ON PROPERTIES OF CERTAIN ANALYTIC MULTIPLIER TRANSFORM OF COMPLEX ORDER

DEBORAH OLUFUNMILAYO MAKINDE ${ }^{1, *}$, SHAHRAM NAJAFZADEH ${ }^{2}$
${ }^{1}$ Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria
${ }^{2}$ Department of Mathematics, Payame Noor University, P. O. Box: 19395-3697, Tehran, Iran
* Corresponding author: funmideb@yahoo.com

Abstract. The focus of this paper is to investigate the subclasses $S^{*} C(\gamma, \mu, \alpha, \lambda ; b), T S^{*} C(\gamma, \mu, \alpha, \lambda ; b)=$ $T \cap S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$ and obtain the coefficient bounds as well as establishing its relationship with certain existing results in the literature.

1. Introduction

Let A be the class of normalized analytic functions f in the open unit disc $U=\{z \in C:|z|<1\}$ with $f(0)=f^{\prime}(0)=0$ and of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \in C \tag{1.1}
\end{equation*}
$$

and S the class of all functions in A that are univalent in U. Also, the subclass of functions in A that are of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0 \tag{1.2}
\end{equation*}
$$

is denoted by T and the subclasses $S^{*}(\alpha), \quad C(\gamma)$ are given respectively by

$$
\begin{equation*}
S^{*}(\alpha)=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\gamma z \in U\right\} \tag{1.3}
\end{equation*}
$$

Received 2019-07-05; accepted 2019-08-12; published 2019-11-01.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. analyticity; univalent; linear transformation; coefficient bounds.

$$
\begin{equation*}
C(\alpha)=\left\{f \in S: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\gamma z \in U, \geq \gamma<1\right\} \tag{1.4}
\end{equation*}
$$

Moreover, the class $T S^{*}(\gamma)$ denoted by $T \cap S^{*}(\gamma)$ which is the subclass of function $f \in T$ such that f is starlike of order γ and respectively, $T C(\gamma)$ is the class of function $f \in T$ such that f is convex of order γ. An interesting unification of the classes $S^{*}(\alpha)$ and $C(\gamma)$ denoted by $S^{*} C(\gamma, \beta)$ which satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)+\beta z^{2} f^{\prime}(z)}{\beta z f^{\prime}(z)+(1-\beta) f(z)}\right\}>\gamma \quad 0 \geq \gamma<1, z \in U \tag{1.5}
\end{equation*}
$$

has been extensively studied by different researchers, for example, see [6] and [1,2,3]. The special cases for $\beta=0,1$ are given by $S^{*}(\gamma)$ and $C((\gamma))$ respectively.

Furthermore, the class $T S^{*} C(\gamma, \beta)$ which is the subclass of function $f \in T$ such that f belongs the class $S^{*} C(\gamma, \beta)$, was studied by Altintas et al. and other researchers. For details see [3,5,6].
Using the unification in (5), Nizami Mustafa [6] introduced and investigated the class $S^{*} C(\gamma, \beta ; \tau)$ and $T S^{*} C(\gamma, \beta ; \tau), 0 \leq \alpha<1 ; \beta \in[0,1] ; \tau \in C$ which he defined as follows
A function $f \in S$ given by (1.1) is said to belong to the class $S^{*} C(\gamma, \beta ; \tau)$ if the following condition is satisfied

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{\tau}\left[\frac{z f^{\prime}(z)+\beta z^{2} f^{\prime}(z)}{\beta z f^{\prime}(z)+(1-\beta) f(z)}-1\right]\right\}>\gamma \quad 0 \geq \gamma<1 ; \beta \in[0,1] ; \tau \in C-\{0\}, z \in U \tag{1.6}
\end{equation*}
$$

Meanwhile, the author in [4] defined a linear transformation $D_{\alpha, \lambda}^{m} f$ by

$$
\begin{equation*}
D_{\alpha, \lambda}^{m} f(z)=z+\sum_{n=2}^{\infty} \alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}, \quad 0 \leq \lambda \leq 1 ; \alpha \geq 1 ; m \in \mathbb{N} \cup 0 \tag{1.7}
\end{equation*}
$$

Motivated by the work of Mustafa in [6], we study the effect of the application of the linear operator $D_{\alpha, \lambda}^{m} f$ on the unification of the classes of the functions $S^{*} C(\gamma, \beta ; \tau)$.
Now, we define the class $S^{*} C(\gamma, \alpha, \lambda ; b)$ to be class of functions $f \in S$ which satisfies the condition
$\operatorname{Re}\left\{1+\frac{1}{b}\left[\frac{z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+\mu z^{2}\left(D_{\alpha, \lambda}^{m} f\right)^{\prime \prime}(z)}{\mu z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+(1-\mu)\left(D_{\alpha, \lambda}^{m} f\right)(z)}-1\right]\right\}>\gamma, 0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; \alpha \geq 1 ; m \in \mathbb{N} \cup 0$

Also, we denote by D_{T} the subclass of the class of functions in (7) which is of the form

$$
\begin{equation*}
D_{\alpha, \lambda}^{m} f(z)=z-\sum_{n=2}^{\infty} \alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}, \quad 0 \leq \lambda, \mu \leq 1 ; \alpha \geq 1 ; m \in \mathbb{N} \cup 0 \tag{1.9}
\end{equation*}
$$

and denote by $T S^{*} C(\gamma, \mu, \alpha, \lambda ; b)=T \cap S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$ which is the class of functions f in (1.9) such that f belong to the class $S^{*} C(\gamma, \mu, \alpha, \lambda ; b)=T \cap S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$.

In this paper, we investigate the subclasses $S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$ and
$T S^{*} C(\gamma, \mu, \alpha, \lambda ; b)=T \cap S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$

2. Coeffiecient bounds for the classes $S^{*} C_{\alpha}^{\lambda}(\gamma, \mu ; b)$ and $T S^{*} C_{\alpha}^{\lambda}(\gamma, \mu ; b)$

Theorem 2.1. Let f be as defined in (1.1). Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; \alpha \geq 1 ; m \in \mathbb{N} \cup 0$
if

$$
\sum_{n=2}^{\infty}\left[\alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}[1+\mu(n-1)][n+|b|(1-\gamma)-1]\right]\left|a_{n}\right| \leq|b|(1-\gamma)
$$

The result is sharp for the function

$$
D_{\alpha, \lambda}^{m} f(z)=z+\frac{|b|(1-\gamma)(1+\lambda(\alpha-1))^{m}}{\alpha[1+\mu(n-1)][n+|b|(1-\gamma)](1+\lambda(n+\alpha-2))^{m}} z^{n} \quad n \geq 2
$$

Proof. By (1.8), f belong to the class $S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$ if

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left[\frac{z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+\mu z^{2}\left(D_{\alpha, \lambda}^{m} f\right)^{\prime \prime}(z)}{\mu z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+(1-\mu)\left(D_{\alpha, \lambda}^{m} f\right)(z)}-1\right]\right\}>\gamma
$$

It suffices to show that:

$$
\begin{equation*}
\left|\frac{1}{b}\left[\frac{z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+\mu z^{2}\left(D_{\alpha, \lambda}^{m} f\right)^{\prime \prime}(z)}{\mu z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+(1-\mu)\left(D_{\alpha, \lambda}^{m} f\right)(z)}-1\right]\right|<1-\gamma \tag{2.1}
\end{equation*}
$$

Simple computation in (2.1), using (1.7), we have:

$$
\begin{gathered}
\left|\frac{1}{b}\left[\frac{z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+\mu z^{2}\left(D_{\alpha, \lambda}^{m} f\right)^{\prime \prime}(z)}{\mu z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+(1-\mu)\left(D_{\alpha, \lambda}^{m} f\right)(z)}-1\right]\right| \\
=\left|\frac{1}{b}\left[\frac{z+\sum_{n=2}^{\infty} n \alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}+\mu \sum_{n=2}^{\infty} n(n-1) \alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}}{\mu z+\sum_{n=2}^{\infty} \mu n \alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}+(1-\mu)\left(z+\sum_{n=2}^{\infty} \alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}\right)}-1\right]\right| \\
=\left|\frac{1}{b}\left[\frac{z+\sum_{n=2}^{\infty} n \alpha[1+\mu(n-1)]\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}}{z+\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}}-1\right]\right| \\
\leq \frac{1}{b}\left[\frac{\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)]\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}\left|a_{n}\right|}{1-\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}\left|a_{n}\right|}\right]
\end{gathered}
$$

which is bounded by $1-\gamma$ if
$\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)]\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}\left|a_{n}\right| \leq|b|(1-\gamma) 1-\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}\left|a_{n}\right|$
which is equivalent to
$\sum_{n=2}^{\infty}\left[\alpha(n-1)[1+\mu(n-1)]\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}+\alpha|b|(1-\gamma)(1+\mu(n-1))\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}\right]\left|a_{n}\right| \leq|b|(1-\gamma)$
Which implies that

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[\alpha\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}[1+\mu(n-1)][n+|b|(1-\gamma)-1]\right]\left|a_{n}\right| \leq|b|(1-\gamma) \tag{2.2}
\end{equation*}
$$

Thus, (2.1) is satisfied if (2.2) is satisfied.

Corollary 2.1. Let f be as defined in (1) and the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; \alpha \geq 1 ; m \in \mathbb{N} \cup 0$. Then

$$
\left|a_{n}\right| \leq \frac{|b|(1-\gamma)(1+\lambda(\alpha-1))^{m}}{\alpha[1+\mu(n-1)][n+|b|(1-\gamma)-1](1+\lambda(n+\alpha-2))^{m}}
$$

Corollary 2.2. Let f be as defined in (1.1). Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, \mu, 1, \lambda, m ; b)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; m \in \mathbb{N} \cup 0$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[(1+\lambda(n-1))^{m}[1+\mu(n-1)][n+|b|(1-\gamma)-1]\right]\left|a_{n}\right| \leq|b|(1-\gamma) \tag{2.3}
\end{equation*}
$$

The result is sharp for the function

$$
D_{\alpha, \lambda}^{m} f(z)=z+\frac{|b|(1-\gamma)}{[1+\mu(n-1)][n+|b|(1-\gamma)-1](1+\lambda(n-1))^{m}} z^{n}, \quad n \geq 2
$$

Corollary 2.3. Let f be as defined in (1.1). Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, \mu, 1, \lambda, 1 ; b)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; m \in \mathbb{N} \cup 0$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[(1+\lambda(n-1))[1+\mu(n-1)][n+|b|(1-\gamma)-1]]\left|a_{n}\right| \leq|b|(1-\gamma) \tag{2.4}
\end{equation*}
$$

The result is sharp for the function

$$
D_{\alpha, \lambda}^{m} f(z)=z+\frac{|b|(1-\gamma)}{[1+\mu(n-1)][n+|b|(1-\gamma)-1](1+\lambda(n-1))} z^{n}, \quad n \geq 2
$$

Corollary 2.4. Let f be as defined in (1.1). Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, \mu, 1,1,1 ; b)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; m \in \mathbb{N} \cup 0$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n[1+\mu(n-1)][n+|b|(1-\gamma)-1]]\left|a_{n}\right| \leq|b|(1-\gamma) \tag{2.5}
\end{equation*}
$$

The result is sharp for the function

$$
D_{\alpha, \lambda}^{m} f(z)=z+\frac{|b|(1-\gamma)}{n[1+\mu(n-1)][n+|b|(1-\gamma)-1]} z^{n}, \quad n \geq 2
$$

Corollary 2.5. Let f be as defined in (1.1). Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, \mu, 1,0,1 ; b)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; m \in \mathbb{N} \cup 0$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[[1+\mu(n-1)][n+|b|(1-\gamma)-1]]\left|a_{n}\right| \leq|b|(1-\gamma) \tag{2.6}
\end{equation*}
$$

The result is sharp for the function

$$
D_{\alpha, \lambda}^{m} f(z)=z+\frac{|b|(1-\gamma)}{[1+\mu(n-1)][n+|b|(1-\gamma)-]} z^{n}, \quad n \geq 2
$$

This result agrees with the Theorem 2.1 in [6].

Corollary 2.6. Let f be as defined in (1.1). Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, 0,1, \lambda, 0 ; 1)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; m \in \mathbb{N} \cup 0$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[[1+\mu(n-1)][n-\gamma]]\left|a_{n}\right| \leq 1-\gamma \tag{2.7}
\end{equation*}
$$

The result is sharp for the function

$$
D_{\alpha, \lambda}^{m} f(z)=z+\frac{1-\gamma}{[1+\mu(n-1)][n-\gamma]} z^{n}, \quad n \geq 2
$$

This result agrees with the Corollary 2.1 in [6].

Corollary 2.7. Let f be as defined in (1.1). Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $S^{*} C(\gamma, \mu, 1, \lambda, 0 ; 1)$, $0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; m \in \mathbb{N} \cup 0$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\gamma)\left|a_{n}\right| \leq 1-\gamma \tag{2.8}
\end{equation*}
$$

The result is sharp for the function

$$
D_{\alpha, \lambda}^{m} f(z)=z+\frac{1-\gamma}{n-\gamma} z^{n}, \quad n \geq 2
$$

This result agrees with the Corollary 2.2 in [6].

Theorem 2.2. Let $f \in D_{T}$. Then the function $D_{\alpha, \lambda}^{m} f$ belongs to the class $D_{T} S^{*} C(\gamma, \mu, \alpha, \lambda ; b)$,
$0 \geq \gamma<1, z \in U ; 0 \leq \lambda, \mu \leq 1 ; \alpha \geq 1 ; m \in \mathbb{N} \cup 0$ if and only if

$$
\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)][n+b(1-\gamma)]\left(\frac{x}{y}\right)^{m}\left|a_{n}\right| \leq|b|(1-\gamma)
$$

Proof. We shall prove only the necessity part of the Theorem as the sufficiency proof is similar to the proof of Theorem 1.

Let f be as defined in (1.1) and $D_{\alpha, \lambda}^{m} f$ belongs to the class $T S^{*} C(\gamma, \mu, \alpha, \lambda ; b), \quad 0 \geq \gamma<1, z \in U ; 0 \leq$ $\lambda, \mu \leq 1 ; \alpha \geq 1 ; m \in \mathbb{N} \cup 0 ; b \in \mathbb{R}-\{0\}$, we have

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left[\frac{z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+\mu z^{2}\left(D_{\alpha, \lambda}^{m} f\right)^{\prime \prime}(z)}{\mu z\left(D_{\alpha, \lambda}^{m} f\right)^{\prime}(z)+(1-\mu)\left(D_{\alpha, \lambda}^{m} f\right)(z)}-1\right]\right\}>\gamma \tag{2.9}
\end{equation*}
$$

Using (1.7) in (2.9) and by algebraic simplification, we have

$$
\operatorname{Re}\left\{\frac{-\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)]\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}}{b\left\{z-\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n} z^{n}\right\}}\right\} \geq \gamma-1
$$

Choosing z to be real and $z \longrightarrow 1$, we have

$$
\begin{equation*}
\frac{-\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)]\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n}}{b\left\{1-\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m} a_{n}\right\}} \geq \gamma-1 \tag{2.10}
\end{equation*}
$$

$b \in \mathbb{R}-\{0\}$ implies that b could be greater or less than zero.
Let $b>0$ in (19), we have

$$
\begin{equation*}
-\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)]\left(\frac{x}{y}\right)^{m} a_{n} \geq(\gamma-1) b\left\{1-\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{x}{y}\right)^{m} a_{n}\right\} \tag{2.11}
\end{equation*}
$$

where $x=1+\lambda(n+\alpha-2)$ and $y=1+\lambda(\alpha-1)$ From (20), we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)][n+b(1-\gamma)]\left(\frac{x}{y}\right)^{m}\left|a_{n}\right| \leq b(1-\gamma) \tag{2.12}
\end{equation*}
$$

Now suppose $b<0$, which implies that $b=-|b|$ and substituting $b=-|b|$ in (19), we have

$$
\begin{gather*}
\frac{\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)]\left(\frac{x}{y}\right)^{m} a_{n}}{|b|\left\{1-\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{x}{y}\right)^{m} a_{n}\right\}} \geq \tag{2.13}\\
\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)]\left(\frac{x}{y}\right)^{m}\left|a_{n}\right| \geq(\gamma-1)|b|\left\{1-\sum_{n=2}^{\infty} \alpha(1+\mu(n-1))\left(\frac{x}{y}\right)^{m} a_{n}\right\} \text { which implies } \\
\sum_{n=2}^{\infty} \alpha(n-1)[1+\mu(n-1)][n+b(1-\gamma)]\left(\frac{1+\lambda(n+\alpha-2)}{1+\lambda(\alpha-1)}\right)^{m}\left|a_{n}\right| \geq-b(1-\gamma) \tag{2.14}
\end{gather*}
$$

From (21) and (23), the proof of the necessity is completed.

References

[1] Altintas, O., On a subclass of certain starlike functions with negative coefficient. Math. Japon., 36 (1991), 489-495.
[2] Altintas, O., Irmak, H. and Srivastava, H. M., Fractional calculus and certain starlke functions with negative coefficients. Comput. Math. Appl., 30 (1995), No. 2, 9-16.
[3] Altintas, O., Özkan, $̈$. and Srivastava, H. M., Neighborhoods of a Certain Family of Multivalent Functions with Negative Coefficients. Comput. Math. Appl., 47 (2004), 1667-1672.
[4] Makinde, D.O., A new multiplier differential operator. Adv. Math., Sci. J., 7 (2018), no.2, 109 -114.
[5] Irmak, H., Lee, S. H. and Cho, N. E., Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator. Kyungpook Math. J., 37 (1997), 43-51.
[6] Mustafa, N., The various properties of certain subclasses of analytic functions of complex order. arXiv:1704.04980 [math.CV], 2017.

