International Journal of Analysis and Applications Volume 17, Number 2 (2019), 226-233 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-17-2019-226



# A NOTE ON GENERALIZED INDEXED NORLUND SUMMABILITY FACTOR OF AN INFINITE SERIES

## B. P. PADHY\*, P. TRIPATHY AND B. B. MISHRA

Department of Mathematics, School of Applied Sciences, KIIT, Deemed to be University, Bhubaneswar-24, Odisha, India

\*Corresponding author: birupakhya.padhyfma@kiit.ac.in

ABSTRACT. In the present article, we have established a result on generalized indexed absolute Norlund summability factor by generalizing results of Mishra and Srivastava on indexed absolute Cesaro summability factors and Padhy et.al. on the absolute indexed Norlund summability.

## 1. INTRODUCTION

In 1930, J.M.Whittaker [18] was the 1st to establish a result on the absolute summability of Fourier series and in 1932, M. Fekete [6] established a result on generalized indexed summability. Later on the researchers like Daniel [4] in 1964, Das [5] in 1966, Siya Ram [15] in 1969, Mazhar [11] in 1971, Mishra and Srivastava [13] in 1984, Sulaiman [16] in 2011 etc. have established results on indexed summability factors of an infinite series.

Let  $\sum a_n$  be a given infinite series with sequence of partial sums  $\{s_n\}$ . Let  $t_n^{\alpha}$  be the nth  $(C, \alpha)$  mean (with order  $\alpha > -1$ ) of the sequence  $\{s_n\}$  and is given by

$$t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} s_k, \ n \in N, where \ A_n^{\alpha} = \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)\Gamma(n+1)},$$

Received 2018-11-21; accepted 2018-12-18; published 2019-03-01.

<sup>2010</sup> Mathematics Subject Classification. 40D15, 40F05, 40G99.

Key words and phrases. absolute summability; summability factors; infinite series.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

then the series  $\sum a_n$  is said to be summable  $|C, \alpha|_k, k \ge 1$ , [7] if

$$\sum_{n=1}^{\infty} (n)^{k-1} |t_n^{\alpha} - t_{n-1}^{\alpha}|^k < \infty.$$

Let  $t_n$  be the nth (C, 1)- mean of the sequence  $\{s_n\}$  and is given by

$$t_n = \frac{1}{n+1} \sum_{k=0}^n s_k,$$

then the series  $\sum a_n$  is said to be summable  $|C, 1|_k, k \ge 1$ , [3] if

$$\sum_{n=1}^{\infty} (n)^{k-1} |t_n - t_{n-1}|^k < \infty.$$
(1.1)

Suppose  $\{q_n\}$  be a sequence of real numbers with  $q_n > 0$ , such that

$$Q_n = \sum_{\nu=0}^n q_\nu \to \infty, \ as \ n \to \infty \left( Q_{-i} = q_{-i} = 0, i \ge 1 \right)$$
(1.2)

The sequence to sequence transformation

$$T_n = \frac{1}{Q_n} \sum_{\nu=0}^n q_{n-\nu} s_{\nu}$$
(1.3)

defines the sequence  $\{T_n\}$  of the  $(N, q_n)$ - means of the sequence  $\{s_n\}$  generated by the sequence of coefficients  $\{q_n\}$ .

The series  $\sum a_n$  is said to be summable  $|N, q_n|$  if the sequence  $\{T_n\}$  is of bonded variation i.e;  $\sum |T_n - T_{n-1}|$  is convergent.

The series  $\sum a_n$  is said to be summable  $|N, q_n|_k, k \ge 1$ , if (see [8])

$$\sum_{n=1}^{\infty} \left(\frac{Q_n}{q_n}\right)^{k-1} \left|T_n - T_{n-1}\right|^k < \infty$$
(1.4)

Clearly,  $|N, q_n|_k$ -summability is same as |C, 1|-summability, when  $q_n = 1$ , for all values of n. Further any sequence  $\{\alpha_n\}$  of positive numbers the series  $\sum a_n$  is said to be summable  $|N, q_n, \alpha_n|_k, k \ge 1$  if

$$\sum_{n=1}^{\infty} (\alpha_n)^{k-1} |T_n - T_{n-1}|^k < \infty$$
(1.5)

and is said to be summable  $|N, q_n, \alpha_n; \delta|_k, k \ge 1, \delta \ge 0$  if

$$\sum_{n=1}^{\infty} (\alpha_n)^{\delta k+k-1} |T_n - T_{n-1}|^k < \infty$$
(1.6)

For any sequence  $\{\mu_n\}, \sum_{n=1}^{\infty} a_n \mu_n$  is an infinite series. We define

$$\Delta \mu_n = \mu_n - \mu_{n-1}, |\Delta \mu_n| = |\mu_n - \mu_{n-1}|$$

Also, for any sequence  $\{\mu_n\}$ , by  $\mu_n = O(n)$ , we mean that the sequence  $\{\frac{\mu_n}{n}\}$  is bounded.

## 2. KNOWN THEOREMS

Concerning with |C,1| and  $|N,q_n|$  summability Kishore [10] has proved the following theorem:

**Theorem 2.1.** Let  $q_0 > 0, q_n \ge 0$  and  $(q_n)$  be a non-decreasing sequence. If  $\sum a_n$  is summable |C, 1| then the series  $\sum a_n Q_n (n+1)^{-1}$  is summable  $|N, q_n|$ .

Later on Ram [15] has proved the following theorem related to absolute Norlund factors of infinite series.

**Theorem 2.2.** Let  $(q_n)$  be a non-increasing sequence with  $q_0 > 0, q_n \ge 0$ . If

$$\sum_{k=1}^n \frac{1}{k} |s_k| = O(Y_n) \text{ as } n \to \infty;$$

where  $(Y_n)$  is a positive non-decreasing sequence and  $(\mu_n)$  is a sequence such that

$$\sum_{n=1}^{\infty} n |\Delta^2 \mu_n| Y_n < \infty;$$
$$|\mu_n| Y_n = O(1) \text{ as } n \to \infty$$

then the series  $\sum a_n Q_n (n+1)^{-1}$  is summable  $|N, q_n|$ .

Also verma [17] has proved the following summability factor theorem:

**Theorem 2.3.** Let  $(q_n)$  be a non-increasing sequence with  $q_0 > 0, q_n \ge 0$ . If  $\sum a_n$  is summable  $|C, 1|_k$  then the series  $\sum a_n Q_n (n+1)^{-1}$  is summable  $|N, q_n|_k, k \ge 1$ .

In 1984, Mishra and Srivatava [13] proved the following theorem for  $|C, 1|_k$  summability.

**Theorem 2.4.** Let  $(Y_n)$  be a positive non-decreasing sequence and let there be sequences  $\{\beta_n\}$  and  $\{\mu_n\}$  such that

$$|\Delta\mu_n| \le \beta_n; \tag{2.1}$$

$$\beta_n \to 0 \text{ as } n \to \infty;$$
 (2.2)

$$|\mu_n|Y_n = O(1) \ as \ n \to \infty; \tag{2.3}$$

$$\sum_{n=1}^{\infty} n |\Delta\beta_n| Y_n < \infty; \tag{2.4}$$

$$\sum_{n=1}^{\infty} \frac{1}{n} |s_n|^k = O(Y_m) \text{ as } m \to \infty,$$
(2.5)

then the series  $\sum_{n=1}^{\infty} a_n \mu_n$  is summable  $|C, 1|_k, k \ge 1$ .

Very recently, Padhy et al. [14] have proved a theorem on  $|N, q_n|_k$ -summability by extending theorem 2.4, in the following form:

**Theorem 2.5.** Let for a positive non-decreasing sequence  $(Y_n)$ , there be sequences  $\{\beta_n\}$  and  $\{\mu_n\}$  satisfying the conditions 2.1 to 2.5 and  $\{q_n\}$  be a sequence with  $\{q_n\} \in \mathbb{R}^+$  such that

$$Q_n = O(nq_n); \tag{2.6}$$

$$\sum_{n=1}^{\infty} \frac{q_n}{Q_n} |s_n|^k = O(Y_m) \text{ as } m \to \infty;$$
(2.7)

$$\frac{Q_{n-r-1}}{Q_n} = O\left(\frac{q_{n-r-1}}{Q_n}\frac{Q_r}{q_r}\right); \tag{2.8}$$

$$\sum_{n=r+1}^{m+1} \left(\frac{Q_n}{q_n}\right)^{k-1} \frac{q_{n-r}}{Q_n} = O\left(\frac{q_r}{Q_r}\right),\tag{2.9}$$

then the series  $\sum_{n=1}^{\infty} a_n \mu_n$  is summable  $|N, q_n|_k, k \ge 1$ , where  $0 \le r \le n$ .

It should be noted that if we take  $q_n = 1 \forall n$  then condition 2.7 will be reduced to 2.5.

In what follows, we have generalized known theorems 2.4 and 2.5 to  $|N, q_n, \alpha_n; \delta|_k$  - summability in the form of the following theorem after studying [1] and [2] :

### 3. Main Theorem

**Theorem 3.1.** Let  $(Y_n)$  be a positive non-decreasing sequence and there be sequences  $\{\beta_n\}$  and  $\{\mu_n\}$  such that the conditions 2.1 to 2.5 are satisfied. Further let  $\{q_n\}$  be a sequence of real numbers with  $q_n > 0$ , such that

$$Q_n = O(nq_n); \tag{3.1}$$

$$\sum_{n=1}^{\infty} \frac{q_n}{Q_n} |s_n|^k = O(Y_m) \text{ as } m \to \infty;$$
(3.2)

$$\frac{Q_{n-r-1}}{Q_n} = O\left(\frac{q_{n-r-1}}{Q_n}\frac{Q_r}{q_r}\right);$$
(3.3)

$$\sum_{n=r+1}^{m+1} (\alpha_n)^{\delta k+k-1} \frac{q_{n-r}}{Q_n} = O\left(\frac{q_r}{Q_r}\right),\tag{3.4}$$

then the series  $\sum_{n=1}^{\infty} a_n \mu_n$  is summable  $|N, q_n, \alpha_n; \delta|_k, k \ge 1, \delta \ge 0$ .

We require the below mentioned lemma to prove our main theorem:

## 4. Lemma [5]

Let  $(Y_n)$  be a positive non decreasing sequence and there be sequences  $\{\beta_n\}$  and  $\{\mu_n\}$  such that the conditions 2.1 to 2.5 are satisfied. Then

$$\beta_n Y_n = O(1) \ as \ n \to \infty, \tag{4.1}$$

$$\sum_{n=1}^{\infty} \beta_n Y_n < \infty. \tag{4.2}$$

## 5. Proof of the Main Theorem

Suppose  $(\tau_n)$  refers to the  $(N, q_n)$ - mean of the series  $\sum_{n=1}^{\infty} a_n \mu_n$ . Then by definition, we have

$$\tau_n = \frac{1}{Q_n} \sum_{r=0}^n q_{n-r} \sum_{s=0}^r a_s \mu_s$$
$$= \frac{1}{Q_n} \sum_{s=0}^n a_s \mu_s \sum_{r=s}^n q_{n-r}$$
$$= \frac{1}{Q_n} \sum_{s=0}^n a_s \mu_s Q_{n-s}$$
$$= \frac{1}{Q_n} \sum_{r=0}^n a_r \mu_r Q_{n-r}$$

Thus

$$= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4} \ (say)$$

Now, to show  $\sum_{n=1}^{\infty} a_n \mu_n$  is summable  $|N, q_n, \alpha_n; \delta|_k, k \ge 1, \delta \ge 0$ , by 1.6, we need to show that

$$\sum_{n=1}^{\infty} (\alpha_n)^{\delta k+k-1} |\tau_n - \tau_{n-1}|^k < \infty.$$

i.e; to show that

$$\sum_{n=1}^{\infty} (\alpha_n)^{\delta k+k-1} |T_{n,1}+T_{n,2}+T_{n,3}+T_{n,4}|^k < \infty.$$

It will be enough to show that

$$\sum_{n=1}^{\infty} (\alpha_n)^{\delta k+k-1} |T_{n,j}|^k < \infty \text{ for } j = 1, 2, 3, 4.$$

to establish the main theorem by using the inequality given by Minkowski.

Now we have

$$\begin{split} &\sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} |T_{n,1}|^k \\ &\sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} |\frac{1}{Q_n Q_{n-1}} \sum_{r=1}^{n-1} q_{n-r} Q_{n-1} \mu_r s_r|^k \\ &\leq \sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} \frac{1}{Q_n} \left( \sum_{r=1}^{n-1} q_{n-r} |\mu_r|^k |s_r|^k \right) \left( \frac{1}{Q_n} \sum_{r=1}^{n-1} q_{n-r} \right)^{k-1} (Using \ Holder's \ inequality) \\ &= O(1) \sum_{r=1}^{m} |\mu_r|^k |s_r|^k \sum_{n=r+1}^{m+1} (\alpha_n)^{\delta k+k-1} \left( \frac{q_{n-r}}{Q_n} \right) \\ &= O(1) \sum_{r=1}^{m} |\mu_r|^k |s_r|^k \frac{q_r}{Q_r}, \ by \ 3.4 \\ &= O(1) \sum_{r=1}^{m-1} \frac{q_r}{Q_r} |s_r|^k |\mu_r| |\mu_r|^{k-1} \\ &= O(1) \sum_{r=1}^{m-1} \Delta |\mu_r| \sum_{w=1}^{r} \frac{q_w}{Q_w} |s_w|^k + O(1) |\mu_m| \sum_{r=1}^{m} \frac{q_r}{Q_r} |s_r|^k \\ &= O(1) \sum_{r=1}^{m-1} |\Delta \mu_r| Y_r + O(1) |\mu_m| Y_m \ , \ by \ 3.2 \\ &= O(1), \ as \ m \to \infty \end{split}$$

(By the lemma and 2.3)

Next,

$$\sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} |T_{n,2}|^k$$

$$= \sum_{n=1}^{m+1} (\alpha_n)^{\delta k+k-1} \left| \frac{1}{Q_n Q_{n-1}} \sum_{r=1}^{n-1} q_{n-r-1} Q_n \mu_r s_r \right|^k$$

$$\leq \sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} \frac{1}{Q_{n-1}} \left( \sum_{r=1}^{n-1} q_{n-r-1} |\mu_r|^k |s_r|^k \right) \left( \frac{1}{Q_{n-1}} \sum_{r=1}^{n-1} q_{n-r-1} \right)^{k-1}$$
(5.1)

$$= O(1) \sum_{r=1}^{m} |\mu_r|^k |s_r|^k \sum_{n=r+1}^{m+1} (\alpha_n)^{\delta k+k-1} \left(\frac{q_{n-r-1}}{Q_{n-1}}\right)$$
$$= O(1) \sum_{r=1}^{m} |\mu_r|^k |s_r|^k \frac{q_r}{Q_r}$$
$$= O(1), \text{ as } m \to \infty, \text{ As in proof of the 1st part.}$$

Further,

$$\begin{split} &\sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} |T_{n,3}|^k \\ &= \sum_{n=1}^{m+1} (\alpha_n)^{\delta k+k-1} \left| \frac{1}{Q_n Q_{n-1}} \sum_{r=1}^{n-1} Q_{n-r-1} Q_{n-1} \Delta \mu_r s_r \right| \\ &\leq \sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} \frac{1}{Q_n} \left( \sum_{r=1}^{n-1} Q_{n-r-1} |\Delta \mu_r| |s_r|^k \right) \left( \frac{1}{Q_n} \sum_{r=1}^{n-1} Q_{n-r-1} |\Delta \mu_r| \right)^{k-1} \\ &\quad Since, \ \left( \frac{1}{Q_n} \sum_{r=1}^{n-1} Q_{n-r-1} |\Delta \mu_r| \right) \leq \sum_{r=1}^{n-1} |\Delta \mu_r| \leq n |\Delta \mu_r| \leq n \beta_n \end{split}$$

Therefore,

$$\begin{split} &\sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} |T_{n,3}|^k \\ &\leq O(1) \sum_{r=1}^m (r\beta_r)^{k-1} |\Delta \mu_r| |s_r|^k \sum_{n=r+1}^{m+1} (\alpha_n)^{\delta k+k-1} \frac{Q_{n-r-1}}{Q_n} \\ &= O(1) \sum_{r=1}^m |\Delta \mu_r| |s_r|^k \frac{q_r}{Q_r} \\ &\leq O(1) \sum_{r=1}^m \beta_r |s_r|^k \frac{q_r}{Q_r} \\ &= O(1) \sum_{r=1}^{m-1} \Delta (\beta_r) \sum_{w=1}^r \frac{q_w}{Q_w} |s_w|^k + O(1)(\beta_m) \sum_{r=1}^m \frac{q_r}{Q_r} |s_r|^k \\ &= O(1) \sum_{r=1}^{m-1} |\Delta \beta_r| Y_r + O(1)(\beta_m) Y_m \\ &= O(1) \ as \ m \to \infty \end{split}$$

Now,

$$\sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} |T_{n,4}|^k$$
  
= 
$$\sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} |\frac{1}{Q_n Q_{n-1}} \sum_{r=1}^{n-1} Q_{n-r-2} Q_n \Delta \mu_r s_r|^k$$

(5.2)

$$\leq \sum_{n=2}^{m+1} (\alpha_n)^{\delta k+k-1} \frac{1}{Q_{n-1}} \left( \sum_{r=1}^{n-1} Q_{n-r-2} |\Delta \mu_r| |s_r|^k \right) \frac{1}{Q_{n-1}} \sum_{r=1}^{n-1} Q_{n-r-2} |\Delta \mu_r|$$

$$= O(1) \sum_{r=1}^m (r\beta_r)^{k-1} |\Delta \mu_r| |s_r|^k \sum_{n=r+1}^{m+1} (\alpha_n)^{\delta k+k-1} \left( \frac{Q_{n-r-1}}{Q_n} \right), \text{ (as above)}$$

$$= O(1) \sum_{r=1}^m |\Delta \mu_r| |s_r|^k \frac{q_r}{Q_r}$$

$$= O(1) \text{ as } m \to \infty. \text{ (as above)}$$

This completes the proof of the theorem.

#### 6. Conclusion

If  $(Y_n)$  is a positive non-decreasing sequence and there be sequences  $\{\beta_n\}$  and  $\{\mu_n\}$  such that the conditions 2.1 to 2.5 along with the conditions 4.1 and 4.2 are satisfied then the series  $\sum_{n=1}^{\infty} a_n \mu_n$  is summable  $|N, q_n, \alpha_n; \delta|_k, k \ge 1, \delta \ge 0$ , under the conditions 3.1 to 3.4. Thus, our result generalizes the result of Mishra and Srivastava [13] and Padhy et. al [14].

#### References

- [1] Bor, H., A note on two summability methods, Proc. Amer. Math. Soc., 98(1986), 81-84.
- [2] Bor, H., A note on absolute summability factors, Int. J. Math. And Math. Sci., 17(3), (1994), 479-482.
- [3] Bor.H, On absolute summability factors of infinite series, Rocky Mt. J. Math., 23(4)(1993), 1221-1230.
- [4] Daniel, E.C., On absolute summability factors of infinite series, Proc. Japan Acad., 40(2)(1964), 65-69..
- [5] Das, G, On absolute Norlund summability factors of infinite series, J. Lond. Math. Soc., 41(1966), 685-692.
- [6] F. Fekete, M., On absolute summability of infinite series, Proc. Edinburgh Math. Soc., 3(2)(1932), 132-134.
- [7] Flett, T.M., On an extension of absolute summability and some theorems of Little wood and Palay, Proc. Lond. Math. Soc., 7(1957), 113-141.
- [8] Hardy, G.H., Divergent series, Oxford University press, (1949).
- [9] Hsiang,,F.C., On absolute Norlund summability of a Fourier series, J. Austral. Math. Soc., 7(1967), 252-256.
- [10] Kishore, N., On the absolute norlund summability factors, Riv. Mat. Univ. Parma, 6(1965), 129-134.
- [11] Mazhar, S.M., On absolute summability factors of infinite series, Tohoku Math. J., 23(3)(2008), 433-451.
- [12] Misra, U.K., Misra, M. and Padhy, B.P., On the local property of indexed Norlund summability of a factored Fourier series, Int. J. Res. Rev. App. Sci., 5(1)(2010), 52-58.
- [13] Mishra, K.N and Srivastava, R.S.L., On absolute Cesaro summability factors of infinite series, Portugaliae Math., 42(1)(1983-84), 53-61.
- [14] Padhy, B.P., Majhi, B., Samanta, P., Misra, M. and Misra, U.K., A note on the absolute indexed Norlund summability, New trends Math. Sci., 6(4), (2018), 54-59.
- [15] Ram, S., On the absolute norlund summability factors of infinite series, Indian J. Pure Appl. Math., 2(1971), 275-282.
- [16] Sulaiman, W.T., On some absolute summability factors of infinite series, Gen. Math. Notes, 2(2)(2011), 7-13.
- [17] Verma, R.S., On the absolute Norlund summability factors, Riv. Math. Univ. Parma, 3(1977), 27-33.
- [18] Whittaker, J.M., The absolute summability of Fourier series, Proc. Edinburgh Math. Soc., 2(2)(1930), 1-5.