideal of S if and only if χA is a fuzzy left (resp. right, two-sided)

ideal of S.

Proof. (1) Let A be an AG-subgroupoid of S and a, b ∈ S. If a, b ∈ A, then by definition χA(a) = 1 =

χA(b). Since ab ∈ A, A being an AG-subgroupoid of S, this implies that χA(ab) = 1. Thus χA(ab) ≥

χA(a) ∧ χA (b) . Similarly, we have χA(ab) ≥ χA(a) ∧ χA(b), when a, b /∈ A. Hence χA is a fuzzy AG-

subgroupoid of S.

Conversely, suppose that χA is a fuzzy AG-subgroupoid of S and let a, b ∈ A. Since χA(ab) ≥ χA(a) ∧

χA (b) = 1, χA being a fuzzy AG-subgroupoid of S. Thus χA(ab) = 1, i.e., ab ∈ A. Hence A is an AG-

subgroupoid of S.

(2) Let A be a left ideal of S and a, b ∈ S. If a, b ∈ A, then by definition χA(b) = 1. Since ab ∈ A, A being

a left ideal of S, this means that χA(ab) = 1. Thus χA(ab) ≥ χA (b) . Similarly, we have χA(ab) ≥ χA(b),

when a, b /∈ A. Therefore χA is a fuzzy left ideal of S.

Conversely, assume that χA is a fuzzy left ideal of S. Let a, b ∈ A and z ∈ S. Since χA(zb) ≥ χA (b) = 1,

χA being a fuzzy left ideal of S. Thus χA(zb) = 1, i.e., zb ∈ A. Therefore A is a left ideal of S. �

Theorem 2.3. Let µ be a fuzzy subset of an ordered AG-groupoid S. Then the following assertions hold.

(1) µ is a fuzzy AG-subgroupoid of S if and only if µ ◦ µ ⊆ µ.

(2) µ is a fuzzy left (resp. right) ideal of S if and only if S ◦ µ ⊆ µ (resp. µ ◦ S ⊆ µ).

Proof. (1) Suppose that µ is a fuzzy AG-groupoid of S and x ∈ S. For µ ◦ µ ⊆ µ.

If (µ ◦ µ)(x) = 0, then µ ◦ µ ⊆ µ, otherwise we have

(µ ◦ µ)(x) = ∨(y,z)∈Ax
min{µ(y), µ(z)}

≤ ∨(y,z)∈Ax
min{µ(yz)} = µ(x).

⇒ µ ◦ µ ⊆ µ.
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Conversely, assume that µ ◦ µ ⊆ µ. Let y, z ∈ S such that x ≤ yz. Now

µ(yz) ≥ µ(x) ≥ (µ ◦ µ)(x)

= ∨(s,t)∈Ax
min{µ(s), µ(t)}

≥ µ(y) ∧ µ(z).

⇒ µ(yz) ≥ µ(y) ∧ µ(z).

Hence µ is a fuzzy AG-subgroupoid of S.

(2) Suppose that µ is a fuzzy left ideal of S and x ∈ S. If (S ◦ µ)(x) = 0, then S ◦ µ ⊆ µ, otherwise we

have

(S ◦ µ)(x) = ∨(y,z)∈Ax
min{S(y), µ(z)}

= ∨(y,z)∈Ax
min{1, µ(z)}

= ∨(y,z)∈Ax
µ(z)

≤ ∨(y,z)∈Ax
µ(yz) = µ(x).

⇒ S ◦ µ ⊆ µ.

Conversely, assume that S ◦ µ ⊆ µ. Let y, z ∈ S such that x ≤ yz. Now

µ(yz) ≥ µ(x) ≥ (S ◦ µ)(x)

= ∨(s,t)∈Ax
min{S(s), µ(t)}

≥ S(y) ∧ µ(z) = 1 ∧ µ(z) = µ(z).

⇒ µ (yz) ≥ µ(z).

Therefore µ is a fuzzy left ideal of S. Similarly, we can prove (3) . �

Lemma 2.2. If µ and γ are two fuzzy AG-subgroupoids (resp. (left, right, two-sided) ideals) of an ordered

AG-groupoid S, then µ ∩ γ is also a fuzzy AG-subgroupoid (resp. (left, right, two-sided) ideal) of S.
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Proof. Let µ and γ be two fuzzy AG-subgroupoids of S. We have to show that µ ∩ γ is also a fuzzy AG-

subgroupoid of S. Now

(µ ∩ γ)(xy) = µ(xy) ∧ γ(xy)

≥ {µ(x) ∧ µ(y)} ∧ {γ(x) ∧ γ(y)}

= µ(x) ∧ {µ(y) ∧ γ(x)} ∧ γ(y)

= µ(x) ∧ {γ(x) ∧ µ(y)} ∧ γ(y)

= {µ(x) ∧ γ(x)} ∧ {µ(y) ∧ γ(y)}

= (µ ∩ γ)(x) ∧ (µ ∩ γ)(y).

Hence µ ∩ γ is a fuzzy AG-subgroupoids of S. Similarly, for ideals. �

Lemma 2.3. If µ and γ are two fuzzy AG-subgroupoids of an ordered AG-groupoid S, then µ ◦ γ is also a

fuzzy AG-subgroupoid of S.

Proof. Let µ and γ be two fuzzy AG-subgroupoids of S. We have to show that µ ◦ γ is also a fuzzy AG-

subgroupoid of S. Now (µ ◦ γ)2 = (µ ◦ γ) ◦ (µ ◦ γ) = (µ ◦ µ) ◦ (γ ◦ γ) ⊆ µ ◦ γ. Hence µ ◦ γ is a fuzzy

AG-subgroupoid of S. �

Remark 2.1. If µ is a fuzzy AG-subgroupoid of an ordered AG-groupoid S, then µ ◦ µ is also a fuzzy

AG-subgroupoid of S.

Lemma 2.4. Let S be an ordered AG-groupoid with left identity e. Then SS = S and eS = S = Se.

Proof. Since SS ⊆ S and x = ex ∈ SS, i.e., SS = S. Since e is a left identity of S, i.e., eS = S. Now

Se = (SS) e = (eS)S = SS = S. �

Lemma 2.5. Let S be an ordered AG-groupoid with left identity e. Then every fuzzy right ideal of S is a

fuzzy ideal of S.

Proof. Let µ be a fuzzy right ideal of S and x, y ∈ S. Now µ (xy) = µ ((ex) y) = µ ((yx) e) ≥ µ (yx) ≥ µ (y) .

Thus µ is a fuzzy ideal of S. �

Lemma 2.6. If µ and γ are two fuzzy left (resp. right) ideals of an ordered AG-groupoid S with left identity

e, then µ ◦ γ is also a fuzzy left (resp. right) ideal of S.

Proof. Let µ and γ be two fuzzy left ideals of S. We have to show that µ ◦ γ is also a fuzzy left ideal of S.

Now S ◦ (µ ◦ γ) = (S ◦ S) ◦ (µ ◦ γ) = (S ◦ µ) ◦ (S ◦ γ) ⊆ µ ◦ γ. Hence µ ◦ γ is a fuzzy left ideal of S. Similarly,

for right ideals. �
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Remark 2.2. If µ is a fuzzy left (resp. right) ideal of an ordered AG-groupoid S with left identity e. Then

µ ◦ µ is a fuzzy ideal of S.

Lemma 2.7. If µ and γ are two fuzzy ideals of an ordered AG-groupoid S, then µ ◦ γ ⊆ µ ∩ γ.

Proof. Let µ and γ be two fuzzy ideals of S and x ∈ S. If (µ ◦ γ)(x) = 0, then µ ◦ γ ⊆ µ ∩ γ, otherwise we

have

(µ ◦ γ) (x) = ∨(y,z)∈Ax
min{µ(y), γ(z)}

= ∨(y,z)∈Ax
min{µ(yz), γ(yz)}

= ∨(y,z)∈Ax
{µ(yz) ∧ γ(yz)}

= ∨(y,z)∈Ax
(µ ∩ γ)(yz) = (µ ∩ γ)(x).

⇒ µ ◦ γ ⊆ µ ∩ γ.

�

Remark 2.3. If µ is a fuzzy ideal of an ordered AG-groupoid S, then µ ◦ µ ⊆ µ.

Lemma 2.8. Let S be an ordered AG-groupoid. Then µ ◦ γ ⊆ µ ∩ γ for every fuzzy right ideal µ and every

fuzzy left ideal γ of S.

Proof. Same as Lemma 2.7. �

Theorem 2.4. Let A be a non-empty subset of an ordered AG-groupoid S. Then the following conditions

are true.

(1) A is an interior ideal of S if and only if χA is a fuzzy interior ideal of S.

(2) A is a quasi-ideal of S if and only if χA is a fuzzy quasi-ideal of S.

(3) A is a bi-ideal of S if and only if χA is a fuzzy bi-ideal of S.

(4) A is a generalized bi-ideal of S if and only if χA is a fuzzy generalized bi-ideal of S.

Proof. (1) Let A be an interior ideal of S and x, y, a ∈ S. If a ∈ A, then by definition χA(a) = 1. Since

(xa)y ∈ A, A being an interior ideal of S, this means that χA((xa)y) = 1. Thus χA((xa)y) ≥ χA(a).

Similarly, we have χA((xa)y) ≥ χA(a), when a /∈ A. Hence χA is a fuzzy interior ideal of S.

Conversely, suppose that χA is a fuzzy interior ideal of S. Let x, y ∈ S and a ∈ A, so χA(a) = 1. Since

χA((xa)y) ≥ χA(a) = 1, χA being a fuzzy interior ideal of S. Thus χA((xa)y) = 1, i.e., (xa)y ∈ A. Hence A

is an interior ideal of S.
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(2) Let A be a quasi-ideal of S. Now

(χA ◦ S) ∩ (S ◦ χA) = (χA ◦ χS) ∩ (χS ◦ χA)

= χAS ∩ χSA = χAS∩SA ⊆ χA, by the Theorem 2.1

Therefore χA is a fuzzy quasi-ideal of S.

Conversely, assume that χA is a fuzzy quasi-ideal of S. Let x be an element of AS ∩ SA. Now

χA(x) ⊇ ((χA ◦ S) ∩ (S ◦ χA))(x) = min{(χA ◦ S)(x), (S ◦ χA)(x)}

= min{(χA ◦ χS)(x), (χS ◦ χA)(x)} = min{χAS(x), χSA(x)}

= (χAS ∩ χSA)(x) = χAS∩SA(x) = 1.

This implies that x ∈ A, i.e., AS ∩ SA ⊆ A. Therefore A is a quasi-ideal of S.

(3) Let A be a bi-ideal of S, this implies that χA is a fuzzy AG-subgroupoid of S by the Theorem 2.2. Let

x, y, a ∈ S. If x, y ∈ A, then by definition χA(x) = 1 = χA(y). Since (xa)y ∈ A, A being a bi-ideal of S, this

means that χA((xa)y) = 1. Thus χA((xa)y) ≥ χA(x)∧χA(y). Similarly, we have χA((xa)y) ≥ χA(x)∧χA(y),

when x, y /∈ A. Hence χA is a fuzzy bi-ideal of S.

Conversely, suppose that χA is a fuzzy bi-ideal of S, this means that A is an AG-subgroupoid of S by the

Theorem 2.2. Let a ∈ S and x, y ∈ A, so χA(x) = 1 = χA(y). Since χA((xa)y) ≥ χA(x) ∧ χA(y) = 1, χA

being a fuzzy interior ideal of S. Thus χA((xa)y) = 1, i.e., (xa)y ∈ A. Hence A is a bi-ideal of S. Similarly,

we can prove (4) . �

Theorem 2.5. Let µ be a fuzzy subset of an ordered AG-groupoid S. Then µ is a fuzzy interior ideal of S

if and only if (S ◦ µ) ◦ S ⊆ µ.

Proof. Suppose that µ is a fuzzy interior ideal of S and x ∈ S. If ((S ◦ µ) ◦ S)(x) = 0, then (S ◦ µ) ◦ S ⊆ µ,

otherwise there exist a, b, c, d ∈ S such that x ≤ ab and a ≤ cd. Since µ is a fuzzy interior ideal of S, this

implies that µ((cd)b) ≥ µ(d). Now

((S ◦ µ) ◦ S)(x)

= ∨(a,b)∈Ax
min{(S ◦ µ)(a), S(b)}

= ∨(a,b)∈Ax
min{∨(c,d)∈Aa

min{S(c), µ(d)}, S(b)}

= ∨(a,b)∈Ax
min{∨(c,d)∈Aa

min{1, µ(d)}, 1}

= ∨(a,b)∈Ax
{∨(c,d)∈Aa

µ(d)}

= ∨((c,d),b)∈Ax
µ(d) ≤ ∨((c,d),b)∈Ax

µ((cd)b) = µ(x).

⇒ (S ◦ µ) ◦ S ⊆ µ.
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Conversely, assume that (S ◦ µ) ◦ S ⊆ µ and let y, z ∈ S such that a ≤ (xy)z. Now

µ((xy)z) ≥ µ(a) ≥ ((S ◦ µ) ◦ S)(a)

= ∨(s,t)∈Aa
min{(S ◦ µ)(s), S(t)}

≥ (S ◦ µ)(xy) ∧ S(z)

= ∨(m,n)∈Axy
min{S(m), µ(n)} ∧ S(z)

≥ {S(x) ∧ µ(y)} ∧ S(z)

= 1 ∧ µ(y) ∧ 1 = µ(y).

⇒ µ((xy)z) ≥ µ(y).

Therefore µ is a fuzzy interior ideal of S. �

Theorem 2.6. Let µ be a fuzzy AG-subgroupoid of an ordered AG-groupoid S. Then µ is a fuzzy bi-ideal of

S if and only if (µ ◦ S) ◦ µ ⊆ µ.

Proof. Same as Theorem 2.5. �

Theorem 2.7. Let µ be a fuzzy subset of an ordered AG-groupoid S. Then µ is a fuzzy generalized bi-ideal

of S if and only if (µ ◦ S) ◦ µ ⊆ µ.

Proof. Same as Theorem 2.5. �

Lemma 2.9. If µ and γ are two fuzzy bi- (resp. generalized bi-, quasi-, interior) ideals of an ordered AG-

groupoid S, then µ ∩ γ is also a fuzzy bi- (resp. generalized bi-, quasi-, interior) ideal of S.

Proof. Let µ and γ be two fuzzy bi-ideals of S. This implies that µ and γ be two fuzzy AG-subgroupoids of S,

then µ∩γ is also a fuzzy AG-subgroupoid of S. We have to show that (µ∩γ)((xa)y) ≥ (µ∩γ)(x)∧(µ∩γ)(y).

Now

(µ ∩ γ)((xa)y) = µ((xa)y) ∧ γ((xa)y)

≥ {µ(x) ∧ µ(y)} ∧ {γ(x) ∧ γ(y)}

= µ(x) ∧ {µ(y) ∧ γ(x)} ∧ γ(y)

= µ(x) ∧ {γ(x) ∧ µ(y)} ∧ γ(y)

= {µ(x) ∧ γ(x)} ∧ {µ(y) ∧ γ(y)}

= (µ ∩ γ)(x) ∧ (µ ∩ γ)(y).

⇒ (µ ∩ γ)((xa)y) ≥ (µ ∩ γ)(x) ∧ (µ ∩ γ)(y).
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Hence µ ∩ γ is a fuzzy bi-ideal of S. �

Lemma 2.10. If µ and γ are two fuzzy bi- (resp. generalized bi-, interior) ideals of an ordered AG-groupoid

S with left identity e, then µ ◦ γ is also a fuzzy bi- (resp. generalized bi-, interior) ideal of S.

Proof. Let µ and γ be two fuzzy bi-ideals of S. We have to show that µ ◦γ is also a fuzzy bi-ideal of S. Since

µ and γ are fuzzy AG-subgroupoids of S, then µ ◦ γ is also a fuzzy AG-subgroupoid of S by the Lemma 2.3.

Now

((µ ◦ γ) ◦ S) ◦ (µ ◦ γ) = ((µ ◦ γ) ◦ (S ◦ S)) ◦ (µ ◦ γ)

= ((µ ◦ S) ◦ (γ ◦ S)) ◦ (µ ◦ γ)

= ((µ ◦ S) ◦ µ) ◦ ((γ ◦ S) ◦ γ)

⊆ (µ ◦ γ).

Therefore µ ◦ γ is a fuzzy bi-ideal of S. �

Lemma 2.11. Every fuzzy ideal of an ordered AG-groupoid S is a fuzzy interior ideal of S. The converse is

not true in general.

Proof. Straight forward. �

Proposition 2.2. Let µ be a fuzzy subset of an ordered AG-groupoid S with left identity e. Then µ is a

fuzzy ideal of S if and only if µ is a fuzzy interior ideal of S.

Proof. Let µ be a fuzzy interior ideal of S and x, y ∈ S. Now µ(xy) = µ((ex)y) ≥ µ(x), thus µ is a fuzzy

right ideal of S. Hence µ is a fuzzy ideal of S by the Lemma 2.5. Converse is true by the Lemma 2.11. �

Lemma 2.12. Every fuzzy left (right, two-sided) ideal of an ordered AG-groupoid S is a fuzzy bi-ideal of S.

The converse is not true in general.

Proof. Suppose that µ is a fuzzy right ideal of S and x, y, z ∈ S. Now µ ((xy)z) = µ (xy) ≥ µ (x)

and µ((xy)z) = µ((zy)x) ≥ µ(zy) ≥ µ(z), this implies that µ((xy)z) ≥ µ(x) ∧ µ(z). Hence µ is a fuzzy

bi-ideal of S. �

Lemma 2.13. Every fuzzy bi-ideal of an ordered AG-groupoid S is a fuzzy generalized bi-ideal of S. The

converse is not true in general.

Proof. Obvious. �

Lemma 2.14. Every fuzzy left (right, two-sided) ideal of an ordered AG-groupoid S is a fuzzy quasi-ideal of

S. The converse is not true in general.
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Proof. Straight forward. �

Proposition 2.3. Every fuzzy quasi-ideal of an ordered AG-groupoid S is a fuzzy AG-subgroupoid of S.

Proof. Let µ be a fuzzy quasi-ideal of S. Since µ ◦µ ⊆ µ ◦S and µ ◦µ ⊆ S ◦µ, i.e., µ ◦µ ⊆ µ ◦S ∩S ◦µ ⊆ µ.

So µ is a fuzzy AG-subgroupoid of S. �

Proposition 2.4. Let µ be a fuzzy right ideal and γ be a fuzzy left ideal of an ordered AG-groupoid S,

respectively. Then µ ∩ γ is a fuzzy quasi-ideal of S.

Proof. Since ((µ ∩ γ) ◦ S) ∩ (S ◦ (µ ∩ γ)) ⊆ (µ ◦ S) ∩ (S ◦ γ) ⊆ µ ∩ γ. Therefore µ ∩ γ is a fuzzy quasi-ideal

of S. �

Lemma 2.15. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S. Then

every fuzzy quasi-ideal of S is a fuzzy bi-ideal of S.

Proof. Let µ be a fuzzy quasi-ideal of S. Since µ ◦ µ ⊆ µ by the Proposition 2.3. Now

(µ ◦ S) ◦ µ ⊆ (S ◦ S) ◦ µ ⊆ S ◦ µ

and (µ ◦ S) ◦ µ ⊆ (µ ◦ S) ◦ S = (µ ◦ S) ◦ (e ◦ S)

= (µ ◦ e) ◦ (S ◦ S) = (µ ◦ e) ◦ S = µ ◦ S.

⇒ (µ ◦ S) ◦ µ ⊆ µ ◦ S ∩ S ◦ µ ⊆ µ.

Hence µ is a fuzzy bi-ideal of S. �

Proposition 2.5. If µ and γ are two fuzzy quasi-ideals of an ordered AG-groupoid S with left identity e,

such that (xe)S = xS for all x ∈ S. Then µ ◦ γ is a fuzzy bi-ideal of S.

Proof. Let µ and γ be two fuzzy quasi-ideals of S, this implies that µ and γ be two fuzzy bi-ideals of S, by

the Lemma 2.15. Then µ ◦ γ is also a fuzzy bi-ideal of S by the Lemma 2.10. �

3. Regular Ordered AG-groupoids

An ordered AG-groupoid S will be called a regular if for every x ∈ S, there exists an element a ∈ S such

that x ≤ (xa)x. Equivalent definitions are as follows:

(1) A ⊆ ((AS)A] for every A ⊆ S.

(2) x ∈ ((xS)x] for every x ∈ S.

In this section, we characterize regular ordered AG-groupoids by the properties of fuzzy (left, right, quasi-,

bi-, generalized bi-) ideals.

Lemma 3.1. Every fuzzy right ideal of a regular ordered AG-groupoid S is a fuzzy ideal of S.
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Proof. Suppsoe that µ is a fuzzy right ideal of S. Let x, y ∈ S, this implies that there exists an element

a ∈ S, such that x ≤ (xa)x. Thus µ(xy) ≥ µ(((xa)x)y) = µ((yx)(xa)) ≥ µ(yx) ≥ µ(y). Hence µ is a fuzzy

ideal of S. �

Lemma 3.2. Every fuzzy ideal of a regular ordered AG-groupoid S is a fuzzy idempotent.

Proof. Assume that µ is a fuzzy ideal of S and µ ◦ µ ⊆ µ. We have to show that µ ⊆ µ ◦ µ. Let x ∈ S, this

means that there exists an element a ∈ S such that x ≤ (xa)x. Thus

(µ ◦ µ)(x) = ∨(y,z)∈Ax
min{µ(y), µ(z)}

≥ µ(xa) ∧ µ(x) ≥ µ(x) ∧ µ(x) = µ(x).

⇒ µ ⊆ µ ◦ µ.

Therefore µ = µ ◦ µ. �

Remark 3.1. Every fuzzy right ideal of a regular ordered AG-groupoid S is a fuzzy idempotent.

Lemma 3.3. Let µ be a fuzzy subset of a regular ordered AG-groupoid S. Then µ is a fuzzy ideal of S if and

only if µ is a fuzzy interior ideal of S.

Proof. Suppose that µ is a fuzzy interior ideal of S. Let x, y ∈ S, then there exists an element a ∈ S, such

that x ≤ (xa)x. Thus µ(xy) ≥ µ(((xa)x)y) = µ((yx)(xa)) ≥ µ(x), i.e., µ is a fuzzy right ideal of S. So µ is a

fuzzy ideal of S by the Lemma 3.1. Converse is true by the Lemma 2.11. �

Remark 3.2. The concept of fuzzy (two-sided, interior) ideals coincides in regular ordered AG-groupoids.

Proposition 3.1. Let S be a regular ordered AG-groupoid. Then (µ ◦ S) ∩ (S ◦ µ) = µ for every fuzzy right

ideal µ of S.

Proof. Assume that µ is a fuzzy right ideal of S. Then (µ ◦ S) ∩ (S ◦ µ) ⊆ µ, because every fuzzy right ideal

of S is a fuzzy quasi-ideal of S by the Lemma 2.14. Let x ∈ S, this implies that there exists an element

a ∈ S, such that x ≤ (xa)x. Thus

(µ ◦ S)(x) = ∨(y,z)∈Ax
min{µ(y), S(z)}

≥ µ(xa) ∧ S(x) ≥ µ(x) ∧ 1 = µ(x).

⇒ µ ⊆ µ ◦ S.

Similarly, we have µ ⊆ S ◦ µ, i.e., µ ⊆ (µ ◦ S) ∩ (S ◦ µ). Therefore (µ ◦ S) ∩ (S ◦ µ) = µ. �

Lemma 3.4. Let S be a regular ordered AG-groupoid. Then µ ◦ γ = µ ∩ γ for every fuzzy right ideal µ and

every fuzzy left ideal γ of S.
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Proof. Since µ ◦ γ ⊆ µ ∩ γ for every fuzzy right ideal µ and every fuzzy left ideal γ of S by the Lemma 2.8.

Let x ∈ S, this means that there exists an element a ∈ S such that x ≤ (xa)x. Thus

(µ ◦ γ)(x) = ∨(y,z)∈Ax
min{µ(y), γ(z)}

≥ µ(xa) ∧ γ(x) ≥ µ(x) ∧ γ(x) = (µ ∩ γ)(x).

⇒ µ ∩ γ ⊆ µ ◦ γ.

Hence µ ◦ γ = µ ∩ γ. �

Lemma 3.5. Let S be an ordered AG-groupoid with left identity e and a ∈ S. Then Sa is a smallest left

ideal of S containing a.

Proof. Let x ∈ Sa and s ∈ S, this implies that x = s1a, s1 ∈ S. Thus

sx = s(s1a) = (es)(s1a) = ((s1a)s)e = ((s1a)(es))e

= ((s1e)(as))e = (e(as))(s1e) = (as)(s1e) = ((s1e)s)a ∈ Sa.

Hence sx ∈ Sa and (Sa] ⊆ Sa. Now a = ea ∈ Sa, so Sa is a left ideal of S containing a. Let I be another

left ideal of S containing a. Since sa ∈ I, because I is a left ideal of S. But sa ∈ Sa, this means that Sa ⊆ I.

Therefore Sa is a smallest left ideal of S containing a. �

Lemma 3.6. Let S be an ordered AG-groupoid with left identity e. Then aS is a left ideal of S.

Proof. Straight forward. �

Proposition 3.2. Let S be an ordered AG-groupoid with left identity e and a ∈ S. Then aS∪Sa is a smallest

right ideal of S containing a.

Proof. We have to show that aS ∪ Sa is a smallest right ideal of S containing a. Now

(aS ∪ Sa)S = (aS)S ∪ (Sa)S = (SS)a ∪ (Sa)(eS)

⊆ Sa ∪ (Se)(aS) = Sa ∪ S(aS)

= Sa ∪ a(SS) ⊆ Sa ∪ aS = aS ∪ Sa.

Thus (aS ∪ Sa)S ⊆ aS ∪ Sa and also (aS ∪ Sa] ⊆ aS ∪ Sa. Therefore aS ∪ Sa is a right ideal of S.

Since a ∈ Sa, i.e., a ∈ aS ∪ Sa. Let I be another right ideal of S containing a. Now aS ∈ IS ⊆ I and

Sa = (SS)a = (aS)S ∈ (IS)S ⊆ IS ⊆ I, i.e., aS ∪ Sa ⊆ I. Hence aS ∪ Sa is a smallest right ideal of S

containing a. �
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Theorem 3.1. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is a regular.

(2) µ ∩ γ = µ ◦ γ for every fuzzy right ideal µ and every fuzzy left ideal γ of S.

(3) β = (β ◦ S) ◦ β for every fuzzy quasi-ideal β of S.

Proof. Suppose that (1) holds and β be a fuzzy quasi-ideal of S. Then (β ◦ S) ◦ β ⊆ β, because every fuzzy

quasi-ideal of S is a fuzzy bi-ideal of S by the Lemma 2.15. Let x ∈ S, this implies that there exists an

element a of S such that x ≤ (xa)x. Thus

((β ◦ S) ◦ β)(x) = ∨(y,z)∈Ax
min{(β ◦ S)(y), β(z)}

≥ (β ◦ S)(xa) ∧ β(x)

= ∨(s,t)∈Axa
min{β(s), S(t)} ∧ β(x)

≥ β(x) ∧ S(a) ∧ β(x) = β(x).

⇒ β ⊆ (β ◦ S) ◦ β.

Therefore β = (β ◦ S) ◦ β, i.e., (1) implies (3) . Assume that (3) holds. Let µ be a fuzzy right ideal and γ

be a fuzzy left ideal of S. This means that µ and γ be fuzzy quasi-ideals of S by the Lemma 2.14, so µ ∩ γ

be also a fuzzy quasi-ideal of S. Then by our assumption, µ∩ γ = ((µ∩ γ) ◦S) ◦ (µ∩ γ) ⊆ (µ ◦S) ◦ γ ⊆ µ ◦ γ,

i.e., µ ∩ γ ⊆ µ ◦ γ. Since µ ◦ γ ⊆ µ ∩ γ. Hence µ ◦ γ = µ ∩ γ, i.e., (3) ⇒ (2). Suppose that (2) is true

and a ∈ S. Then Sa is a left ideal of S containing a by the Lemma 3.5 and aS ∪ Sa is a right ideal of S

containing a by the Proposition 3.2. So χSa is a fuzzy left ideal and χaS∪Sa is a fuzzy right ideal of S, by

the Theorem 2.2. Then by our supposition χaS∪Sa ∩ χSa = χaS∪Sa ◦ χSa, i.e., χ(aS∪Sa)∩Sa = χ((aS∪Sa)Sa]

by the Theorem 2.1. Thus (aS ∪Sa)∩Sa = ((aS ∪Sa)Sa]. Since a ∈ (aS ∪Sa)∩Sa, i.e., a ∈ ((aS ∪Sa)Sa],

so a ∈ ((aS)(Sa) ∪ (Sa)(Sa)]. Now (Sa)(Sa) = ((Se)a)(Sa) = ((ae)S)(Sa) = (aS)(Sa). This implies that

((aS)(Sa) ∪ (Sa)(Sa)] = ((aS)(Sa) ∪ (aS)(Sa)] = ((aS)(Sa)].

Thus a ∈ ((aS)(Sa)]. Then

a ≤ (ax)(ya) = ((ya)x)a = (((ey)a)x)a = (((ay)e)x)a

= ((xe)(ay))a = (a((xe)y))a ∈ (aS)a, for any x, y ∈ S.

This means that a ∈ ((aS)a], i.e., a is regular. Hence S is a regular, i.e., (2)⇒ (1) . �

Theorem 3.2. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is a regular.
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(2 ) µ = (µ ◦ S) ◦ µ for every fuzzy quasi-ideal µ of S.

(3) β = (β ◦ S) ◦ β for every fuzzy bi-ideal β of S.

(4) δ = (δ ◦ S) ◦ δ for every fuzzy generalized bi-ideal δ of S.

Proof. (1) ⇒ (4), is obvious. Since (4) ⇒ (3) , every fuzzy bi-ideal of S is a fuzzy generalized bi-ideal of S

by the Lemma 2.13. Since (3) ⇒ (2) , every fuzzy quasi-ideal of S is a fuzzy bi-ideal of S by the Lemma

2.15. (2)⇒ (1) , by the Theorem 3.1. �

Theorem 3.3. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is a regular.

(2) µ ∩ γ = (µ ◦ γ) ◦ µ for every fuzzy quasi-ideal µ and every fuzzy ideal γ of S.

(3) β ∩ γ = (β ◦ γ) ◦ β for every fuzzy bi-ideal β and every fuzzy ideal γ of S.

(4) δ ∩ γ = (δ ◦ γ) ◦ δ for every fuzzy generalized bi-ideal δ and every fuzzy ideal γ of S.

Proof. Suppose that (1) holds. Let δ be a fuzzy generalized bi-ideal and γ be a fuzzy ideal of S. Now

(δ ◦ γ) ◦ δ ⊆ (S ◦ γ) ◦ S ⊆ γ ◦ S ⊆ γ and (δ ◦ γ) ◦ δ ⊆ (δ ◦ S) ◦ δ ⊆ δ, i.e., (δ ◦ γ) ◦ δ ⊆ δ ∩ γ. Let x ∈ S, this

means that there exists an element a ∈ S such that x ≤ (xa)x. Now xa ≤ ((xa)x)a = (ax)(xa) = x((ax)a).

Thus

((δ ◦ γ) ◦ δ)(x) = ∨(y,z)∈Ax
min{(δ ◦ γ)(y), δ(z)}

≥ (δ ◦ γ)(xa) ∧ δ(x)

= ∨(s,t)∈Axa
min{δ(s), γ(t)} ∧ δ(x)

≥ δ(x) ∧ γ((ax)a) ∧ δ(x)

≥ δ(x) ∧ γ(x) = (δ ∩ γ)(x).

⇒ δ ∩ γ ⊆ (δ ◦ γ) ◦ δ.

Hence δ ∩ γ = (δ ◦ γ) ◦ δ, i.e., (1) ⇒ (4) . It is clear that (4) ⇒ (3) and (3) ⇒ (2). Assume that (2) is

true. Then µ ∩ S = (µ ◦ S) ◦ µ, where S itself is a fuzzy two-sided ideal, so µ = (µ ◦ S) ◦ µ. Therefore S is a

regular by the Theorem 3.1, i.e., (2)⇒ (1) . �

Theorem 3.4. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is a regular.

(2) µ ∩ γ ⊆ γ ◦ µ for every fuzzy quasi-ideal µ and every fuzzy right ideal γ of S.

(3) β ∩ γ ⊆ γ ◦ β for every fuzzy bi-ideal β and every fuzzy right ideal γ of S.

(4) δ ∩ γ ⊆ γ ◦ δ for every fuzzy generalized bi-ideal δ and every fuzzy right ideal γ of S.
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Proof. (1) ⇒ (4), is obvious. Since (4) ⇒ (3) and (3) ⇒ (2) . Suppose that (2) is true, this implies that

γ ∩ µ = µ ∩ γ ⊆ γ ◦ µ, where µ is a fuzzy left ideal of S. Since γ ◦ µ ⊆ γ ∩ µ, so γ ∩ µ = γ ◦ µ. Hence S is a

regular by the Theorem 3.1, i.e., (2)⇒ (1) . �

Theorem 3.5. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is a regular.

(2) µ∩ γ ∩ λ ⊆ (µ ◦ γ) ◦ λ for every fuzzy quasi-ideal µ, every fuzzy right ideal γ and every fuzzy left ideal

λ of S.

(3) β ∩ γ ∩ λ ⊆ (β ◦ γ) ◦ λ for every fuzzy bi-ideal β, every fuzzy right ideal γ and every fuzzy left ideal

λ of S.

(4) δ ∩ γ ∩ λ ⊆ (δ ◦ γ) ◦ λ for every fuzzy generalized bi-ideal δ, every fuzzy right ideal γ and every fuzzy

left ideal λ of S.

Proof. Suppose that (1) holds. Let δ be a fuzzy generalized bi-ideal, γ be a fuzzy right ideal and λ be a

fuzzy left ideal of S. Let x ∈ S, this implies that there exists an element a ∈ S such that x ≤ (xa)x. Now

x ≤ (xa)x.

xa ≤ ((xa)x)a = (ax)(xa) = x((ax)a).

(ax)a ≤ (a((xa)x))a = ((xa)(ax))a = (a(ax))(xa)

= x((a(ax))a) = x(((ea)(ax))a) = x(((xa)(ae))a)

= x((((ae)a)x)a) = x((nx)a) = x((nx)(ea)) = x((ae)(xn))

= x(x((ae)n)) = x(xm).

⇒ xa ≤ x((ax)a) ≤ x(x(xm)) = (ex)(x(xm)) = ((xm)x)(xe).

Thus

((δ ◦ γ) ◦ λ)(x) = ∨(y,z)∈Ax
min{(δ ◦ γ)(y), λ(z)}

≥ (δ ◦ γ)(xa) ∧ λ(x)

= ∨(s,t)∈Axa
min{δ(s), γ(t)} ∧ λ(x)

≥ δ((xm)x) ∧ γ(xe) ∧ λ(x)

≥ δ(x) ∧ γ(x) ∧ λ(x) = (δ ∩ γ ∩ λ)(x).

⇒ δ ∩ γ ∩ λ ⊆ (δ ◦ γ) ◦ λ.
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Hence (1) ⇒ (4) . It is clear that (4) ⇒ (3) and (3) ⇒ (2) . Assume that (2) holds. Then µ ∩ S ∩ λ ⊆

(µ ◦ S) ◦ λ, where µ is a right ideal of S, i.e., µ ∩ λ ⊆ µ ◦ λ. Since µ ◦ λ ⊆ µ ∩ λ, so µ ◦ λ = µ ∩ λ. Therefore

S is a regular by the Theorem 3.1, i.e., (2)⇒ (1) . �

4. Intra-regular Ordered AG-groupoids

An ordered AG-groupoid S will be called an intra-regular ordered AG-groupoid if for every x ∈ S there

exist elements a, b ∈ S such that x ≤ (ax2)b. Equivalent definitions are as follows:

(1) A ⊆ ((SA2)S] for every A ⊆ S.

(2) x ∈ ((Sx2)S] for every x ∈ S.

In this section, we characterize intra-regular ordered AG-groupoids by the properties of fuzzy (left, right,

quasi-, bi-, generalized bi-) ideals.

Lemma 4.1. Every fuzzy left (right) ideal of an intra-regular ordered AG-groupoid S is a fuzzy ideal of S.

Proof. Suppose that µ is a fuzzy right ideal of S. Let x, y ∈ S, this implies that there exist elements a, b ∈ S,

such that x ≤ (ax2)b. Thus

µ(xy) ≥ µ(((ax2)b)y) = µ((yb)(ax2)) ≥ µ(yb) ≥ µ(y).

Hence µ is a fuzzy ideal of S. �

Lemma 4.2. Let S be an intra-regular ordered AG-groupoid with left identity e. Then every fuzzy ideal of

S is a fuzzy idempotent.

Proof. Assume that µ is a fuzzy ideal of S and µ ◦ µ ⊆ µ. Let x ∈ S, this means that there exist elements

a, b ∈ S, such that x ≤ (ax2)b. Now

x ≤ (ax2)b = (a(xx))b = (x(ax))b

= (x(ax))(eb) = (xe)((ax)b) = (ax)((xe)b).

Thus

(µ ◦ µ)(x) = ∨(y,z)∈Ax
min{µ(y), µ(z)}

≥ µ(ax) ∧ µ((xe)b) ≥ µ(x) ∧ µ(x) = µ(x).

⇒ µ ⊆ µ ◦ µ.

Therefore µ = µ ◦ µ. �

Proposition 4.1. Let µ be a fuzzy subset of an intra-regular ordered AG-groupoid S with left identity e.

Then µ is a fuzzy ideal of S if and only if µ is a fuzzy interior ideal of S.
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Proof. Suppose that µ is a fuzzy interior ideal of S. Let x, y ∈ S, then there exist elements a, b ∈ S, such

that x ≤ (ax2)b. Thus

µ(xy) ≥ µ(((ax2)b)y) = µ((yb)(ax2))

= µ((yb)(a(xx))) = µ((yb)(x(ax)))

= µ((yx)(b(ax))) ≥ µ(x).

So µ is a fuzzy right ideal of S, hence µ is a fuzzy ideal of S by the Lemma 4.1. Converse is true by the

Lemma 2.11. �

Remark 4.1. The concept of fuzzy (two-sided, interior) ideals coincides in intra-regular ordered AG-

groupoids with left identity.

Lemma 4.3. Let S be an intra-regular ordered AG-groupoid with left identity e. Then γ ∩ µ ⊆ µ ◦ γ for

every fuzzy left ideal µ and every fuzzy right ideal γ of S.

Proof. Let µ be a fuzzy left ideal and γ be a fuzzy right ideal of S. Let x ∈ S, this implies that there exist

elements a, b ∈ S such that x ≤ (ax2)b. Now

x ≤ (ax2)b = (a(xx))b = (x(ax))b

= (x(ax))(eb) = (xe)((ax)b) = (ax)((xe)b).

Thus

(µ ◦ γ)(x) = ∨(y,z)∈Ax
min{µ(y), γ(z)}

≥ µ(ax) ∧ γ((xe)b) ≥ µ(x) ∧ γ(x)

= γ(x) ∧ µ(x) = (γ ∩ µ)(x).

⇒ γ ∩ µ ⊆ µ ◦ γ.

�

Theorem 4.1. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) γ ∩ µ ⊆ µ ◦ γ for every fuzzy left ideal µ and every fuzzy right ideal γ of S.

Proof. (1) ⇒ (2) is obvious by the Lemma 4.3. Suppose that (2) holds and a ∈ S. Then Sa is a left ideal

of S containing a by the Lemma 3.5 and aS ∪ Sa is a right ideal of S containing a by the Proposition

3.2. So χSa is a fuzzy left ideal and χaS∪Sa is a fuzzy right ideal of S, by the Theorem 2.2. By our
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supposition χaS∪Sa ∩ χSa ⊆ χSa ◦ χaS∪Sa, i.e., χ(aS∪Sa)∩Sa ⊆ χ((Sa)(aS∪Sa)] by the Theorem 2.1. Thus

(aS ∪ Sa)∩ Sa ⊆ (Sa(aS ∪ Sa)]. Since a ∈ (aS ∪ Sa)∩ Sa, i.e., a ∈ (Sa(aS ∪ Sa)] = ((Sa)(aS)∪ (Sa)(Sa)].

Now

(Sa)(aS) = (Sa)((ea)(SS)) = (Sa)((SS)(ae))

= (Sa)(((ae)S)S) = (Sa)((aS)S)

= (Sa)((SS)a) = (Sa)(Sa).

This implies that

((Sa)(aS) ∪ (Sa)(Sa)] = ((Sa)(Sa) ∪ (Sa)(Sa)]

= ((Sa)(Sa)] = ((Sa)a)S]

= (((Sa)(ea))S] = (((Se)(aa))S]

= ((Sa2)S].

Thus a ∈ (Sa2)S, i.e., a is an intra-regular. Hence S is an intra-regular, i.e., (2)⇒ (1) . �

Theorem 4.2. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) µ ∩ γ = (µ ◦ γ) ◦ µ for every fuzzy quasi-ideal µ and every fuzzy ideal γ of S.

(3) β ∩ γ = (β ◦ γ) ◦ β for every fuzzy bi-ideal β and every fuzzy ideal γ of S.

(4) δ ∩ γ = (δ ◦ γ) ◦ δ for every fuzzy generalized bi-ideal δ and every fuzzy ideal γ of S.

Proof. Suppose that (1) holds. Let δ be a fuzzy generalized bi-ideal and γ be a fuzzy ideal of S. Now

(δ ◦ γ) ◦ δ ⊆ (S ◦ γ) ◦ S ⊆ γ ◦ S ⊆ γ and (δ ◦ γ) ◦ δ ⊆ (δ ◦ S) ◦ δ ⊆ δ, thus (δ ◦ γ) ◦ δ ⊆ δ ∩ γ. Let x ∈ S, this

implies that there exist elements a, b ∈ S such that x ≤ (ax2)b. Now

x ≤ (ax2)b = (a(xx))b = (x(ax))b = (b(ax))x.

b(ax) ≤ b(a((ax2)b)) = b((ax2)(ab)) = b((ax2)c)

= (ax2)(bc) = (ax2)d = (ax2)(ed) = (de)(x2a)

= m(x2a) = x2(ma) = (xx)l = (lx)x = (lx)(ex)

= (xe)(xl) = x((xe)l).
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Thus

((δ ◦ γ) ◦ δ)(x) = ∨(y,z)∈Ax
min{(δ ◦ γ)(y), δ(z)}

≥ (δ ◦ γ)(b(ax)) ∧ δ(x)

= ∨(s,t)∈Ab(ax)
min{δ(s), γ(t)} ∧ δ(x)

≥ δ(x) ∧ γ((xe)l) ∧ δ(x)

≥ δ(x) ∧ γ(x) = (δ ∩ γ)(x).

⇒ δ ∩ γ ⊆ (δ ◦ γ) ◦ δ.

Hence δ ∩ γ = (δ ◦ γ) ◦ δ, i.e., (1) ⇒ (4) . It is clear that (4) ⇒ (3) and (3) ⇒ (2) . Assume that (2)

is true. Let µ be a fuzzy right ideal and γ be a fuzzy two-sided ideal of S. Since every fuzzy right ideal

of S is a fuzzy quasi-ideal of S by the Lemma 2.14, so µ is a fuzzy quasi-ideal of S. By our assumption

µ ∩ γ = (µ ◦ γ) ◦ µ ⊆ (S ◦ γ) ◦ µ ⊆ γ ◦ µ, i.e., µ ∩ γ ⊆ γ ◦ µ. Therefore S is an intra-regular by the Theorem

4.1, i.e., (2)⇒ (1) . �

Theorem 4.3. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) µ ∩ γ ⊆ γ ◦ µ for every fuzzy quasi-ideal µ and every fuzzy left ideal γ of S.

(3) β ∩ γ ⊆ γ ◦ β for every fuzzy bi-ideal β and every fuzzy left ideal γ of S.

(4) δ ∩ γ ⊆ γ ◦ δ for every fuzzy generalized bi-ideal δ and every fuzzy left ideal γ of S.

Proof. Assume that (1) holds. Let δ be a fuzzy generalized bi-ideal and γ be a fuzzy left ideal of S. Let

x ∈ S, this means that there exist elements a, b ∈ S such that x ≤ (ax2)b. Now x ≤ (a(xx))b = (x(ax))b =

(b(ax))x. Thus

(γ ◦ δ)(x) = ∨(y,z)∈Ax
min{γ(y), δ(z)}

≥ γ(b(ax)) ∧ δ(x) ≥ γ(x) ∧ δ(x)

= δ(x) ∧ γ(x) = (δ ∩ γ)(x).

⇒ δ ∩ γ ⊆ γ ◦ δ.

Hence (1) implies (4) . It is clear that (4)⇒ (3) and (3)⇒ (2) . Suppose that (2) holds. Let µ be a fuzzy

right ideal and γ be a fuzzy left ideal of S. Since every fuzzy right ideal of S is a fuzzy quasi-ideal of S, this

implies that µ is a fuzzy quasi-ideal of S. By our supposition, µ ∩ γ ⊆ γ ◦ µ. Thus S is an intra-regular by

the Theorem 4.1, i.e., (2)⇒ (1) . �
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Theorem 4.4. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) µ∩ γ ∩ λ ⊆ (γ ◦ µ) ◦ λ for every fuzzy quasi-ideal µ, every fuzzy left ideal γ and every fuzzy right ideal

λ of S.

(3) β ∩ γ ∩ λ ⊆ (γ ◦ β) ◦ λ for every fuzzy bi-ideal β, every fuzzy left ideal γ and every fuzzy right ideal

λ of S.

(4) δ ∩ γ ∩ λ ⊆ (γ ◦ δ) ◦ λ for every fuzzy generalized bi-ideal δ, every fuzzy left ideal γ and every fuzzy

right ideal λ of S.

Proof. Suppose that (1) holds. Let δ be a fuzzy generalized bi-ideal, γ be a fuzzy left ideal and λ be a fuzzy

right ideal of S. Let x ∈ S, then there exist elements a, b ∈ S such that x ≤ (ax2)b. Now

x ≤ (a(xx))b = (x(ax))b = (b(ax))x.

b(ax) ≤ b(a((ax2)b)) = b((ax2)(ab))

= b((ax2)c) = (ax2)(bc) = (ax2)d

= (a(xx))d = (x(ax))d = (d(ax))x.

Thus

((γ ◦ δ) ◦ λ)(x) = ∨(y,z)∈Ax
min{(γ ◦ δ)(y), λ(z)}

≥ (γ ◦ δ)(b(ax)) ∧ λ(x)

= ∨(s,t)∈Ab(ax)
min{γ(s), δ(t)} ∧ λ(x)

≥ γ(d(ax)) ∧ δ(x) ∧ λ(x) = γ(x) ∧ δ(x) ∧ λ(x)

= (γ ∩ δ ∩ λ)(x).

⇒ γ ∩ δ ∩ λ ⊆ (γ ◦ δ) ◦ λ.

Thus (1) implies (4) . Since (4)⇒ (3) and (3)⇒ (2) . Assume that (2) holds. Then µ∩S ∩λ ⊆ (S ◦µ) ◦λ,

where µ is a fuzzy left ideal of S, i.e., µ ∩ λ ⊆ µ ◦ λ. Thus S is an intra-regular, i.e., (2)⇒ (1) . �

5. Regular and Intra-regular Ordered AG-groupoids

In this section, we characterize both regular and intra-regular ordered AG-groupoid by the properties of

fuzzy (left, right, quasi-, bi-, generalized bi-) ideals.

Theorem 5.1. Let S be an odered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.
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(1) S is both a regular and an intra-regular.

(2) µ ◦ µ = µ for every fuzzy bi-ideal µ of S.

(3) µ1 ∩ µ2 = (µ1 ◦ µ2) ∩ (µ2 ◦ µ1) for all fuzzy bi-ideals µ1 and µ2 of S.

Proof. Suppose that (1) holds. Let µ be a fuzzy bi-ideal of S and µ ◦ µ ⊆ µ. Let x ∈ S, this implies that

there exists an element a ∈ S such that x ≤ (xa)x, also there exist elements a, b ∈ S such that x ≤ (ax2)b.

Now

x ≤ (xa)x

xa ≤ ((ax2)b)a = (ab)(ax2) = c(a(xx))

= c(x(ax)) = x(c(ax)) = x((ec)(ax))

= x((xa)(ce)) = x((xa)d) = x((da)x)

= x(lx) = l(xx) = (el)(xx) = (xx)(le)

= (xx)m = (mx)x.

mx ≤ m((ax2)b) = (ax2)(mb) = (a(xx))n

= (x(ax))n = (x(ax))(en) = (xe)((ax)n)

= (xe)((ax)(en)) = (xe)((ae)(xn))

= (xe)(x((ae)n)) = (xe)(xu) = x((xe)u) = xw.

⇒ xa ≤ (mx)x = (xw)x.

Thus

(µ ◦ µ)(x) = ∨(y,z)∈Ax
min{µ(y), µ(z)}

≥ µ((xw)x) ∧ µ(x)

≥ µ(x) ∧ µ(x) ∧ µ(x) = µ(x).

⇒ µ ⊆ µ ◦ µ.

Hence µ = µ ◦ µ, i.e., (1) implies (2) . Assume that (2) is true. Let µ1 and µ2 be two fuzzy bi-ideals of S,

then µ1∩µ2 and µ1◦µ2 be also fuzzy bi-ideals of S. By our assumption µ1∩µ2 = (µ1∩µ2)◦(µ1∩µ2) ⊆ µ1◦µ2

and µ1 ∩ µ2 = (µ1 ∩ µ2) ◦ (µ1 ∩ µ2) ⊆ µ2 ◦ µ1, this implies that µ1 ∩ µ2 ⊆ (µ1 ◦ µ2)∩ (µ2 ◦ µ1). Again by our



Int. J. Anal. Appl. 18 (2) (2020) 300

supposition

(µ1 ◦ µ2) ∩ (µ2 ◦ µ1) = ((µ1 ◦ µ2) ∩ (µ2 ◦ µ1)) ◦ ((µ1 ◦ µ2) ∩ (µ2 ◦ µ1))

⊆ (µ1 ◦ µ2) ◦ (µ2 ◦ µ1) ⊆ (µ1 ◦ S) ◦ (S ◦ µ1)

= ((S ◦ µ1) ◦ S) ◦ µ1 = (((S ◦ e) ◦ µ1) ◦ S) ◦ µ1

= (((µ1 ◦ e) ◦ S) ◦ S) ◦ µ1 = ((µ1 ◦ S) ◦ S) ◦ µ1

= ((S ◦ S) ◦ µ1) ◦ µ1 = (S ◦ µ1) ◦ µ1

= ((S ◦ e) ◦ µ1) ◦ µ1 = ((µ1 ◦ e) ◦ S) ◦ µ1

= (µ1 ◦ S) ◦ µ1 ⊆ µ1.

⇒ (µ1 ◦ µ2) ∩ (µ2 ◦ µ1) ⊆ µ1.

Similarly, we have (µ1 ◦ µ2) ∩ (µ2 ◦ µ1) ⊆ µ2, thus (µ1 ◦ µ2) ∩ (µ2 ◦ µ1) ⊆ µ1 ∩ µ2. Hence µ1 ∩ µ2 =

(µ1 ◦ µ2) ∩ (µ2 ◦ µ1), i.e., (2) ⇒ (3) . Suppose that (3) holds. Let µ be a fuzzy right ideal and γ be a fuzzy

ideal of S, then µ and γ be also fuzzy bi-ideals of S, because every fuzzy right ideal and fuzzy ideal of S is a

fuzzy bi-ideal of S. By our supposition µ∩γ = (µ ◦γ)∩ (γ ◦µ), this implies that µ∩γ ⊆ (µ ◦γ)∩ (γ ◦µ), i.e.,

µ∩ γ ⊆ µ ◦ γ and µ∩ γ ⊆ γ ◦µ, where γ is also a fuzzy left ideal of S. Since µ ◦ γ ⊆ µ∩ γ, thus µ∩ γ = µ ◦ γ

and µ ∩ γ ⊆ γ ◦ µ. Hence S is both a regular and an intra-regular, i.e., (3)⇒ (1) . �

Theorem 5.2. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is both a regular and an intra-regular.

(2) Every fuzzy quasi-ideal of S is a fuzzy idempotent.

Proof. Suppose that S is both a regular and an intra-regular. Let µ be a fuzzy quasi-ideal of S. Then µ be

a fuzzy bi-ideal of S and µ ◦ µ ⊆ µ. Let x ∈ S, this means that there exists an element a ∈ S such that

x ≤ (xa)x, and also there exist elements a, b ∈ S such that x ≤ (ax2)b. Since x ≤ (xa)x = ((xw)x)x by the

Theorem 5.1. Thus

(µ ◦ µ)(x) = ∨(y,z)∈Ax
min{µ(y), µ(z)}

≥ µ((xw)x) ∧ µ(x)

≥ µ(x) ∧ µ(x) ∧ µ(x) = µ(x).

⇒ µ ⊆ µ ◦ µ.

Hence µ = µ ◦ µ. Conversely, assume that every fuzzy quasi-ideal of S is a fuzzy idempotent. Let a ∈ S,

then Sa is a left ideal of S containing a by the Lemma 3.5.This implies that Sa is a quasi-ideal of S, so
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χSa is a fuzzy quasi-ideal of S by the Theorem 2.4. By our assumption χSa = χSa ◦ χSa = χ((Sa)(Sa)], i.e.,

Sa = ((Sa)(Sa)]. Since a ∈ Sa, i.e., a ∈ ((Sa)(Sa)]. Thus a is both a regular and an intra-regular by the

Theorems 3.1 and 4.1, respectively. Hence S is both a regular and an intra-regular. �

Theorem 5.3. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is both a regular and an intra-regular.

(2) µ ∩ γ ⊆ µ ◦ γ for all fuzzy quasi-ideals µ and γ of S.

(3) µ ∩ γ ⊆ µ ◦ γ for every fuzzy quasi-ideal µ and every fuzzy bi-ideal γ of S.

(4) µ ∩ γ ⊆ µ ◦ γ for every fuzzy bi-ideal µ and every fuzzy quasi-ideal γ of S.

(5) µ ∩ γ ⊆ µ ◦ γ for all fuzzy bi-ideals µ and γ of S.

(6) µ ∩ γ ⊆ µ ◦ γ for every fuzzy bi-ideal µ and every fuzzy generalized bi-ideal γ of S.

(7) µ ∩ γ ⊆ µ ◦ γ for every fuzzy generalized bi-ideal µ and every fuzzy quasi-ideal γ of S.

(8) µ ∩ γ ⊆ µ ◦ γ for every fuzzy generalized bi-ideal µ and every fuzzy bi-ideal γ of S.

(9) µ ∩ γ ⊆ µ ◦ γ for all fuzzy generalized bi-ideals µ and γ of S.

Proof. Suppose that (1) holds. Assume that µ and γ be two fuzzy generalized bi-ideals of S. Let x ∈ S, this

implies that there exists an element a ∈ S such that x ≤ (xa)x, and also there exist elements a, b ∈ S such

that x ≤ (ax2)b. Since x ≤ (xa)x = ((xw)x)x by the Theorem 5.1. Thus

(µ ◦ γ)(x) = ∨(y,z)∈Ax
min{µ(y), γ(z)}

≥ µ((xw)x) ∧ γ(x)

≥ µ(x) ∧ µ(x) ∧ γ(x) = (µ ∩ γ)(x).

⇒ µ ∩ γ ⊆ µ ◦ γ.

Hence (1)⇒ (9) . It is clear that (9)⇒ (8)⇒ (7)⇒ (4)⇒ (2) and (9)⇒ (6)⇒ (5)⇒ (3) . Assume that

(2) holds. Let µ be a fuzzy right ideal and γ be a fuzzy left ideal of S. Since every fuzzy right ideal and every

fuzzy left ideal of S is a fuzzy quasi-ideal of S by the Lemma 2.14. By our assumption, µ ∩ γ ⊆ µ ◦ γ. Since

µ ◦ γ ⊆ µ ∩ γ, so µ ∩ γ = µ ◦ γ, i.e., S is a regular. Again by our assumption, µ ∩ γ = γ ∩ µ ⊆ γ ◦ µ, i.e., S

is an intra-regular. Hence S is both a regular and an intra-regular, i.e., (2) ⇒ (1) . In similar way, we can

prove that (3)⇒ (1) . �

Theorem 5.4. Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S.

Then the following conditions are equivalent.

(1) S is both a regular and an intra-regular.

(2) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy right ideal µ and every fuzzy left ideal γ of S.



Int. J. Anal. Appl. 18 (2) (2020) 302

(3) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy right ideal µ and every fuzzy quasi-ideal γ of S.

(4) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy right ideal µ and every fuzzy bi-ideal γ of S.

(5) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy right ideal µ and every fuzzy generalized bi-ideal γ of S.

(6) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy left ideal µ and every fuzzy quasi-ideal γ of S.

(7) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy left ideal µ and every fuzzy bi-ideal γ of S.

(8) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy left ideal µ and every fuzzy generalized bi-ideal γ of S.

(9) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for all fuzzy quasi-ideals µ and γ of S.

(10) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy quasi-ideal µ and every fuzzy bi-ideal γ of S.

(11) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy quasi-ideal µ and every fuzzy generalized bi-ideal γ of S.

(12) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for all fuzzy bi-ideals µ and γ of S.

(13) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for every fuzzy bi-ideal µ and every fuzzy generalized bi-ideal γ of S.

(14) µ ∩ γ ⊆ (µ ◦ γ) ∩ (γ ◦ µ) for all fuzzy generalized bi-ideals µ and γ of S.

Proof. Since µ∩ γ ⊆ µ ◦ γ and µ∩ γ ⊆ γ ◦ µ for all fuzzy generalized bi-ideals µ and γ of S by the Theorem

5.3. Hence µ∩ γ ⊆ (µ ◦ γ)∩ (γ ◦ µ), i.e., (1)⇒ (14) . It is clear that (14)⇒ (13)⇒ (12)⇒ (9)⇒ (6)⇒ (2) ,

(14)⇒ (11)⇒ (10)⇒ (9) , (14)⇒ (8)⇒ (7)⇒ (6) and (14)⇒ (5)⇒ (4)⇒ (3)⇒ (2) . Assume that (2) is

true. Let µ be a fuzzy right ideal and γ be a fuzzy left ideal of S. By our assumption µ∩γ ⊆ (µ◦γ)∩(γ ◦µ) ⊆

γ ◦µ, i.e., S is an intra-regular. Again µ∩γ ⊆ (µ◦γ)∩(γ ◦µ) ⊆ µ◦γ. Since µ◦γ ⊆ µ∩γ, so µ∩γ = µ◦γ, i.e.,

S is a regular. Hence (2)⇒ (1) . �
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