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1. Introduction and Preliminaries

Various types of fractional derivatives were introduced such as: Riemann-Liouville, Caputo, Modified

Riemann-Liouville, Hadamard, Grunwald, Letnikov and Riesz operators. The most two popular definitions

of fractional derivatives of order α > 0 are ([1], [2], [3], [4], [5], [6], [7]):

(i) Riemann-Liouville fractional derivative:

RDαf(x) =
1

Γ(n− α)

dn

dxn

∫ x

0

(x− t)n−α−1f(t)dt. (1.1)

(ii) Caputo fractional derivative:

cDαf(x) =
1

Γ(n− α)

∫ x

0

(x− t)n−α−1 d
n

dxn
f(t)dt. (1.2)

Here Γ(.) denotes to the gamma function.

In the last few decades, fractional differentiation has been used applied scientists for solving several

fractional differential equations and they proved that the fractional calculus is very useful in several fields of

applications with some restrictions such as: Physics (quantum mechanics and thermodynamics), chemistry,

biology, economics, engineering, signal and image processing and control theory ([2], [3], [4], [5], [6], [7],

[8], [9], [10]). Very recently, the discrepancies between known definitions can be solved in simple way by

presenting a new fractional definition which is called the ”Conformable Fractional Derivative ” and defined

for a given function f : [0,∞)→ R of fractional (ordinary) order α > 0 by Khalil et el. [11] as follows:

Dnαf(x) = lim
ε→0

f [α]−1(x+ εx[α]−α)− f [α]−1(x)

ε
, n− 1 < α ≤ n, x > 0, (1.3)

where [α] is the smallest integer number greater than or equal α and n ∈ N .

As a special case, if 0 < α ≤ 1, then we have:

Dαf(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
. (1.4)

This definition is very easy for calculating derivatives and solving fractional differential equations com-

pared with other fractional definitions such as the definitions of Liouville-Reimman and Caputo fractional

derivatives. It has received a lot of attention and many applications have been remodeled using this new

definition ([12], [13], [14], [15], [16], [17], [18], [19]). Moreover, it has many interesting advantages which

make its easier and flexible more than the definitions of other fractional derivatives ([12], [13], [14], [15],

[16], [17], [18], [19]). Some of these adavantages are: (i) It satisfies the all concepts of ordinary calculus such

as: quotient, product and chain rules, Rolle’s theorem and mean-value theorem. (ii) A non-differentiable

function can be α- differentiable in the conformable sense. (iii) It can be easily extended to generalize many

integral transforms such as: Laplace, Mellin, Natural and Sumudu transforms.
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Also, the conformable fractional integral has been also defined of order α > 0 by:

Iαf(x) =

∫ x

0
f(t) tα−1dt. (1.5)

In fact, if f(x) is an n -differentiable function at x > 0 and α ∈ (0, 1], n ∈ N , then [11]:

(i) Dαf(x) = x1−α
d

dx
f(x), (1.6)

(ii) DαIαf(x) = f(x). (1.7)

In the literature there are several works on the theory and applications of integral transforms such as

the Laplace and Sumudu transforms ([20], [21], [22], [23], [24], [25], [26], [27], [28]) that are widely used

in physics, electric circuit theory, astronomy, as well as engineering and sciences. Sumudu transform was

introduced by Watugala [20 ] and defined over the following set of functions:

A =

{
f(x) : ∃ M, τ1, τ2 > 0, |f(x)| < Me

|x|
τj , if x ∈ (−1)j × [0,∞), j = 1, 2

}
, (1.8)

as follows:

S[f(x)] = F(u) =

∫ ∞
0

e−xf(ux)dx, u ∈ (−τ1, τ2), (1.9)

or equivalently:

S[f(x)] = F(u) =
1

u

∫ ∞
0

e−
x
u f(x)dx, u > 0. (1.10)

This transform has many interesting advantages over other integral transforms especially the ”unity”

feature which could provide convergence when solvimg differential equations and also used to solve problems

without resorting to a new frequency domain while for example, Laplace transform must satisfy the Dirichlet

condition which is f(x) must be piecewise continuous which means that it must be single valued but can

have a finite number of finite isolated discontinuues for x > 0. Also this transform possesses many interesting

advantages which make its visualization easier and some of these advantages can be found in ([20], [21], [22],

[23], [24], [25], [26], [27], [28]).

There are several methods and techniques were applied for obtaining the analytical and numerical solution

of such nonlinear and singular fractional differential equations such as the fractional Laplace transform

method [19], generalized Kudryashov method [29], Adomian decomposition method ([30], [31]) and modified

Kudryashov method [32]. Note that the fractional order differential equations are now span a half-century or

more and play a crucial role in several theoretical and applied sciences such as, but certainly not limited to,

theoretical biology and ecology, solid state physics, viscoelasticity, fiber optics, signal processing and electric
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control theory, stochastic based finance and thermodynamics ([19], 20], [21], [22], [23], [24], [25], [26], [27],

[28], [29], [30], [31], [32]).

Finally, the theory of thermal explosions originally proposed by Frank-Kamenetzky ([33], [34]) and revis-

ited by Barenblatt et al. [ 35] has been required the solution of the nonlinear Poisson-Boltzmann differential

equation which is given and solved numerically by Chambré [36]. The ordinary Poisson-Boltzmann differen-

tial equation as follows ([36], [37]):

d2y

dx2
+
β

x

dy

dx
= ey (1.11)

This equation is also a very useful in many settings, whether it be to understand physiological interfaces,

polymer science, electron interactions in a semiconductor; in the critical theory of gravitation and combustion

or explosion. and to describe the distribution of the electric potential in solution in the direction normal to

a charged surface and from this equation, many other equations can been derived with a number of different

assumptions.

In this paper, we extend the definition of Sumudu transform to fractional order and derive a list of inter-

esting rules and properties of this extension which including the rules of the conformable fractional Laplace

transform. Also, a very nice relationship between conformable fractional Sumudu and Laplace transforms is

derived and proved. Moreover, we give two important and attractive applications for conformable fractional

Sumudu transform. These applications are: Firstly, we apply the conforrmable fractional Sumudu transform

together with Adomain decomposition method for presenting the general analytical solution of a singular

and nonlinear conformable fractional Poisson-Boltzmann differential equation. Secondly, we also apply the

conformable fractional Sumudu transform to find the general solutions of some linear and nonhomogeneous

conformable fractional differential equations. Finally, the results show that our proposed method is an effi-

cient method and applied successfully to find the general solutions of the all cases (Singular, linear, nonlinear,

homogeneous and nonhomogeneous) realted to the conformable fractional differential equations.

2. Conformable fractional Laplace and Sumudu transforms

In this Section, we introduce (with proofs) a list of important basic rules and properties for the conformable

fractional Laplace and Sumudu transforms involving the nice relationship between of these transforms which

are playing a central role in the solutions of conformable fractional differential equations.

Definition 2.1.: Let f : [0,∞) → R be a given function and 0 < α ≤ 1. Then the conformable

fractional Laplace transform of f is defined as:

Lα {f(x)} = Fα(s) =

∫ ∞
0

e−s
xα

α f(x)xα−1dx, (2.1)

provided the integral exists.
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Theorem 2.1.: Let f : [0,∞)→ R be a given function and 0 < α ≤ 1. Then

Lα {Dαf(x)} = sFα(s)− f(0), s > 0. (2.2)

Proof. By using Definition 2.1 and integration by parts, we have:

Lα {Dαf(x)} =

∫ ∞
0

e−s
xα

α Dαf(x)xα−1dx =

∫ ∞
0

e−s
xα

α x1−αf ′(x)xα−1dx

=

∫ ∞
0

e−s
xα

α f ′(x)dx =
[
e−s

xα

α f(x)
]∞
0
−
∫ ∞
0

f(x)
(
− s
α
α xα−1

)
e−s

xα

α dx

= lim
c→∞

[
e−s

xα

α f(x)
]c
0

+ s

∫ ∞
0

f(x) xα−1e−s
xα

α dx

= sFα(s)− f(0),

which completes the proof of Theorem 2.1. �

Theorem 2.2 .: Let f : [0,∞)→ R be a function. Then

Fα(s) = L
{
f(αx)

1
α

}
(s). (2.3)

Proof. By using Definition 2.1 and letting v = xα

α , we have:

Fα(s) =

∫ ∞
0

e−s
xα

α f(x)xα−1dx =

∫ ∞
0

e−svf(αv)
1
α dv = L

{
f(αv)

1
α

}
,

which completes the proof of Theorem 2.2. �

Theorem 2.3.: Let c, a, p ∈ R and 0 < α ≤ 1. Then

(i) Lα {c} (s) =
c

s
, s > 0. (2.4)

(ii) Lα {xp} (s) = α
p
α

Γ(1 + p
α )

s1+
p
α

, s > 0. (2.5)

(iii) Lα
{
e
axα

α

}
(s) =

1

s− a
, s > a. (2.6)

(iv) Lα
{
sin(

axα

α
)

}
(s) =

a

s2 + a2
, s > 0. (2.7)

(v) Lα
{
cos(

axα

α
)

}
(s) =

s

s2 + a2
, s > 0. (2.8)

(vi) Lα
{
sinh(

axα

α
)

}
(s) =

a

s2 − a2
, s > |a| . (2.9)

(vii) Lα
{
cosh(

axα

α
)

}
(s) =

s

s2 − a2
, s > |a| . (2.10)

Proof. Follows by applying Definition 2.1. �
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Theorem 2.4. : Let f and g : [0,∞)→ R andl let λ, µ, a ∈ R and 0 < α ≤ 1. Then

(i) Lα {λf(x) + µg(x)} = λFα(s) + µGα(s), s > 0, (2.11)

(ii) Lα
{
e−a

xα

α f(x)
}

= Fα(s+ a), s > |a| , (2.12)

(iii) Lα {Iαf(x)} =
Fα(s)

s
, s > 0, (2.13)

(iv) Lα
{
xnα

αn
f(x)

}
= (−1)n

dn

dsn
Fα(s), s > 0, (2.14)

(v) Lα {(f ∗ g)(x)} = Fα(s)Gα(s), s > 0, (2.15)

where f ∗ g is the convolution product of f and g.

Proof. (i) Straightforward

(ii) By using Thereom 2.2, we get:

Lα
{
e−a

xα

α f(x)
}

= L
{
e
−a
α (αx)α.

1
α f(αx)

1
α

}
= L

{
e−axf(αx)

1
α

}
= L

{
f(αx)

1
α

}
|s→s+a = Fα(s+ a).

(iii) By using Theorem 2.1, we have:

Lα {DαIαf(x)} = sLα {Iαf(x)} − Iαf(0).

Since Iαf(0) = 0, then we obtain:

Fα(s) = sLα {Iαf(x)}

Lα {Iαf(x)} =
Fα(s)

s
.

(vi) By using Theorem 2.2 , we obtain:

Lα
{
xnα

αn
f(x)

}
= L

{
(αx)nα.

1
α

αn
f(αx)

1
α

}
= L

{
xnf(αx)

1
α

}
= (−1)n

dn

dsn
Fα(s).

(v) By using Theorem 2.2, we get:

Lα {(f ∗ g)(x)} = L
{

(f ∗ g)(αx)
1
α

}
= L

{
f(αx)

1
α

}
L
{
g(αx)

1
α

}
= Fα(s) Gα(s).

Which completes the proof of Theorem 2.4. �
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Definition 2.2.: Over the following set of functions:

Aα =

{
f(x) : ∃ M, τ1, τ2 > 0, |f(x)| < Me

|xα|
ατj , if xα ∈ (−1)j × [0,∞), j = 1, 2

}
, (2.16)

then the conformable fractional Sumudu transform of f can be generalized by:

Sα[f(x)] = Fα(u) =
1

u

∫ ∞
0

e
−xα
αu f(x)dαx, (2.17)

where dαx = xα−1dx , 0 < α ≤ 1 and provided the integral exists.

The relationship between the conformable fractional Sumudu and conformable fractional Laplace trans-

forms is given as in the next result.

Theorem 2.5.: Let f : [0,∞)→ R be a given function and 0 < α ≤ 1.Then

Sα[f(x)] =
Fα( 1

u )

u
. (2.18)

Proof. Applying Definition 2.2, we get:

Sα[f(x)] =
1

u

∫ ∞
0

e−
xα

αu f(x)dαx.

Letting v = xα

α ⇒ dv = xα−1dx, then we have:

Sα[f(x)] =
1

u

∫ ∞
0

e−
v
u f(αv)

1
α dv =

1

u
L
{
f(αv)

1
α

}
s→ 1

u

=
Fα( 1

u )

u
,

which completes the proof of Theorem 2.5. �

Theorem 2.6. : Let f : [0,∞)→ R be a given function and 0 < α ≤ 1.Then

Sα[Dαf(x)] =
Fα(u)

u
− f(0)

u
. (2.19)

Proof. Using Theorems 2.5 and 2.1, we get:

Sα[Dαf(x)] =
Lα {Dαf(x)}s→ 1

u

u
=

[sFα(s)− f(0)]s→ 1
u

u

=
Fα( 1

u )

u2
− f(0)

u
=
Fα(u)

u
− f(0)

u
,

which completes the proof of Theorem 2.6. �

Theorem 2.7.: Let f : [0,∞)→ R be an n-differentiable function and 0 < α ≤ 1.Then

Sα[Dnαf(x)] =
Sα[f(x)]

un
− f(0)

un
, 0 < α ≤ 1 and n ∈ N. (2.20)

Proof. Follows by using the induction process on n and Theorem 2.6.

�



Int. J. Anal. Appl. 17 (6) (2019) 1026

Now we introduce the basic rules of conformable fractional Sumudu transform for some certain functions

as in the next result.

Theorem 2.8.: Let a, c ∈ R and 0 < α ≤ 1.Then we have:

(i) Sα[c] = c. (2.21)

(ii) Sα
[
ea

xα

α

]
=

1

1− au
, u >

1

a
. (2.22)

(iii) Sα
[
sin(a

xα

α
)

]
=

au

1 + a2u2
, u >

1

|a|
. (2.23)

(iv) Sα
[
cos(a

xα

α
)

]
=

1

1 + a2u2
, u >

1

|a|
. (2.24)

(v) Sα
[
sinh(a

xα

α
)

]
=

au

1− a2u2
, u >

1

|a|
. (2.25)

(vi) Sα
[
cosh(a

xα

α
)

]
=

1

1− a2u2
, u >

1

|a|
. (2.26)

(vii) Sα
[
xnα

αn

]
= Γ(n+ 1)un, u > 0. (2.27)

Proof. By using Theorems 2.5 and 2.2, we have:

(i)

Sα[c] =
Lα {c}s→ 1

u

u
=

{
c
s

}
s→ 1

u

u
= c.

(ii)

Sα
[
ea

xα

α

]
=

Lα
{
ea

xα

α

}
s→ 1

u

u
=
L{eax}s→ 1

u

u
=

{
1
s−a

}
s→ 1

u

u
=

1

1− au
.

(iii)

Sα
[
sin(a

xα

α
)

]
=
Lα
{
sin(ax

α

α )
}
s→ 1

u

u
=
L{sin(ax)}s→ 1

u

u
=

{
a

s2+a2

}
s→ 1

u

u

=
au

1 + a2u2
.

Similarly we can prove (iv) and then can easy to prove (v) and (vi) based on (iii) and (iv) of Theorem

2.8.

(vii)

Sα
[
xnα

αn

]
=
Lα
{
xnα

αn

}
s→ 1

u

u
=

Γ(n+ 1)un+1

u
= Γ(n+ 1)un.

Which completes the proof of Theorem 2.8. �
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Theorem 2.9.: Let f and g : [0,∞) → R given functiins and let λ, µ ∈ R and 0 < α ≤ 1.Then

we have:

(i) Linearly property:

Sα {λf(x) + µg(x)} = λFα(u) + µGα(u), (2.28)

(ii) Shifting property:

Sα
[
e−a

xα

α f(x)
]

=
Fα( 1

u + a)

u
. (2.29)

(iii) Integral property:

Sα [Iαf(x)] = Fα(
1

u
). (2.30)

(iv) Convolution property:

Sα [(f ∗ g)(x)] = uFα(u)Gα(u). (2.31)

(v) Power product property:

Sα
[
xnα

αn
f(x)

]
=

1

u

[
(−1)n

dn

dsn
Fα(s)

]
s→ 1

u

. (2.32)

Proof. (i) Straightforward by using Definition 2.2.

(ii) By applying Theorems 2.5 and 2.2, we have:

Sα
[
e−a

xα

α f(x)
]

=

Lα
{
e−a

xα

α f(x)
}
s→ 1

u

u
=

L
{
e−axf(αx)

1
α

}
s→ 1

u

u

=
Fα( 1

u + a)

u
.

(iii) By using Theorem 2.5 and Eq.(2.13), we have:

Sα [Iαf(x)] =
Lα {Iαf(x)}s→ 1

u

u
= Fα(

1

u
).

(iv) By applying Theorem 2.5 and Eq. (2.15), we have:

Sα [(f ∗ g)(x)] =
Lα {f ∗ g}s→ 1

u

u
=

[Fα(s)Gα(s)]s→ 1
u

u
=
Fα( 1

u )Gα( 1
u )

u

= uFα(u)Gα(u).

(v) By using Theorem 2.5 and Eq.(2.3), we have:

Sα
[
xnα

αn
f(x)

]
=
Lα
{
xnα

αn f(x)
}
s→ 1

u

u
=

1

u
L
{
xnf(αx)

1
α

}
s→ 1

u

=
1

u

[
(−1)n

dn

dsn
Fα(s)

]
s→ 1

u

.

Which completes the proof of Theorem 2.9. �
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Theorem 2.10.: Let y = f(x) be an n-differentiable function and 0 < α ≤ 1. Then

Sα
[
xα

α
Dnαy

]
= u

d

du
(u Sα[Dnαy]) , n = 1, 2, ... (2.33)

Proof. Let dαx = xα−1dx , then we have:

Sα[Dnαy] =
1

u

∫ ∞
0

e−
xα

αuDnαy dαx

d

du
(u Sα[Dnαy]) =

∫ ∞
0

d

du
e−

xα

αuDnαy dαx =
1

u2

∫ ∞
0

e−
xα

αu
xα

α
Dnαy dαx

=
1

u

∫ ∞
0

1

u
e−

xα

αu
xα

α
Dnαy dαx

=
1

u
Sα
[
xα

α
Dnαy

]
.

which concludes the result as in Eq. (2.33). �

3. Analytical solution of a singular and nonlinear conformable fractional

Poisson-Boltzmann differential equation

In this Section, we apply the conformable fractional Sumudu transform togethor with Adomain decompo-

sition method to present the general analytical solution of the following singular and nonlinear conformable

fractional Poisson Boltzmann differential equation:

D2αy +
β

xα
Dαy = ey, y(0) = 0, (3.1)

where 0 < α ≤ 1 and β > 0.

To solve this problem: Multiply Eq. (3.1) by xα

α and take Sαof both sides, then by applying Theorems

2.10 and 2.6, we get:

u
d

du

(
Yα(u)

u

)
+ γ

(
Yα(u)

u

)
= Sα

(
xα

α
ey
)
, (3.2)

where γ = β
α .

Since u 6= 0 and integrating Eq. (3.2) with respect to z, we get:

Yα(u)

u
=

∫ u

0

1

z
Sα
[
xα

α
ey
]
dz − γ

∫ u

0

Yα(z)

z2
dz (3.3)

Yα(u) = u

∫ u

0

1

z
Sα
[
xα

α
ey
]
dz − uγ

∫ u

0

Yα(z)

z2
dz. (3.4)

Suppose the solution y(x) and non-linear function ey by the following infinite series:

y(x) =

∞∑
n=0

yn(x) , ey =

∞∑
n=0

An(x), (3.5)
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where An is the Adomain polynomial of ey.

Note that:

A◦ = ey◦ ,

A1 = y1e
y◦ , (3.6)

A2 = y2e
y◦ +

1

2!
y21e

y◦ ,

...

Substituting Eq. (3.5) into Eq.(3.4), we have:

Sα

[ ∞∑
n=0

yn(x)

]
= u

∫ u

0

1

z
Sα
[
xα

α
An

]
dz − uγ

∫ u

0

Sα[
∑∞
n=0 yn(x)]

z2
dz. (3.7)

By taking S−1α of both sides of Eq (3.7), we obtain:

∞∑
n=0

yn(x) = S−1α
[
u

∫ u

0

1

z
Sα[

xα

α
An]dz − uγ

∫ u

0

Sα[
∑∞
n=0 yn(x)]

z2
dz

]
.

Thus, the general solution of Eq.(3.1) is given by:

y(x) = S−1α
[
u

∫ u

0

1

z
Sα[

xα

α
An]dz − uγ

∫ u

0

Sα[
∑∞
n=0 yn(x)]

z2
dz

]
, (3.8)

where

y◦ = 0

yn+1 = S−1α
[
u

∫ u

0

1

z
Sα[

xα

α
An]dz − uγ

∫ u

0

Sα[yn(x)]

z2
dz

]
. (3.9)

Now,

(i) For n = 0, then:

y1 = S−1α
[
u

∫ u

0

1

z
Sα[

xα

α
A◦]dz − uγ

∫ u

0

Sα[y◦]

z2
dz

]
= S−1α

[
u

∫ u

0

1

z
Sα[

xα

α
]dz

]
=

1

2!

x2α

α2
. (3.10)

(ii) For n = 1, then:

y2 = S−1α
[
u

∫ u

0

1

z
Sα[

xα

α
A1]dz − uγ

∫ u

0

Sα[y1]

z2
dz

]

= S−1α

[
u

∫ u

0

1

Γ(3)z
Sα[

x3α

α3
]dz − uγ

∫ u

0

Sα[x
2α

α2 ]

Γ(3)z2
dz

]

= S−1α
[

Γ(4)

3Γ(3)
u4 − γu2

]
=

1

4!

x4α

α4
− γ

2!

x2α

α2
. (3.11)
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(iii) For n = 2, then

y3 = S−1α
[
u

∫ u

0

1

z
Sα
[
xα

α
A2

]
dz − uγ

∫ u

0

Sα[y2]

z2
dz

]
= S−1α

[
u

∫ u

0

1

z
Sα
[
xα

α
y2e

y◦ +
1

2!

xα

α
y21e

y◦

]
dz − uγ

∫ u

0

Sα[y2]

z2
dz

]
=

Γ(6)

5Γ(7)

x6α

α6
− Γ(4)

6Γ(5)
γ
x4α

α4
+

Γ(6)

40Γ(7)

x6α

α6
− γ2

2!

x2α

α2
− 1

3Γ(5)

x4α

α4
. (3.12)

Now by above discussion, then it is easy to get the power series solution of Eq. (3.1) as follows:

y(x) = y◦ + y1 + y2 + y3 + .......

=
1

2!

x2α

α2
+

1

4!

x4α

α4
− γ

2!

x2α

α2
+ ..... ((3.13))

4. Analytical solutions of some linear and nonhomogeneous conformable fractional

differential equations

In this Section, we apply the conformable fractional Sumudu transform to present the general analytical

solutions of some linear and nonhomogeneous conformable fractional differential equations as in the following

problems.

Problem 4.1.: Consider the following linear and nonhomogeneous conformable fractional differential

equation:

D3αy +Dαy =
xα

α
, y(0) = 0. (4.1)

By applying the conformable fractional Sumudu transform Sα of both sides of Eq. (4.1) and using Theorem

2.7, then we get:

Yα(u)

u3
+
Yα(u)

u
= Γ(2)u,

which implies that:

Yα(u)

[
1 + u2

u3

]
= u.

Thus,

Yα(u) =
u4

1 + u2
. (4.2)

By taking S−1α of both sides of Eq. (4.2), then we obtain the general solution of Eq. (4.1) as follows:

y(x) = S−1α
[
u2 − 1 +

1

u2 + 1

]
=
x2α

2α2
+ cos

xα

α
− 1. (4.3)
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Problem 4.2.: Consider the following linear and nonhomogeneous conformable fractional differential

equation:

D2αy + y = e
2xα

α , y(0) = 1. (4.4)

By applying Sα of both sides of Eq. (4.4) and using Theorems 2.7 and 2.8, we obtain:

Yα(u)

u2
− 1

u2
+ Yα(u) =

1

1− 2u
,

which implies that:

Yα(u)

[
1 + u2

u2

]
=

1

1− 2u
+

1

u2
. (4.5)

By taking S−1α of both sides of Eq. (4.5), then we obtain the general solution of Eq. (4.4) as follows:

y(x) = S−1α
[

u2

(1 + u2)(1− 2u)

]
+ S−1α

[
1

1 + u2

]
= S−1α

[
Au+B

1 + u2

]
+ S−1α

[
c

1− 2u

]
+ S−1α

[
1

1 + u2

]
=
−2

5
S−1α

[
u

1 + u2

]
− 1

5
S−1α

[
1

1 + u2

]
+

1

5
S−1α

[
1

1− 2u

]
+ S−1α

[
1

1 + u2

]
= −2

5
sin

xα

α
+

4

5
cos

xα

α
+

1

5
e2

xα

α . (4.6)

Problem 4.3.: Consider the following linear and nonhomogeneous conformable fractional differential

equation:

D2αy − y = cos(
xα

α
), y(0) = 0. (4.7)

By applying Sα of both sides of Eq. (4.7) and using Theorems 2.7 and 2.8, we obtain:

Yα(u)

u2
− Yα(u) =

1

1 + u2
,

which implies that:

Yα(u) =
u2

(1− u2)(1 + u2)
. (4.8)

By taking S−1α of both sides of Eq. (4.8), then we obtain the general solution of Eq. (4.7) as follows:

y(x) = S−1α
[

u2

(1− u2)(1 + u2)

]
= S−1α

[
Au+B

1− u2

]
+ S−1α

[
Du+ C

1 + u2

]
=

1

2
S−1α

1

1− u2
− 1

2
S−1α

[
1

1 + u2

]
=

1

2
cosh

xα

α
− 1

2
cos

xα

α
. (4.9)
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5. Conclusion

We have developed the conformable fractional Sumudu transform for presenting the general analytical solu-

tion of the singular and nonlinear conformable fractional Poisson -Boltzmann equation and also for presenting

the general solutions of some linear and nonhomogeneuos conformable fractional differential equations. In

our opinion, it is worth to extend some other conformable fractional transforms such as: The conformable

fractional Natural and conformable fractional Mellin trabsforns and using them in many application and

comparisons. How to use conformable fractional Sumudu and Laplace transforns for solving some other

nonlinear and singular conformable fractional differential equations such as conformable fractional Lane-

Emden and conformable fractional Van Der Pol oscillator differential equations still need further researches.
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