UNIVALENT FUNCTIONS FORMULATED BY THE SALAGEAN-DIFFERENCE OPERATOR

RABHA W. IBRAHIM ${ }^{1, *}$, AND MASLINA DARUS ${ }^{2}$
${ }^{1}$ IEEE:94086547
${ }^{2}$ Centre of Modelling and Data Science, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia,43600 Bangi, Selangor, Malaysia Email address: maslina@ukm.edu.my

*Corresponding author: rabhaibrahim@yahoo.com

Abstract. We present a class of univalent functions $T_{m}(\kappa, \alpha)$ formulated by a new differential-difference operator in the open unit disk. The operator is a generalization of the well known Salagean's differential operator. Based on this operator, we define a generalized class of bounded turning functions. Inequalities, extreme points of $T_{m}(\kappa, \alpha)$, some convolution properties of functions fitting to $T_{m}(\kappa, \alpha)$, and other properties are discussed.

1. Introduction

Let Λ be the class of analytic function formulated by

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in U=\{z:|z|<1\} .
$$

Received 2019-03-02; accepted 2019-04-01; published 2019-07-01.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Fractional calculus; fractional differential equation; fractional operator.
(C)2019 Authors retain the copyrights
of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

We symbolize by $T(\alpha)$ the subclass of Λ for which $\Re\left\{f^{\prime}(z)\right\}>\alpha$ in U. For a function $f \in \Lambda$, we present the following difference operator

$$
\begin{align*}
& D_{\kappa}^{0} f(z)=f(z) \\
& D_{\kappa}^{1} f(z)=z f^{\prime}(z)+\frac{\kappa}{2}(f(z)-f(-z)-2 z), \quad \kappa \in \mathbb{R} \\
& \vdots \tag{1.1}\\
& D_{\kappa}^{m} f(z)=D_{\kappa}\left(D_{\kappa}^{m-1} f(z)\right) \\
&=z+\sum_{n=2}^{\infty}\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m} a_{n} z^{n}
\end{align*}
$$

It is clear that when $\kappa=0$, we have the Salagean's differential operator [1]. We call D_{κ}^{m} the Salageandifference operator. Moreover, D_{κ}^{m} is a modified Dunkl operator of complex variables [2] and for recent work [3]. Dunkl operator describes a major generalization of partial derivatives and realizes the commutative law in \mathbb{R}^{n}. In geometry, it attains the reflexive relation, which is plotting the space into itself as a set of fixed points.

Example 1. (see Figs 1 and 2)

- Let $f(z)=z /(1-z)$ then

$$
D_{1}^{1} f(z)=z+2 z^{2}+4 z^{3}+4 z^{4}+6 z^{5}+6 z^{6}+\ldots
$$

- Let $f(z)=z /(1-z)^{2}$ then

$$
D_{1}^{1} f(z)=z+4 z^{2}+12 z^{3}+16 z^{4}+30 z^{5}+36 z^{6}+\ldots
$$

We proceed to define a generalized class of bounded turning utilizing the the Salagean-difference operator.
Let $T_{m}(\kappa, \alpha)$ denote the class of functions $f \in \Lambda$ which achieve the condition

$$
\Re\left\{\left(D_{\kappa}^{m} f(z)\right)^{\prime}\right\}>\alpha, \quad 0 \leq \alpha \leq 1, z \in U, m=0,1,2, \ldots
$$

Clearly, $T_{0}(\kappa, \alpha)=T(\alpha)$ (the bounded turning class of order α). The Hadamard product or convolution of two power series is denoted by $(*)$ achieving

$$
\begin{align*}
f(z) * h(z) & =\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right) *\left(z+\sum_{n=2}^{\infty} \eta_{n} z^{n}\right) \tag{1.2}\\
& =z+\sum_{n=2}^{\infty} a_{n} \eta_{n} z^{n}
\end{align*}
$$

The aim of this effort is to present several important properties of the class $T_{m}(\kappa, \alpha)$. For this purpose, we need the following auxiliary preliminaries.

Figure 1. $D_{1}^{1}(z /(1-z))$

Figure 2. $D_{1}^{1}\left(z /(1-z)^{2}\right)$

Lemma 1. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a convex null sequence $\left(a_{0}-a_{1} \geq a_{1}-a_{2}, \ldots \geq 0\right)$. Then the function $\rho(z)=$ $a_{0} / 2+\sum_{n=1}^{\infty} a_{n} z^{n}$, is analytic and $\Re \rho(z)>0$ in U.

Lemma 2. If $\rho(z)$ is analytic in $U, \rho(0)=1$ and $\Re \rho(z)>1 / 2, z \in U$, then for any function ϱ analytic in U, the function $\rho * \varrho$ assigns its credits in the convex hull of $\varrho(U)$.

Lemma 3. [4] For all $z \in U$ the sum

$$
\Re\left(\sum_{n=2} \frac{z^{n-1}}{n+1}\right)>-\frac{1}{3} .
$$

There are different techniques of studying the class of bounded turning functions, such as using partial sums or applying Jack Lemma [5]- [7].

2. Results

In this section, we illustrate our results.

Theorem 4. $T_{m+1}(\kappa, \alpha) \subset T_{m}(\kappa, \alpha)$.

Proof. Let $f \in T_{m+1}(\kappa, \alpha)$, then we have

$$
\Re\left\{1+\sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m+1} a_{n} z^{n-1}\right\}>\alpha
$$

Dividing the last inequality by $1-\alpha$ and adding +1 we obtain the inequality

$$
\Re\left\{1+\frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m+1} a_{n} z^{n-1}\right\}>\frac{1}{2}
$$

By employing the definition of the convolution, we have the construction

$$
\begin{aligned}
\left(D_{\kappa}^{m} f(z)\right)^{\prime} & =1+\sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m} a_{n} z^{n-1} \\
& =\left(1+\frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m+1} a_{n} z^{n-1}\right) \\
& *\left(1+2(1-\alpha) \sum_{n=2}^{\infty} \frac{z^{n-1}}{n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)}\right)
\end{aligned}
$$

In view of Lemma 1 , with $a_{0}=1$ and $a_{n}=1 /\left(n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right), n=1,2, \ldots\right.$, we have

$$
\Re\left(1+2(1-\alpha) \sum_{n=2}^{\infty} \frac{z^{n-1}}{n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)}\right)>\alpha
$$

In virtue of Lemma 2, we arrive at the required result.

Theorem 5. $T_{m+1}(\kappa, \alpha) \subset T_{m}(\kappa, \beta), \beta \leq \alpha, 0 \leq \kappa \leq 1 / 2$.

Proof. Let $f \in T_{m+1}(\kappa, \alpha)$ then we have

$$
\Re\left\{1+\sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m+1} a_{n} z^{n-1}\right\}>\alpha
$$

Also, we have the convolution

$$
\begin{aligned}
\left(D_{\kappa}^{m} f(z)\right)^{\prime} & =1+\sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m} a_{n} z^{n-1} \\
& =\left(1+\sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m+1} a_{n} z^{n-1}\right) \\
& *\left(1+\sum_{n=2}^{\infty} \frac{z^{n-1}}{n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)}\right)
\end{aligned}
$$

It is clear that

$$
n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right) \leq n+2 \kappa \leq n+1, \quad 0 \leq \kappa \leq 1 / 2
$$

By applying Lemma 3 on the second term of the above convolution, we obtain

$$
\Re\left(1+\sum_{n=2}^{\infty} \frac{z^{n-1}}{n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)}\right)>2 / 3
$$

Thus, we attain that

$$
\Re\left(D_{\kappa}^{m} f(z)\right)^{\prime}>\frac{2}{3} \alpha
$$

By considering

$$
\beta:=\frac{2}{3} \alpha \leq \alpha, \quad \alpha \in[0,1]
$$

we attain the requested result.

Theorem 6. Let $f \in T_{m}(\kappa, \alpha)$ and $h \in C$, the set of convex univalent functions ($C \subset \Lambda$). Then $f * h \in$ $T_{m}(\kappa, \alpha)$.

Proof. By the Marx-Strohhacker theorem [8], if h is convex univalent in U, then

$$
\Re\left\{\frac{h(z)}{z}\right\}>1 / 2 .
$$

Utilizing convolution properties, we obtain

$$
\Re\left(D_{\kappa}^{m}(f * h)(z)\right)^{\prime}=\Re\left(\frac{h(z)}{z} * D_{\kappa}^{m} f(z)^{\prime}\right)
$$

But $\Re\left(D_{\kappa}^{m} f(z)^{\prime}\right)>\alpha$; thus, in view of Lemma 2, we have the desire conclusion.

Theorem 7. Let $f, h \in T_{m}(\kappa, \alpha)$. Then $f * h \in T_{m}(\kappa, \beta)$, where

$$
\beta:=\frac{\kappa(2 \alpha+1)+4 \alpha-1}{2(\kappa+1)}, \quad 0 \leq \kappa \leq 1 .
$$

Proof. Define a function $h \in \Lambda$ as follows:

$$
h(z)=z+\sum_{n=2}^{\infty} \vartheta_{n} z^{n}, \quad z \in U
$$

Since $h \in T_{m}(\kappa, \alpha)$ then

$$
\Re\left\{1+\sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m} \vartheta_{n} z^{n-1}\right\}>\alpha
$$

Let $\varphi_{0}=1$, and in general, we have

$$
\varphi_{n}=\frac{\kappa+1}{\left[(n+1)\left(n+\frac{\kappa}{2}\left(1+(-1)^{n+2}\right)+1\right)\right]^{m}}, \quad n \geq 1,0 \leq \kappa \leq 1, m=1,2, \ldots
$$

Obviously, the sequence $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ is a convex null sequence. Therefore, by Lemma 1, we conclude that

$$
\Re\left\{1+\sum_{n=2}^{\infty} \frac{\kappa+1}{\left[(n+1)\left(n+\frac{\kappa}{2}\left(1+(-1)^{n+2}\right)+1\right)\right]^{m}} z^{n-1}\right\}>\frac{1}{2}
$$

Now the convolution

$$
\begin{aligned}
\left(1+\sum_{n=2}^{\infty} n\left[n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right]^{m} \vartheta_{n} z^{n-1}\right) * & \left(1+\sum_{n=2}^{\infty} \frac{\kappa+1}{\left[(n)\left(n+\frac{\kappa}{2}\left(1+(-1)^{n+1}\right)\right)\right]^{m}} z^{n-1}\right) \\
& =1+\sum_{n=2}^{\infty}(\kappa+1) \vartheta_{n} z^{n-1}
\end{aligned}
$$

satisfies the real

$$
\Re\left\{1+\sum_{n=2}^{\infty}(\kappa+1) \vartheta_{n} z^{n-1} z^{n-1}\right\}>\alpha
$$

In other words, we have

$$
\Re\left\{\frac{h(z)}{z}\right\}=\Re\left\{1+\sum_{n=2}^{\infty} \vartheta_{n} z^{n-1}\right\}>\frac{\kappa+\alpha}{\alpha+1}
$$

Thus,

$$
\Re\left\{\frac{h(z)}{z}\right\}=\Re\left\{1+\sum_{n=2}^{\infty} \vartheta_{n} z^{n-1}-\frac{2 \alpha+\kappa-1}{2(\kappa+1)}\right\}>\frac{1}{2}
$$

But $f, h \in T_{m}(\kappa, \alpha)$, this implies that

$$
\left.\Re\left\{\left(\frac{h(z)}{z}-\frac{2 \alpha+\kappa-1}{2(\kappa+1)}\right) * D_{\kappa}^{m}(f)(z)\right)^{\prime}\right\}>\alpha
$$

Consequently, we conclude that

$$
\left.\Re\left\{\left(\frac{h(z)}{z}\right) * D_{\kappa}^{m}(f)(z)\right)^{\prime}\right\}>\frac{\kappa(2 \alpha+1)+4 \alpha-1}{2(\kappa+1)}:=\beta
$$

Thus, by Lemma 2 and the fact

$$
\Re\left(D_{\kappa}^{m}(f * h)(z)\right)^{\prime}=\Re\left(\frac{h(z)}{z} * D_{\kappa}^{m} f(z)^{\prime}\right)
$$

we realize the requested result.

Note that some applications of the Dunkl operator in a complex domain can be found in [9].

Acknowledgments

The work here is partially supported by the Universiti Kebangsaan Malaysia grant: GUP (Geran Universiti Penyelidikan)-2017-064.

References

[1] G.S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, (1983), 362-372.
[2] C.F. Dunkl, Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc. 311 (1989), 167183.
[3] R. W. Ibrahim, New classes of analytic functions determined by a modified differential-difference operator in a complex domain, Karbala Int. J. Modern Sci. 3(1) (2017), 53-58.
[4] J.M. Jahangiri, K. Farahmand, Partial sums of functions of bounded turning, J. Inequal. Pure Appl. Math. 4(4) (2003), Article 79.
[5] M. Darus M, R.W Ibrahim, Partial sums of analytic functions of bounded turning with applications, Comput. Appl. Math. 29 (1) 2010), 81-88.
[6] R.W Ibrahim, M. Darus, Extremal bounds for functions of bounded turning, Int. Math. Forum. 6 (33) (2011), $1623-1630$.
[7] R.W Ibrahim, Upper bound for functions of bounded turning. Math. Commun. 17(2) (2012), 461-468.
[8] S.S. Miller, and P. T. Mocanu. Differential subordinations: theory and applications. CRC Press, 2000.
[9] R.W Ibrahim, Optimality and duality defined by the concept of tempered fractional univex functions in multi-objective optimization. Int. J. Anal. Appl. 15 (1) (2017), 75-85.

