# COMMON FIXED POINT THEOREM FOR ĆIRIĆ TYPE QUASI-CONTRACTIONS IN RECTANGULAR $b$-METRIC SPACES 

## SHU-FANG LI, FEI HE* AND NING LU

School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China

* Corresponding author: Email address: hefei@imu.edu.cn


#### Abstract

The purpose of this paper is to give positive answers to questions concerning Ćirić type quasicontractions in rectangular b-metric spaces proposed in George et al. (J. Nonlinear Sci. Appl. 8 (2015), 1005-1013).


## 1. Introduction and preliminaries

In [1], George et al. introduced the concept of rectangular $b$-metric spaces as a generalization of metric space, rectangular metric space and $b$-metric space (see also $[2,3]$ ). Since then many fixed point theorems for various contractions were established in rectangular $b$-metric spaces (see [4-12]).

Definition 1.1. ([1]) Let $X$ be a nonempty set and the mapping $d: X \times X \rightarrow[0, \infty)$ satisfies:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) there exists a real number $s \geq 1$ such that $d(x, y) \leq s[d(x, u)+d(u, v)+d(v, y)]$ for all $x, y \in X$ and all distinct points $u, v \in X \backslash\{x, y\}$.

Then $d$ is called a rectangular b-metric on $X$ and $(X, d)$ is called a rectangular b-metric space (in short RbMS) with coefficient $s$.

Received 2019-03-28; accepted 2019-04-30; published 2019-07-01.
2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Common fixed point theorem; Ćirić type quasi-contractions; rectangular b-metric space.
The research was supported by the National Natural Science Foundation of China (11561049, 11471236).

Definition 1.2. ([1]) Let $(X, d)$ be a $R b M S,\left\{x_{n}\right\}$ be a sequence in $X$ and $x \in X$. Then
(1) The sequence $\left\{x_{n}\right\}$ is said to be convergent in $(X, d)$ and converges to $x$, if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}^{+}$such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>n_{0}$ and this fact is represented by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
(2) The sequence $\left\{x_{n}\right\}$ is said to be Cauchy sequence in $(X, d)$ if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}^{+}$ such that $d\left(x_{n}, x_{n+p}\right)<\varepsilon$ for all $n>n_{0}$ and $p>0$.
(3) $(X, d)$ is said to be a complete RbMS if every Cauchy sequence in $X$ converges to some $x \in X$.

In the setting of $R b M S$, limit of a convergent sequence is not necessarily unique and also every convergent sequence is not necessarily a Cauchy sequence. For details, we can see [1]. However, we have that the following result.

Lemma 1.1. ([3]) Let $(X, d)$ be a RbMS with $s \geq 1$, and let $\left\{x_{n}\right\}$ be a Cauchy sequence in $X$ such that $x_{n} \neq x_{m}$ whenever $n \neq m$. Then $\left\{x_{n}\right\}$ can converge to at most one point.

George et al. [1] raised the following problems.

Problem 1.1. ([1]) In [1, Theorem 2.1], can we extent the range of $\lambda$ to the case $\frac{1}{s}<\lambda<1$ ?

Problem 1.2. ([1]) Prove analogue of Chatterjea contraction, Reich contraction, Ćirić contraction and Hardy-Rogers contraction in RbMS.

In [6], Mitrović has given a positive answer to Problem 1.1. In [7], Mitrović et al. obtained an analogue of Reich's contraction principle in RbMS and thus give a partial solution to Problem 1.2. For further results, the reader can refer to $[13,14]$.

In this paper, we proved a common fixed point theorem for Ćirić type quasi-contractions in RbMS. It is well known that Ćirić contraction is more general than other contractions in Problem 1.2. Thus, we give a complete solution to the above Problem 1.2.

## 2. Main Results

The following lemma is crucial in this paper.

Lemma 2.1. Let $(X, d)$ be a RbMS with coefficient $s \geq 1$ and $f, g: X \rightarrow X$ be two self maps such that $f(X) \subseteq g(X)$. Assume that there exists $\lambda \in\left[0, \frac{1}{s}\right)$ such that

$$
\begin{equation*}
d(f x, f y) \leq \lambda \max \{d(g x, g y), d(g x, f x), d(g y, f y), d(g y, f x), d(g x, f y)\} \tag{2.1}
\end{equation*}
$$

Taking $x_{0} \in X$, we construct a sequence $\left\{y_{n}\right\}$ by $y_{n}=f x_{n}=g x_{n+1}$. If $y_{n} \neq y_{n+1}$ for all $n \in \mathbb{N}^{+}$, then
(1) For $m \in 0 \cup \mathbb{N}^{+}$and $p \in \mathbb{N}^{+}$, there exists $1 \leq k(p) \leq p$ such that

$$
\delta\left(\mathcal{O}\left(y_{m}, m+p\right)\right)=d\left(y_{m}, y_{m+k(p)}\right)
$$

where $\mathcal{O}\left(y_{m}, m+p\right)=\left\{y_{m}, y_{m+1}, \cdots, y_{m+p}\right\}, \delta(A)=\sup _{x, y \in A} d(x, y)$.
(2) $y_{n} \neq y_{m}$ whenever $n \neq m$.
(3) $\delta\left(\mathcal{O}\left(y_{0}, n\right)\right) \leq \frac{s}{1-s \lambda}\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right]$.
(4) $\delta\left(\mathcal{O}\left(y_{0}, \infty\right)\right) \leq \frac{s}{1-s \lambda}\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right]$, where $\mathcal{O}\left(y_{0}, \infty\right)=\left\{y_{0}, y_{1}, \cdots, y_{n}, \cdots\right\}$.
(5) $\left\{y_{n}\right\}$ is a Cauchy sequence.

Proof. (1) Let $m \in\{0,1,2, \cdots$,$\} and p \in \mathbb{N}^{+}$. Using (2.1), for any $i, j \in \mathbb{N}^{+}$with $m<i<j \leq m+p$, we have that

$$
\begin{aligned}
d\left(y_{i}, y_{j}\right) & =d\left(f x_{i}, f x_{j}\right) \\
& \leq \lambda \max \left\{d\left(g x_{i}, g x_{j}\right), d\left(g x_{i}, f x_{i}\right), d\left(g x_{j}, f x_{j}\right), d\left(g x_{i}, f x_{j}\right), d\left(g x_{j}, f x_{i}\right)\right\} \\
& =\lambda \max \left\{d\left(y_{i-1}, y_{j-1}\right), d\left(y_{i-1}, y_{i}\right), d\left(y_{j-1}, y_{j}\right), d\left(y_{i-1}, y_{j}\right), d\left(y_{j-1}, y_{i}\right)\right\} \\
& \leq \lambda \delta\left(\mathcal{O}\left(y_{m}, m+p\right)\right) \\
& <\delta\left(\mathcal{O}\left(y_{m}, m+p\right)\right)
\end{aligned}
$$

This implies that

$$
\max \left\{d\left(y_{i}, y_{j}\right): i, j \in \mathbb{N}^{+} \text {and } m<i<j \leq m+p\right\}<\delta\left(\mathcal{O}\left(y_{m}, m+p\right)\right)
$$

Since $\delta\left(\mathcal{O}\left(y_{m}, m+p\right)\right)=\max \left\{d\left(y_{i}, y_{j}\right): i, j \in \mathbb{N}^{+}\right.$and $\left.m \leq i<j \leq m+p\right\}$, there exists $k(p)$ with $1 \leq k(p) \leq p$ such that

$$
\begin{equation*}
\delta\left(\mathcal{O}\left(y_{m}, m+p\right)\right)=d\left(y_{m}, y_{m+k(p)}\right) \tag{2.2}
\end{equation*}
$$

(2) Suppose that $y_{n}=y_{n+p}$ for some $n, p \in \mathbb{N}^{+}$. Then, by (2.1) we obtain that

$$
\begin{aligned}
\delta\left(\mathcal{O}\left(y_{n}, n+p\right)\right)= & d\left(y_{n}, y_{n+k(p)}\right) \\
= & d\left(y_{n+p}, y_{n+k(p)}\right) \\
= & d\left(f x_{n+p}, f x_{n+k(p)}\right) \\
\leq & \lambda \max \left\{d\left(g x_{n+p}, g x_{n+k(p)}\right), d\left(g x_{n+p}, f x_{n+p}\right), d\left(g x_{n+k(p)}, f x_{n+k(p)}\right),\right. \\
& \left.d\left(g x_{n+k(p)}, f x_{n+p}\right), d\left(g x_{n+p}, f x_{n+k(p)}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \lambda \max \left\{d\left(y_{n+p-1}, y_{n+k(p)-1}\right), d\left(y_{n+p-1}, y_{n+p}\right), d\left(y_{n+k(p)-1}, y_{n+k(p)}\right)\right. \\
& \left.\quad d\left(y_{n+k(p)-1}, y_{n+p}\right), d\left(y_{n+p-1}, y_{n+k(p)}\right)\right\} \\
& \leq \quad \lambda \delta\left(\mathcal{O}\left(y_{n}, n+p\right)\right)
\end{aligned}
$$

which implies $\delta\left(\mathcal{O}\left(y_{n}, n+p\right)\right)=0$. However, this is impossible because $\delta\left(\mathcal{O}\left(y_{n}, n+p\right)\right) \geq d\left(y_{n}, y_{n+1}\right)>0$. Therefore, $y_{n} \neq y_{m}$ whenever $n \neq m$.
(3) Let $n \in \mathbb{N}^{+}$. Then, using (2.1) and (2.2), we get that

$$
\begin{aligned}
& \delta\left(\mathcal{O}\left(y_{0}, n\right)\right) \\
= & d\left(y_{0}, y_{k(n)}\right) \\
\leq & s\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)+d\left(y_{2}, y_{k(n)}\right)\right] \\
= & s\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right]+s d\left(f x_{2}, f x_{k(n)}\right) \\
\leq & s\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right]+s \lambda \max \left\{d\left(g x_{2}, g x_{k(n)}\right), d\left(g x_{2}, f x_{2}\right), d\left(g x_{k(n)}, f x_{k(n)}\right),\right. \\
& \left.d\left(g x_{2}, f x_{k(n)}\right), d\left(g x_{k(n)}, f x_{2}\right)\right\} \\
= & s\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right]+s \lambda \max \left\{d\left(y_{1}, y_{k(n)-1}\right), d\left(y_{1}, y_{2}\right), d\left(y_{k(n)-1}, y_{k(n)}\right)\right. \\
& \left.d\left(y_{1}, y_{k(n)}\right), d\left(y_{k(n)-1}, y_{2)}\right)\right\} \\
\leq & s\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right]+s \lambda \delta\left(\mathcal{O}\left(y_{0}, n\right)\right) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\delta\left(\mathcal{O}\left(y_{0}, n\right)\right) \leq \frac{s}{1-s \lambda}\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right] \tag{2.3}
\end{equation*}
$$

(4) Note that $\lim _{n \rightarrow \infty} \delta\left(\mathcal{O}\left(y_{0}, n\right)\right)=\delta\left(\mathcal{O}\left(y_{0}, \infty\right)\right)$. Thus, from (2.3) we see that

$$
\delta\left(\mathcal{O}\left(y_{0}, \infty\right)\right) \leq \frac{s}{1-s \lambda}\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right)\right]
$$

(5) For any $n, p \in \mathbb{N}^{+}$,

$$
\begin{aligned}
d\left(y_{n}, y_{n+p}\right) & \leq \lambda \delta\left(\mathcal{O}\left(y_{n-1}, n+p\right)\right) \\
& \leq \lambda^{2} \delta\left(\mathcal{O}\left(y_{n-2}, n+p\right)\right) \\
& \leq \cdots \\
& \leq \lambda^{n} \delta\left(\mathcal{O}\left(y_{0}, n+p\right)\right) \\
& \leq \lambda^{n} \delta\left(\mathcal{O}\left(y_{0}, \infty\right)\right) \\
& \leq \lambda^{n} \cdot \frac{s}{1-s \lambda}\left[d\left(y_{0}, y_{1}\right)+d\left(y_{1}, y_{2}\right] \rightarrow 0(n \rightarrow \infty)\right.
\end{aligned}
$$

Therefore, $\left\{y_{n}\right\}$ is a Cauchy sequence in $X$.

Theorem 2.1. Let $(X, d)$ be a RbMS $s \geq 1$ and $f, g: X \rightarrow X$ be two self maps such that $f(X) \subseteq g(X)$, one of these two subsets of $X$ being complete. If there exists $\lambda \in\left[0, \frac{1}{s}\right)$ such that

$$
\begin{equation*}
d(f x, f y) \leq \lambda \max \{d(g x, g y), d(g x, f x), d(g y, f y), d(g x, f y), d(g y, f x)\} \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$, then $f$ and $g$ have a point of coincidence in $X$. Moreover, if $f$ and $g$ are weakly compatible (i.e., they commute at their coincidence points), then they have a unique common fixed point.

Proof. Let $x_{0}$ be an arbitrary point of $X$. Choose $x_{1} \in X$ such that $f x_{0}=g x_{1}$. Now, we can construct a sequence $\left\{y_{n}\right\}$ defined by

$$
\begin{equation*}
y_{n}=f x_{n}=g x_{n+1}, \quad \text { for } n=0,1,2, \ldots \tag{2.5}
\end{equation*}
$$

If $y_{k}=y_{k+1}$ for some $k \in \mathbb{N}^{+}$, then $f x_{k+1}=y_{k+1}=y_{k}=g x_{k+1}$ and $f$ and $g$ have a point of coincidence. Suppose, further, that $y_{n} \neq y_{n+1}$ for all $n \in \mathbb{N}^{+}$. By Lemma 2.1, we can obtain $\left\{y_{n}\right\}$ is a Cauchy sequence in $X$. Suppose, e.g., that the subspace $g(X)$ is complete (the proof when $f(X)$ is complete is similar). Then $\left\{y_{n}\right\}$ tends to some $\omega \in g(X)$, where $\omega=g u$ for some $u \in X$. Suppose that $f u \neq g u$. Then

$$
\begin{aligned}
d\left(f u, y_{n}\right) & =d\left(f u, f x_{n}\right) \\
& \leq \lambda \max \left\{d\left(g u, g x_{n}\right), d(g u, f u), d\left(g x_{n}, f x_{n}\right), d\left(g u, f x_{n}\right), d\left(g x_{n}, f u\right)\right\} \\
& =\lambda \max \left\{d\left(g u, y_{n-1}\right), d(g u, f u), d\left(y_{n-1}, y_{n}\right), d\left(g u, y_{n}\right), d\left(y_{n-1}, f u\right)\right\} .
\end{aligned}
$$

Note that $d\left(g u, y_{n-1}\right) \rightarrow 0, d\left(y_{n-1}, y_{n}\right) \rightarrow 0$ and $d\left(g u, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then, for sufficiently large $n \in \mathbb{N}^{+}$,

$$
\begin{aligned}
& \max \left\{d\left(g u, y_{n-1}\right), d(g u, f u), d\left(y_{n-1}, y_{n}\right), d\left(g u, y_{n}\right), d\left(y_{n-1}, f u\right)\right\} \\
= & \max \left\{d(g u, f u), d\left(y_{n-1}, f u\right)\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
d\left(f u, y_{n}\right) \leq \lambda \max \left\{d(g u, f u), d\left(y_{n-1}, f u\right)\right\} \tag{2.6}
\end{equation*}
$$

Denote $M\left(x_{n}, u\right)=\max \left\{d(g u, f u), d\left(y_{n-1}, f u\right)\right\}$ for $n \in \mathbb{N}^{+}$. Then we can consider the following cases.
Case 1. If there exists a subsequence $\left\{M\left(x_{n_{k}}, u\right)\right\}$ of $\left\{M\left(x_{n}, u\right)\right\}$ such that $M\left(x_{n_{k}}, u\right)=d(g u, f u)$, then $d\left(f u, y_{n_{k}}\right) \leq \lambda d(g u, f u)$. Note that $d\left(y_{n}, y_{n-1}\right) \rightarrow 0, d\left(y_{n}, g u\right) \rightarrow 0$ and

$$
\begin{equation*}
\frac{1}{s} d(f u, g u) \leq d\left(f u, y_{n_{k}}\right)+d\left(y_{n_{k}}, y_{n_{k}-1}\right)+d\left(y_{n_{k}-1}, g u\right) . \tag{2.7}
\end{equation*}
$$

Thus, taking upper limit as $k \rightarrow \infty$ in (2.7), we obtain that

$$
\frac{1}{s} d(f u, g u) \leq \limsup _{k \rightarrow \infty} d\left(f u, y_{n_{k}}\right) \leq \lambda d(g u, f u)
$$

This implies that $d(g u, f u) \leq s \lambda d(f u, g u)$, which is a contradiction with $s \lambda<1$ and $f u \neq g u$.

Case 2. If there exists $N \in \mathbb{N}^{+}$such that $M\left(x_{n}, u\right)=d\left(y_{n-1}, f u\right)$ for all $n>N$, then (2.6) implies that

$$
\begin{aligned}
d\left(f u, y_{n}\right) & \leq \lambda d\left(y_{n-1}, f u\right) \leq \lambda^{2} d\left(y_{n-2}, f u\right) \leq \cdots \leq \lambda^{n-N} d\left(y_{N}, f u\right) \\
& =\lambda^{n}\left(\frac{1}{\lambda^{N}} d\left(y_{N}, f u\right)\right) \rightarrow 0(n \rightarrow \infty)
\end{aligned}
$$

that is $d\left(f u, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $d\left(g u, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, by Lemma 1.1 we have that $f u=g u$. This is a contradiction.

Thus, we prove that $f u=g u=\omega$, that is $u$ is a point of coincidence of $f$ and $g$.
If $f, g$ are weakly compatible, then, by $f u=g u=\omega$, we obtain that $f \omega=f g u=g f u=g \omega$, and hence that $\omega$ is a point of coincidence of $f$ and $g$. Let us prove that $\omega=f \omega=g \omega$. Using (2.1), we get that

$$
\begin{aligned}
d(\omega, f \omega) & =d(f u, f \omega) \\
& \leq \lambda \max \{d(g u, g \omega), d(g u, f u), d(g \omega, f \omega), d(g u, f \omega), d(g \omega, f u)\} \\
& =\lambda \max \{d(\omega, f \omega), 0,0, d(\omega, f \omega), d(f \omega, \omega)\} \\
& =\lambda d(\omega, f \omega) .
\end{aligned}
$$

Since $\lambda<1$, we have that $d(\omega, f \omega)=0$, which implies that $\omega=f \omega=g \omega$. Therefore, $\omega$ is a common fixed point of $f$ and $g$.

Let us prove that the common fixed point of $f$ and $g$ is unique. Suppose that $\omega_{1}$ and $\omega_{2}$ are two common points of $f$ and $g$, that is $\omega_{1}=f \omega_{1}=g \omega_{1}$ and $\omega_{2}=f \omega_{2}=g \omega_{2}$. Using (2.1), we get that

$$
\begin{aligned}
d\left(\omega_{1}, \omega_{2}\right) & =d\left(f \omega_{1}, f \omega_{2}\right) \\
& \leq \lambda \max \left\{d\left(g \omega_{1}, g \omega_{2}\right), d\left(g \omega_{1}, f \omega_{1}\right), d\left(g \omega_{2}, f \omega_{2}\right), d\left(g \omega_{1}, f \omega_{2}\right), d\left(g \omega_{2}, f \omega_{1}\right)\right\} \\
& =\lambda d\left(\omega_{1}, \omega_{2}\right)
\end{aligned}
$$

Since $\lambda<1$, we have that $d\left(\omega_{1}, \omega_{2}\right)=0$, that is $\omega_{1}=\omega_{2}$. Thus, the common fixed point of $f$ and $g$ is unique.

Taking $g=I_{X}$ (identity mapping of $X$ ) in Theorem 2.1 we obtain the following.

Corollary 2.1. (Ćirić type contraction) Let $(X, d)$ be a RbMS with coefficient $s \geq 1$ and $f: X \rightarrow X$ be a mapping. Assume that there exists $\lambda \in\left[0, \frac{1}{s}\right)$

$$
d(f x, f y) \leq \lambda \max \{d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)\}
$$

for all $x, y \in X$. Then $f$ has a unique fixed point.

From Corollary 2.1, the following corollaries immediately follow.

Corollary 2.2. (Chatterjea type contraction) Let $(X, d)$ be a RbMS with coefficient $s \geq 1$ and $f: X \rightarrow X$ be a mapping. Assume that there exists $k \in\left[0, \frac{1}{s}\right)$ such that

$$
d(f x, f y) \leq \frac{k}{2}(d(x, f y)+d(y, f x))
$$

for all $x, y \in X$. Then $f$ has a unique fixed point.

Corollary 2.3. (Reich type contraction) Let $(X, d)$ be a RbMS with coefficient $s \geq 1$ and $f: X \rightarrow X$ be a mapping. Assume that there exist $\lambda, \mu, \delta \in[0,1)$ with $\lambda+\mu+\delta<\frac{1}{s}$ such that

$$
d(f x, f y) \leq \lambda d(x, y)+\mu d(x, f x)+\delta d(y, f y)
$$

for all $x, y \in X$. Then $f$ has a unique fixed point.

Corollary 2.4. (Hardy-Rogers type contraction) Let $(X, d)$ be a RbMS with coefficient $s \geq 1$ and $f: X \rightarrow X$ be a mapping. Assume that there exist $\alpha_{i} \in[0,1)(i=1,2,3,4,5)$ with $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}<\frac{1}{s}$ such that

$$
d(f x, f y) \leq \alpha_{1} d(x, y)+\alpha_{2} d(x, f x)+\alpha_{3} d(y, f y)+\alpha_{4} d(x, f y)+\alpha_{5} d(y, f x)
$$

for all $x, y \in X$. Then $f$ has a unique fixed point.

Remark 2.1. From Corollary 2.1-Corollary 2.4, we see that Problem 1.2 has been fully answered.

Finally, we give an example to illustrate our main result.

Example 2.1. Let $X=A \bigcup B$, where $A=\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$ and $B=\{0,2\}$. Define $d: X \times X \rightarrow[0,+\infty)$ such that $d(x, y)=d(y, x)$ for all $x, y \in X$ and

$$
d(x, y)= \begin{cases}0, & x=y \\ |x-y|, & x, y \in A \\ \frac{13}{6}, & x, y \in B \\ \frac{3}{4}, & x \in A \backslash\{1\}, y \in B \\ 2, & x=1, y \in B\end{cases}
$$

Let $f: X \rightarrow X$ be a map defined by

$$
f(x)= \begin{cases}1, & x \in B \\ \frac{x}{2}, & x \in A \backslash\left\{\frac{1}{8}\right\} \\ \frac{1}{8}, & x=\frac{1}{8}\end{cases}
$$

and $g$ be an identity mapping on $X$. Then the following hold:
(a) $(X, d)$ is a complete rectangular $b$-metric space with coefficient $s=\frac{4}{3}$;
(b) $(X, d)$ is neither a metric space nor a rectangular metric space;
(c) All conditions in Theorem 2.1 are satisfied with $\lambda=\frac{1}{2}$;
(d) $f$ and $g$ have a unique common fixed point $x=\frac{1}{8}$.

Proof. First, let us prove (a). Clearly, conditions (1) and (2) of Definition 1.1 hold. To see (3), for all $x, y \in X$ and all distinct points $u, v \in X \backslash\{x, y\}$, we consider the following three cases.
Case 1. If $x, y \in A$ or $x, y \in B$, we only need to consider the case of $x, y \in B$ with $u, v \in A \backslash\{1\}$. In this case, $d(u, v) \geq d\left(\frac{1}{4}, \frac{1}{8}\right)=\frac{1}{8}$. So we have

$$
d(x, y)=\frac{13}{6}=\frac{4}{3}\left(\frac{3}{4}+\frac{1}{8}+\frac{3}{4}\right) \leq \frac{4}{3}[d(x, u)+d(u, v)+d(v, y)]
$$

Case 2. If $x \in A \backslash\{1\}$ and $y \in B$, then $d(x, y)=\frac{3}{4}$. Let us consider the following three cases.

- If $v \in B \bigcup\{1\}$, then

$$
d(x, y)=\frac{3}{4}<d(v, y) \leq d(x, u)+d(u, v)+d(v, y)
$$

- If $u \in B$, then

$$
d(x, y)=\frac{3}{4}=d(x, u) \leq d(x, u)+d(u, v)+d(v, y)
$$

- If $u, v \in A$ and $v \neq 1$, then

$$
d(x, y)=\frac{3}{4}=d(v, y) \leq d(x, u)+d(u, v)+d(v, y)
$$

Case 3. If $x=1$ and $y \in B$, then we consider the following two cases.

- If $u \in B$ or $v \in B$, then $d(x, u)=2$ or $d(v, y)=\frac{13}{6}$. So we have

$$
d(x, y)=2 \leq d(x, u)+d(v, y) \leq d(x, u)+d(u, v)+d(v, y)
$$

- If $u, v \in A$, then $v \neq 1$. It follows that $d(x, u)+d(u, v) \geq d\left(1, \frac{1}{2}\right)+d\left(\frac{1}{2}, \frac{1}{4}\right)=\frac{3}{4}$. So we have

$$
d(x, y)=2=\frac{4}{3}\left(\frac{3}{4}+\frac{3}{4}\right) \leq \frac{4}{3}[d(x, u)+d(u, v)+d(v, y)] .
$$

Additionally, in this case, we can also check that (b) holds.
Hence, from the above three cases, we prove that $(X, d)$ is a rectangular $b$-metric space with coefficient $s=\frac{4}{3}$. Since $X$ is a finite set, we know that $(g(X), d)=(X, d)$ is complete.

Now we prove (c). It is sufficient to prove that (2.4) holds with $\lambda=\frac{1}{2}$. Since $d(x, y)=d(y, x)$, we consider the following three cases.
Case 1. If $x, y \in B$. In this case, $d(f x, f y)=0$. So (2.4) holds.

Case 2. If $x \in B$ and $y \in A$, then $f x=1, d(g x, f x)=2$ and $f y \in A$. In this case, we have

$$
\begin{aligned}
d(f x, f y) & \leq d\left(1, \frac{1}{8}\right)=\frac{7}{8}<\frac{1}{2} d(g x, f x) \\
& \leq \frac{1}{2} \max \{d(g x, g y), d(g x, f x), d(g y, f y), d(g x, f y), d(f x, g y)\}
\end{aligned}
$$

Case 3. If $x, y \in A$, it is clear that $d(f x, f y)=\frac{1}{2} d(g x, g y)$ for all $x, y \in A \backslash\left\{\frac{1}{8}\right\}$, which follows that (2.4) holds. So we assume that $x=\frac{1}{8}$. In this case, we have

$$
\begin{aligned}
d(f x, f y) & =\frac{1}{2} y-\frac{1}{8}<\frac{1}{2}\left(y-\frac{1}{8}\right) \\
& \leq \frac{1}{2} \max \{d(g x, g y), d(g x, f x), d(g y, f y), d(g x, f y), d(f x, g y)\}
\end{aligned}
$$

From the above three cases, we show that (c) holds. Obviously, $f$ and $g$ have a unique common fixed point $f x=g x=x=\frac{1}{8}$.

## References

[1] R. George, S. Radenović, K. P. Reshma and S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8 (2015), 1005-1013.
[2] H. S. Ding, V. Ozturk and S. Radenović, On some new fixed point results in b-rectangular metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 378-386.
[3] H. S. Ding, M. Imdad, S. Radenović and J. Vujaković, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab. J. Math. Sci. 22 (2016), 151-164.
[4] J. R. Roshan, V. Parvaneh, Z. Kadelburg and N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal., Model. Control. 5 (2016), 614-634.
[5] D. W. Zheng, P. Wang, N. Citakovic, Meir-Keeler theorem in b-rectangular metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 1786-1790.
[6] Z. D. Mitrović, On an open problem in rectangular b-metric space, J. Anal. 25 (1) (2017), 135-137.
[7] Z. D. Mitrović, R. George and N. Hussain, Some Remarks on Contraction Mappings in Rectangular b-metric Spaces, Bol. Soc. Paran. Mat., in press.
[8] Z. D. Mitrović and S. Radenović, A Common Fixed Point Theorem of Jungck in Rectangular b-metric spaces, Acta Math. Hungar. 153(2) (2017), 401-407.
[9] P. Sookprasert, P. Kumam, D. Thongtha and W. Sintunavarat, Extension of almost generalized weakly contractive mappings in rectangular b-metric spaces and fixed point results, Afr. Mat. 28 (2017), 271-278
[10] N. Hussaina, V. Parvanehb, Badria A. S. Alamria, Z. Kadelburg, F-HR-type contractions on ( $\alpha, \eta$ )-complete rectangular b-metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 1030-1043.
[11] F. Gu, On some common coupled fixed point results in rectangular b-metric spaces, J. Nonlinear Sci. Appl. 10 (2017), 4085-4098.
[12] O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl. 9 (2015), 1014-1021.
[13] Z. D.Mitrović, S. Radenović, The Banach and Reich contractions in $b_{v}(s)$-metric spaces, J. Fixed Point Theory Appl. 19(4) (2017), 3087-3095.
[14] S. Aleksić, Z. D.Mitrović, S. Radenović, A fixed point theorem of Jungck in $b_{v}(s)$-metric spaces, Period. Math. Hung., 77 (2) (2018), 224-231.

