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Abstract. This article is concerned with the effect of slip boundary condition on two-dimensional creeping

movement of a Newtonian fluid in the existence of pervious medium with wall features and heterogeneous-

homogeneous chemical responses. The objective of this paper is to measure the performance of slip and wall

feature constraints through graphs. It is observed that diffusion ascends with an increase in slip and wall

constraints. The effective diffusion coefficient has been computed through long wavelength supposition and

Taylor’s condition for chemical responses.

1. Introduction

Mathematical modeling is the illustration of a system using scientific observation and linguistic. It is

applied to study the complications in medical science. Bio-fluid dynamics is the branch of biomechanics which

deals with the kinematics and dynamics of the fluids present in human beings, animals and plants. It spans

from cells to organs, covering diverse aspects of functionality of systemic physiology, including cardiovascular,

lymphatic, neurological, respiratory, reproductive, auditory and urinary systems. The biological systems are

very complex and have defied all attempts at satisfactory mathematical solutions. These complicated systems

are studied theoretically by means of approximated models whose simplified nature becomes amenable to

mathematical analysis and give meaningful mathematical solutions. Hence the mathematical analysis and

understanding of bio-fluid dynamics seem to be extremely important and useful for diagnosis and clinical
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purposes. The vital mechanism for fluid transportation in bio-fluid dynamics is Peristalsis. Peristalsis is a

coordinated response wherein a wave of construction preceded by a wave of relaxation passes down a hollow

viscus. From the perspective of fluid dynamics, peristalsis is typified by the dynamic interface of the fluid

flow and movement of the flexible boundaries of the conduit. The study of the mechanism of peristaltic

motion was first experimentally examined by Latham [1]. After this study, several experts have explored the

creeping sinusoidal transportation of dissimilar liquids under various circumstances ( [2] - [4]). Mittra and

Prasad [5] analyzed the movement of Newtonian liquid under peristalsis to know the effects of the viscoelastic

behavior of walls. Further, a few investigators have studied the wall sound effects on different fluids with

peristalsis ( [6] - [7]).

The dispersion is the process by which material is transported from one portion of a system to another as

a result of random molecular motion. Dispersion of soluble matter in laminar flow has biological applications

such as drug and nutrients distribution in the body. Through dispersion, metabolites are swapped between

a cell and its environment or among the tissues and bloodstream. Due to its importance, many investigators

explored the dispersion of a solute in Newtonian and non-Newtonian liquids under different limitations

following Taylors approach( [8] - [12]).

Creeping stream with a pervious intermediate has attained significance in the current decade because of

its practical applications chiefly in biomechanics and geophysical fluid dynamics. Even in some pathological

situation like: transportation of liquid in kidneys, in lungs, gallbladder with stones, small blood vessels and

tissues and bones and allocation of fatty cholesterol can be well thought-out as a pervious medium. The

proper functioning of these depends on the stream of blood, nutrients, etc., through them. Hence, several

authors studied influence of porosity in dissimilar liquids ( [13] - [19]). In many situations like physiological

and engineering, the fluid slips at the walls of the channel. In slip conditions the boundary and the fluid moves

with different velocity. It is important in describing the macroscopic effect of certain molecular phenomenon

where interaction between fluid and solid occurs. The slip boundary condition was initially proposed by

Beaver and Joseph [20]. Saffman [21] modified the periphery condition of Beaver and Joseph. The presence

of slip phenomenon at the boundaries and interfaces has been observed in physiological streams, flows through

pipes in which chemical responses take place at the walls. To the best of our knowledge, no attempt has yet

been reported to discuss the impact of wall features and heterogeneous-homogeneous chemical responses on

creeping flow of a Newtonian fluid in a pervious medium with a slip condition through Taylors approach.

2. Mathematical Formulation and Methodology

Consider the creeping flow of a Newtonian liquid through a pervious medium in the 2- dimensional conduit

and assumed that conduit is packed with pervious material. Figure 1 displays the migrant waves.
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Figure 1. Physical model of the issu.

The migrant sinusoidal wave is given by the subsequent equation:

±
[
a sin
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(X− ct) + d

]
= ±h = Y, (2.1)

The relating flow conditions of the present issue are:

0 =
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∂X
, (2.2)
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Referring [7], the condition of the springy wall movement is specified as:

p− p0 = L(h), (2.5)

where,

− T
∂2

∂X2
+m

∂2

∂t2
+ C

∂

∂t
= L. (2.6)

Here, C - the coefficient of sticky damping force, m - the mass per/area and T - the tension in the membrane.

Applying long wavelength hypothesis, conditions (2.2) to (2.4) yield as:
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∂X
, (2.7)

0 = − ∂p
∂X

+ µ
∂2U

∂Y2
− µ

k̄
U, (2.8)



Int. J. Anal. Appl. 17 (4) (2019) 662

0 = − ∂p
∂Y
. (2.9)

Following Bhatt and Sacheti [22], the allied border conditions are

U = −d
√
Da

γ

∂U

∂Y
, at Y = ±h. (2.10)

Where, γ- slip constraint, Da- pervious constraint.

It is presumed that there is no horizontal displacement of the wall, p0 = 0 and the channel walls are

inextensible,

µ
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− µ
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where
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Solving Eqns. (2.8), 2.9) with (2.10) and (2.11), we attain
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The mean speed is specified and obtained as:
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Referring [13], the relative liquid speed is given as:
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Utilizing Taylor [8], the scattering equation for the concentration C of the material in isothermal circum-

stances is

D
∂2C

∂Y2
− k1C = U

∂C

∂X
+
∂C

∂t
. (2.16)

Here, k1 - the rate constant of first order chemical response , D - the molecular diffusion coefficient , and

C - liquid concentration.



Int. J. Anal. Appl. 17 (4) (2019) 663

It is expected that Ū≈C ( [13]), utilizing Ū≈C , and consequent non-dimensional quantities,
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d
, θ =

t

t̄
, t̄ =

λ

Ū
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Equations (2.15), (2.16) and (2.12) reduces to
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− ε
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]
= P, (2.20)

where, E1−the rigidity E2−the stiffness, E3−the viscous damping force in the wall and ε−the amplitude ratio.

The dispersion with 1st- order irreversible chemical response occur in the mass of the liquid and at the

channel walls.

Referring [11], the wall conditions are specified as:

0 = FC +
∂C

∂Y
at Y = [a sin

2π
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(X− Ūt) + d] = h, (2.21)
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After non-dimensionalisation, the Eqns. (2.21) and (2.22) yield as:
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where the heterogeneous response rate constraint is β = Fd, relating to catalytic response at the dividers.

Alluding Eqns. (2.23) and (2.24), the primitive of (2.19) is attained as:

C(η) = − d4

λµDm2

∂C

∂ξ
P
[
A4 cosh(mη) + A5 sinh(mη) + A6 cosh(αη) + A7 sinh(αη) + A8

]
. (2.25)
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The volumetric flow rate Q is specified and attained as:
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where,
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Looking at condition (2.27) with Fick’s law of scattering, the dispersing coefficient D∗ was computed to

such an extent that the solute disperses near to the plane moving with the typical speed of the flow and is

specified as

2
d6

µ2D
G(α, β, ε,E1,E2,E3,Da, γ, ξ) = D∗. (2.28)

Let Ḡ be the average of G, and is obtained by the following equation:

∫ 1

0

G(α, β, ε,E1,E2,E3,Da, γ, ξ)dξ = Ḡ. (2.29)
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3. Discussion of Outcomes

The impact of various constraints on the mean effective scattering coefficient can be observed through the

expression Ḡ (α, β, ε,E1,E2,E3,Da, γ, ξ). Using MATHEMATICA software the graphs are plotted for Eqn.

(2.29).

Figure 2. Illustration of γ for Ḡ at E1 = 0.1, E2 = 0.0, E3 = 0.06, ε = 0.2, α = 1.0, Da = 0.9

Figure 3. Illustration of γ for Ḡ at E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, β = 5.0, Da = 0.9

The effects of slip constraint on Ḡ have been illustrated through the figures 2 - 4. It is noticed that,

scattering rises as slip constraint (γ) augments. As we already known that, heterogeneous response takes

place more at the boundary of the conduit, due to slip boundary condition less heterogeneous response takes

place at the boundary. Hence the dispersion is more in the case of no-slip boundary as compared to slip
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Figure 4. Illustration of γ for Ḡ at E1 = 0.1, E2 = 4.0, E3 = 0.00, α = 1.0, β = 5.0, Da = 0.9

Figure 5. Illustration of Da for Ḡ at E1 = 0.1, E2 = 0.0, E3 = 0.06, ε = 0.2, α = 1.0, γ = 0.08

boundary.

Figures 5 - 7 indicates that Ḡ enhances with a growth in the Darcy number (Da). This result concurs

with the outcome of [6], [13], and [14].

Consider the figures 8 - 16 for the effect of the rigidity (E1), stiffness (E2) and viscous damping force (E3)

of the wall on the dispersal coefficient (Ḡ). It is observed that Ḡ ascends monotonically with an increase in

E1,E2 and E3.
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Figure 6. Illustration of Da for Ḡ at E1 = 0.1, E2 = 4.0, E3 = 0.06, ε = 0.2, β = 5.0, γ = 0.08

Figure 7. Illustration of Da for Ḡ at E1 = 0.1, E2 = 4.0, E3 = 0.00, α = 1.0, β = 5.0, γ = 0.08

Wall feature affects the increase in velocity of the liquid in conduit which reasons to enhance the scattering.

These outcomes agree with the results of [7]. Figures 2, 5, 8, 11, 14 display that scattering lessens with

heterogeneous substance response rate β and also figures 3, 6, 9, 12, and 15 clear that scattering descends

as homogeneous compound response rate α falls down.

It is observed that the solution expression for Ḡ be in agreement with Sobh [15] when there is no wall

features. Further, it is noticed that Ḡ be in agreement with that [13] and [17], if there is absence of slip

boundary condition ( i.e. with no-slip boundary condition).
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Figure 8. Illustration of E1 for Ḡ at Da = 0.9, E2 = 0.0, E3 = 0.00, ε = 0.2, α = 1.0, γ = 0.08

Figure 9. Illustration of E1 for Ḡ at Da = 0.9, E2 = 4.0, E3 = 0.06, ε = 0.2, β = 5.0, γ = 0.08

4. Conclusions

In this article, we inspected that the slip and wall effects on two-dimensional creeping flow of a Newtonian

fluid through a pervious medium in the existence of chemicals responses. Identical behavior is noticed for

wall features, slip constant γ and Darcy number Da on dispersion coefficient (Ḡ) and it is also witnessed

the opposite behavior of homogeneous response rate α and heterogeneous response rate β are observed on

concentration profile. Lastly, it concludes that wall feature constants, slip constraint, and Darcy constant

favor diffusion. This model may help in better understanding of the transport phenomena occurring in the

intestine leading to absorption of nutrients and drugs.
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Figure 10. Illustration of E1 for Ḡ at Da = 0.9, E2 = 0.0, E3 = 0.00, α = 1.0, β = 5.0, γ = 0.08

Figure 11. Illustration of E2 for Ḡ at Da = 0.9, E1 = 0.1, E3 = 0.06, ε = 0.2, α = 1.0, γ = 0.08
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Figure 12. Illustration of E2 for Ḡ at Da = 0.9, E1 = 0.1, E3 = 0.06, ε = 0.2, β = 5.0, γ = 0.08

Figure 13. Illustration of E2 for Ḡ at Da = 0.9, E1 = 0.1, E3 = 0.00, α = 1.0, β = 5.0, γ = 0.08
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Figure 14. Illustration of E3 for Ḡ at Da = 0.9, E1 = 0.1, E2 = 4.0, ε = 0.2, α = 1.0, γ = 0.08

Figure 15. Illustration of E3 for Ḡ at Da = 0.9, E1 = 0.1, E2 = 4.0, ε = 0.2, β = 5.0, γ = 0.08
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Figure 16. Illustration of E3 for Ḡ at Da = 0.9, E1 = 0.1, E2 = 4.0, α = 1.0, β = 5.0, γ = 0.08
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